shufflenet_slim.py 8.7 KB
Newer Older
W
wuyefeilin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from .libs import sigmoid_to_softmax
from .seg_modules import softmax_with_loss
from .seg_modules import dice_loss
from .seg_modules import bce_loss


class ShuffleSeg(object):
    # def __init__(self):
    # self.params = train_parameters
    def __init__(self,
                 num_classes,
                 mode='train',
                 use_bce_loss=False,
                 use_dice_loss=False,
                 class_weight=None,
                 ignore_index=255):
        # dice_loss或bce_loss只适用两类分割中
        if num_classes > 2 and (use_bce_loss or use_dice_loss):
            raise ValueError(
                "dice loss and bce loss is only applicable to binary classfication"
            )

        if class_weight is not None:
            if isinstance(class_weight, list):
                if len(class_weight) != num_classes:
                    raise ValueError(
                        "Length of class_weight should be equal to number of classes"
                    )
            elif isinstance(class_weight, str):
                if class_weight.lower() != 'dynamic':
                    raise ValueError(
                        "if class_weight is string, must be dynamic!")
            else:
                raise TypeError(
                    'Expect class_weight is a list or string but receive {}'.
                    format(type(class_weight)))

        self.num_classes = num_classes
        self.mode = mode
        self.use_bce_loss = use_bce_loss
        self.use_dice_loss = use_dice_loss
        self.class_weight = class_weight
        self.ignore_index = ignore_index

    def _get_loss(self, logit, label, mask):
        avg_loss = 0
        if not (self.use_dice_loss or self.use_bce_loss):
            avg_loss += softmax_with_loss(
                logit,
                label,
                mask,
                num_classes=self.num_classes,
                weight=self.class_weight,
                ignore_index=self.ignore_index)
        else:
            if self.use_dice_loss:
                avg_loss += dice_loss(logit, label, mask)
            if self.use_bce_loss:
                avg_loss += bce_loss(
                    logit, label, mask, ignore_index=self.ignore_index)

        return avg_loss

    def generate_inputs(self):
        inputs = OrderedDict()
        inputs['image'] = fluid.data(
            dtype='float32', shape=[None, 3, None, None], name='image')
        if self.mode == 'train':
            inputs['label'] = fluid.data(
                dtype='int32', shape=[None, 1, None, None], name='label')
        elif self.mode == 'eval':
            inputs['label'] = fluid.data(
                dtype='int32', shape=[None, 1, None, None], name='label')
        return inputs

C
chenguowei01 已提交
84
    def build_net(self, inputs):
W
wuyefeilin 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        if self.use_dice_loss or self.use_bce_loss:
            self.num_classes = 1
        image = inputs['image']
        ## Encoder
        conv1 = self.conv_bn(image, 3, 36, 2, 1)
        print('encoder 1', conv1.shape)
        shortcut = self.conv_bn(
            input=conv1, filter_size=1, num_filters=18, stride=1, padding=0)
        print('shortcut 1', shortcut.shape)

        pool = fluid.layers.pool2d(
            input=conv1,
            pool_size=3,
            pool_type='max',
            pool_stride=2,
            pool_padding=1)
        print('encoder 2', pool.shape)

        # Block 1
        conv = self.sfnetv2module(pool, stride=2, num_filters=72)
        conv = self.sfnetv2module(conv, stride=1)
        conv = self.sfnetv2module(conv, stride=1)
        conv = self.sfnetv2module(conv, stride=1)
        print('encoder 3', conv.shape)

        # Block 2
        conv = self.sfnetv2module(conv, stride=2)
        conv = self.sfnetv2module(conv, stride=1)
        conv = self.sfnetv2module(conv, stride=1)
        conv = self.sfnetv2module(conv, stride=1)
        conv = self.sfnetv2module(conv, stride=1)
        conv = self.sfnetv2module(conv, stride=1)
        conv = self.sfnetv2module(conv, stride=1)
        conv = self.sfnetv2module(conv, stride=1)
        print('encoder 4', conv.shape)

