ocrnet.py 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

W
wuzewu 已提交
17 18 19
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
20 21

from paddleseg import utils
W
wuzewu 已提交
22 23
from paddleseg.cvlibs import manager, param_init
from paddleseg.models.common.layer_libs import ConvBNReLU, AuxLayer
24 25


W
wuzewu 已提交
26 27 28
class SpatialGatherBlock(nn.Layer):
    """Aggregation layer to compute the pixel-region representation"""

29 30 31 32 33
    def forward(self, pixels, regions):
        n, c, h, w = pixels.shape
        _, k, _, _ = regions.shape

        # pixels: from (n, c, h, w) to (n, h*w, c)
W
wuzewu 已提交
34 35
        pixels = paddle.reshape(pixels, (n, c, h * w))
        pixels = paddle.transpose(pixels, (0, 2, 1))
36 37

        # regions: from (n, k, h, w) to (n, k, h*w)
W
wuzewu 已提交
38 39
        regions = paddle.reshape(regions, (n, k, h * w))
        regions = F.softmax(regions, axis=2)
40 41

        # feats: from (n, k, c) to (n, c, k, 1)
W
wuzewu 已提交
42 43 44
        feats = paddle.bmm(regions, pixels)
        feats = paddle.transpose(feats, (0, 2, 1))
        feats = paddle.unsqueeze(feats, axis=-1)
45 46 47 48

        return feats


W
wuzewu 已提交
49 50 51
class SpatialOCRModule(nn.Layer):
    """Aggregate the global object representation to update the representation for each pixel"""

52 53 54 55 56 57 58 59 60
    def __init__(self,
                 in_channels,
                 key_channels,
                 out_channels,
                 dropout_rate=0.1):
        super(SpatialOCRModule, self).__init__()

        self.attention_block = ObjectAttentionBlock(in_channels, key_channels)
        self.dropout_rate = dropout_rate
W
wuzewu 已提交
61 62
        self.conv1x1 = nn.Sequential(
            nn.Conv2d(2 * in_channels, out_channels, 1), nn.Dropout2d(0.1))
63 64 65

    def forward(self, pixels, regions):
        context = self.attention_block(pixels, regions)
W
wuzewu 已提交
66
        feats = paddle.concat([context, pixels], axis=1)
67 68 69 70 71
        feats = self.conv1x1(feats)

        return feats


W
wuzewu 已提交
72 73 74
class ObjectAttentionBlock(nn.Layer):
    """A self-attention module."""

75 76 77 78 79 80
    def __init__(self, in_channels, key_channels):
        super(ObjectAttentionBlock, self).__init__()

        self.in_channels = in_channels
        self.key_channels = key_channels

W
wuzewu 已提交
81
        self.f_pixel = nn.Sequential(
M
michaelowenliu 已提交
82 83
            ConvBNReLU(in_channels, key_channels, 1),
            ConvBNReLU(key_channels, key_channels, 1))
84

W
wuzewu 已提交
85
        self.f_object = nn.Sequential(
M
michaelowenliu 已提交
86 87
            ConvBNReLU(in_channels, key_channels, 1),
            ConvBNReLU(key_channels, key_channels, 1))
88

M
michaelowenliu 已提交
89
        self.f_down = ConvBNReLU(in_channels, key_channels, 1)
90

M
michaelowenliu 已提交
91
        self.f_up = ConvBNReLU(key_channels, in_channels, 1)
92 93 94 95 96 97

    def forward(self, x, proxy):
        n, _, h, w = x.shape

        # query : from (n, c1, h1, w1) to (n, h1*w1, key_channels)
        query = self.f_pixel(x)
W
wuzewu 已提交
98 99
        query = paddle.reshape(query, (n, self.key_channels, -1))
        query = paddle.transpose(query, (0, 2, 1))
100 101 102

        # key : from (n, c2, h2, w2) to (n, key_channels, h2*w2)
        key = self.f_object(proxy)
W
wuzewu 已提交
103
        key = paddle.reshape(key, (n, self.key_channels, -1))
104 105 106

        # value : from (n, c2, h2, w2) to (n, h2*w2, key_channels)
        value = self.f_down(proxy)
W
wuzewu 已提交
107 108
        value = paddle.reshape(value, (n, self.key_channels, -1))
        value = paddle.transpose(value, (0, 2, 1))
109 110

        # sim_map (n, h1*w1, h2*w2)
W
wuzewu 已提交
111
        sim_map = paddle.bmm(query, key)
112
        sim_map = (self.key_channels**-.5) * sim_map
W
wuzewu 已提交
113
        sim_map = F.softmax(sim_map, axis=-1)
114 115