        ### decoder
        conv = self.depthwise_separable(conv, 3, 64, 1)
        shortcut_shape = fluid.layers.shape(shortcut)[2:]
        conv_b = fluid.layers.resize_bilinear(conv, shortcut_shape)
        concat = fluid.layers.concat([shortcut, conv_b], axis=1)
        decode_conv = self.depthwise_separable(concat, 3, 64, 1)
C
chenguowei01 已提交
127
        logit = self.output_layer(decode_conv, self.num_classes)
W
wuyefeilin 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

        if self.num_classes == 1:
            out = sigmoid_to_softmax(logit)
            out = fluid.layers.transpose(out, [0, 2, 3, 1])
        else:
            out = fluid.layers.transpose(logit, [0, 2, 3, 1])

        pred = fluid.layers.argmax(out, axis=3)
        pred = fluid.layers.unsqueeze(pred, axes=[3])

        if self.mode == 'train':
            label = inputs['label']
            mask = label != self.ignore_index
            return self._get_loss(logit, label, mask)

        else:
            if self.num_classes == 1:
                logit = sigmoid_to_softmax(logit)
            else:
                logit = fluid.layers.softmax(logit, axis=1)
            return pred, logit

        return logit

    def conv_bn(self,
                input,
                filter_size,
                num_filters,
                stride,
                padding,
                channels=None,
                num_groups=1,
                act='relu',
                use_cudnn=True):
        parameter_attr = ParamAttr(learning_rate=1, initializer=MSRA())
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=parameter_attr,
            bias_attr=False)
        return fluid.layers.batch_norm(input=conv, act=act)

    def depthwise_separable(self, input, filter_size, num_filters, stride):
        num_filters1 = int(input.shape[1])
        num_groups = num_filters1
        depthwise_conv = self.conv_bn(
            input=input,
            filter_size=filter_size,
            num_filters=int(num_filters1),
            stride=stride,
            padding=int(filter_size / 2),
            num_groups=num_groups,
            use_cudnn=False,
            act=None)

        pointwise_conv = self.conv_bn(
            input=depthwise_conv,
            filter_size=1,
            num_filters=num_filters,
            stride=1,
            padding=0)
        return pointwise_conv

    def sfnetv2module(self, input, stride, num_filters=None):
        if stride == 1:
            shortcut, branch = fluid.layers.split(
                input, num_or_sections=2, dim=1)
            if num_filters is None:
                in_channels = int(branch.shape[1])
            else:
                in_channels = int(num_filters / 2)
        else:
            branch = input
            if num_filters is None:
                in_channels = int(branch.shape[1])
            else:
                in_channels = int(num_filters / 2)
            shortcut = self.depthwise_separable(input, 3, in_channels, stride)
        branch_1x1 = self.conv_bn(
            input=branch,
            filter_size=1,
            num_filters=int(in_channels),
            stride=1,
            padding=0)
        branch_dw1x1 = self.depthwise_separable(branch_1x1, 3, in_channels,
                                                stride)
        output = fluid.layers.concat(input=[shortcut, branch_dw1x1], axis=1)

        # channel shuffle
        # b, c, h, w = output.shape
        shape = fluid.layers.shape(output)
        c = output.shape[1]
        b, h, w = shape[0], shape[2], shape[3]
        output = fluid.layers.reshape(x=output, shape=[b, 2, in_channels, h, w])
        output = fluid.layers.transpose(x=output, perm=[0, 2, 1, 3, 4])
        output = fluid.layers.reshape(x=output, shape=[b, c, h, w])
        return output

    def output_layer(self, input, out_dim):
        param_attr = fluid.param_attr.ParamAttr(
            learning_rate=1.,
            regularizer=fluid.regularizer.L2Decay(0.),
            initializer=fluid.initializer.Xavier())
        # deconv
        output = fluid.layers.conv2d_transpose(
            input=input,
            num_filters=out_dim,
            filter_size=2,
            padding=0,
            stride=2,
            bias_attr=True,
            param_attr=param_attr,
            act=None)
        return output