        # context from (n, h1*w1, key_channels) to (n , out_channels, h1, w1)
W
wuzewu 已提交
116 117 118
        context = paddle.bmm(sim_map, value)
        context = paddle.transpose(context, (0, 2, 1))
        context = paddle.reshape(context, (n, self.key_channels, h, w))
119 120 121 122 123
        context = self.f_up(context)

        return context


W
wuzewu 已提交
124 125
class OCRHead(nn.Layer):
    """
W
wuzewu 已提交
126
    The Object contextual representation head.
W
wuzewu 已提交
127 128 129 130 131 132 133
    Args:
        num_classes(int): the unique number of target classes.
        in_channels(tuple): the number of input channels.
        ocr_mid_channels(int): the number of middle channels in OCRHead.
        ocr_key_channels(int): the number of key channels in ObjectAttentionBlock.
    """

134 135 136 137
    def __init__(self,
                 num_classes,
                 in_channels=None,
                 ocr_mid_channels=512,
W
wuzewu 已提交
138 139
                 ocr_key_channels=256):
        super(OCRHead, self).__init__()
140 141 142 143 144 145

        self.num_classes = num_classes
        self.spatial_gather = SpatialGatherBlock()
        self.spatial_ocr = SpatialOCRModule(ocr_mid_channels, ocr_key_channels,
                                            ocr_mid_channels)

W
wuzewu 已提交
146
        self.indices = [-2, -1] if len(in_channels) > 1 else [-1, -1]
147

W
wuzewu 已提交
148 149 150 151 152 153
        self.conv3x3_ocr = ConvBNReLU(
            in_channels[self.indices[1]], ocr_mid_channels, 3, padding=1)
        self.cls_head = nn.Conv2d(ocr_mid_channels, self.num_classes, 1)
        self.aux_head = AuxLayer(in_channels[self.indices[0]],
                                 in_channels[self.indices[0]], self.num_classes)
        self.init_weight()
154 155

    def forward(self, x, label=None):
W
wuzewu 已提交
156
        feat_shallow, feat_deep = x[self.indices[0]], x[self.indices[1]]
157

W
wuzewu 已提交
158 159
        soft_regions = self.aux_head(feat_shallow)
        pixels = self.conv3x3_ocr(feat_deep)
160 161 162 163 164

        object_regions = self.spatial_gather(pixels, soft_regions)
        ocr = self.spatial_ocr(pixels, object_regions)

        logit = self.cls_head(ocr)
W
wuzewu 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        return [logit, soft_regions]

    def init_weight(self):
        """Initialize the parameters of model parts."""
        for sublayer in self.sublayers():
            if isinstance(sublayer, nn.Conv2d):
                param_init.normal_init(sublayer.weight, scale=0.001)
            elif isinstance(sublayer, nn.SyncBatchNorm):
                param_init.constant_init(sublayer.weight, value=1)
                param_init.constant_init(sublayer.bias, value=0)


@manager.MODELS.add_component
class OCRNet(nn.Layer):
    """
    The OCRNet implementation based on PaddlePaddle.
W
wuzewu 已提交
181
    The original article refers to
W
wuzewu 已提交
182 183 184 185 186
        Yuan, Yuhui, et al. "Object-Contextual Representations for Semantic Segmentation"
        (https://arxiv.org/pdf/1909.11065.pdf)
    Args:
        num_classes(int): the unique number of target classes.
        backbone(Paddle.nn.Layer): backbone network.
W
wuzewu 已提交
187
        pretrained(str): the path or url of pretrained model. Default to None.
W
wuzewu 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        backbone_indices(tuple): two values in the tuple indicate the indices of output of backbone.
                        the first index will be taken as a deep-supervision feature in auxiliary layer;
                        the second one will be taken as input of pixel representation.
        ocr_mid_channels(int): the number of middle channels in OCRHead.
        ocr_key_channels(int): the number of key channels in ObjectAttentionBlock.
    """

    def __init__(self,
                 num_classes,
                 backbone,
                 pretrained=None,
                 backbone_indices=None,
                 ocr_mid_channels=512,
                 ocr_key_channels=256):
        super(OCRNet, self).__init__()

        self.backbone = backbone
        self.backbone_indices = backbone_indices
        in_channels = [self.backbone.channels[i] for i in backbone_indices]

        self.head = OCRHead(
            num_classes=num_classes,
            in_channels=in_channels,
            ocr_mid_channels=ocr_mid_channels,
            ocr_key_channels=ocr_key_channels)

        self.init_weight(pretrained)

    def forward(self, x, label=None):
        feats = self.backbone(x)
        feats = [feats[i] for i in self.backbone_indices]
        preds = self.head(feats, label)
        preds = [F.resize_bilinear(pred, x.shape[2:]) for pred in preds]
        return preds

    def init_weight(self, pretrained=None):
224 225 226
        """
        Initialize the parameters of model parts.
        Args:
W
wuzewu 已提交
227
            pretrained ([str], optional): the path of pretrained model.. Defaults to None.
228
        """
W
wuzewu 已提交
229 230 231
        if pretrained is not None:
            if os.path.exists(pretrained):
                utils.load_pretrained_model(self, pretrained)
232
            else:
W
wuzewu 已提交
233
                raise Exception(
M
michaelowenliu 已提交
234
                    'Pretrained model is not found: {}'.format(pretrained))