hrnet.py 16.2 KB
Newer Older
W
wuyefeilin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from .seg_modules import softmax_with_loss
from .seg_modules import dice_loss
from .seg_modules import bce_loss
from .libs import sigmoid_to_softmax


class HRNet(object):
    def __init__(self,
                 num_classes,
                 mode='train',
                 stage1_num_modules=1,
                 stage1_num_blocks=[4],
                 stage1_num_channels=[64],
                 stage2_num_modules=1,
                 stage2_num_blocks=[4, 4],
                 stage2_num_channels=[18, 36],
                 stage3_num_modules=4,
                 stage3_num_blocks=[4, 4, 4],
                 stage3_num_channels=[18, 36, 72],
                 stage4_num_modules=3,
                 stage4_num_blocks=[4, 4, 4, 4],
                 stage4_num_channels=[18, 36, 72, 144],
                 use_bce_loss=False,
                 use_dice_loss=False,
                 class_weight=None,
                 ignore_index=255):
        # dice_loss或bce_loss只适用两类分割中
        if num_classes > 2 and (use_bce_loss or use_dice_loss):
            raise ValueError(
                "dice loss and bce loss is only applicable to binary classfication"
            )

        if class_weight is not None:
            if isinstance(class_weight, list):
                if len(class_weight) != num_classes:
                    raise ValueError(
                        "Length of class_weight should be equal to number of classes"
                    )
            elif isinstance(class_weight, str):
                if class_weight.lower() != 'dynamic':
                    raise ValueError(
                        "if class_weight is string, must be dynamic!")
            else:
                raise TypeError(
                    'Expect class_weight is a list or string but receive {}'.
                    format(type(class_weight)))

        self.num_classes = num_classes
        self.mode = mode
        self.use_bce_loss = use_bce_loss
        self.use_dice_loss = use_dice_loss
        self.class_weight = class_weight
        self.ignore_index = ignore_index
        self.stage1_num_modules = stage1_num_modules
        self.stage1_num_blocks = stage1_num_blocks
        self.stage1_num_channels = stage1_num_channels
        self.stage2_num_modules = stage2_num_modules
        self.stage2_num_blocks = stage2_num_blocks
        self.stage2_num_channels = stage2_num_channels
        self.stage3_num_modules = stage3_num_modules
        self.stage3_num_blocks = stage3_num_blocks
        self.stage3_num_channels = stage3_num_channels
        self.stage4_num_modules = stage4_num_modules
        self.stage4_num_blocks = stage4_num_blocks
        self.stage4_num_channels = stage4_num_channels

    def build_net(self, inputs):
C
chenguowei01 已提交
92 93
        if self.use_dice_loss or self.use_bce_loss:
            self.num_classes = 1
W
wuyefeilin 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        image = inputs['image']
        logit = self._high_resolution_net(image, self.num_classes)
        if self.num_classes == 1:
            out = sigmoid_to_softmax(logit)
            out = fluid.layers.transpose(out, [0, 2, 3, 1])
        else:
            out = fluid.layers.transpose(logit, [0, 2, 3, 1])

        pred = fluid.layers.argmax(out, axis=3)
        pred = fluid.layers.unsqueeze(pred, axes=[3])

        if self.mode == 'train':
            label = inputs['label']
            mask = label != self.ignore_index
            return self._get_loss(logit, label, mask)

        else:
            if self.num_classes == 1:
                logit = sigmoid_to_softmax(logit)
            else:
                logit = fluid.layers.softmax(logit, axis=1)
            return pred, logit

        return logit

    def generate_inputs(self):
        inputs = OrderedDict()
        inputs['image'] = fluid.data(
            dtype='float32', shape=[None, 3, None, None], name='image')
        if self.mode == 'train':
            inputs['label'] = fluid.data(
                dtype='int32', shape=[None, 1, None, None], name='label')
        elif self.mode == 'eval':
            inputs['label'] = fluid.data(
                dtype='int32', shape=[None, 1, None, None], name='label')
        return inputs

    def _get_loss(self, logit, label, mask):
        avg_loss = 0
        if not (self.use_dice_loss or self.use_bce_loss):
            avg_loss += softmax_with_loss(
                logit,
                label,
                mask,
                num_classes=self.num_classes,
                weight=self.class_weight,
                ignore_index=self.ignore_index)
        else:
            if self.use_dice_loss:
                avg_loss += dice_loss(logit, label, mask)
            if self.use_bce_loss:
                avg_loss += bce_loss(
                    logit, label, mask, ignore_index=self.ignore_index)

        return avg_loss

    def _conv_bn_layer(self,
                       input,
                       filter_size,
                       num_filters,
                       stride=1,
                       padding=1,
                       num_groups=1,
                       if_act=True,
                       name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=num_groups,
            act=None,
            param_attr=ParamAttr(initializer=MSRA(), name=name + '_weights'),
            bias_attr=False)
        bn_name = name + '_bn'
        bn = fluid.layers.batch_norm(
            input=conv,
            param_attr=ParamAttr(
                name=bn_name + "_scale",
                initializer=fluid.initializer.Constant(1.0)),
            bias_attr=ParamAttr(
                name=bn_name + "_offset",
                initializer=fluid.initializer.Constant(0.0)),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
        if if_act:
            bn = fluid.layers.relu(bn)
        return bn

    def _basic_block(self,
                     input,
                     num_filters,
                     stride=1,
                     downsample=False,
                     name=None):
        residual = input
        conv = self._conv_bn_layer(
            input=input,
            filter_size=3,
            num_filters=num_filters,
            stride=stride,
            name=name + '_conv1')
        conv = self._conv_bn_layer(
            input=conv,
            filter_size=3,
            num_filters=num_filters,
            if_act=False,
            name=name + '_conv2')
        if downsample:
            residual = self._conv_bn_layer(
                input=input,
                filter_size=1,
                num_filters=num_filters,
                if_act=False,
                name=name + '_downsample')
        return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')

    def _bottleneck_block(self,
                          input,
                          num_filters,
                          stride=1,
                          downsample=False,
                          name=None):
        residual = input
        conv = self._conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=num_filters,
            name=name + '_conv1')
        conv = self._conv_bn_layer(
            input=conv,
            filter_size=3,
            num_filters=num_filters,
            stride=stride,
            name=name + '_conv2')
        conv = self._conv_bn_layer(
            input=conv,
            filter_size=1,
            num_filters=num_filters * 4,
            if_act=False,
            name=name + '_conv3')
        if downsample:
            residual = self._conv_bn_layer(
                input=input,
                filter_size=1,
                num_filters=num_filters * 4,
                if_act=False,
                name=name + '_downsample')
        return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')

    def _fuse_layers(self, x, channels, multi_scale_output=True, name=None):
        out = []
        for i in range(len(channels) if multi_scale_output else 1):
            residual = x[i]
            shape = fluid.layers.shape(residual)[-2:]
            for j in range(len(channels)):
                if j > i:
                    y = self._conv_bn_layer(
                        x[j],
                        filter_size=1,
                        num_filters=channels[i],
                        if_act=False,
                        name=name + '_layer_' + str(i + 1) + '_' + str(j + 1))
                    y = fluid.layers.resize_bilinear(input=y, out_shape=shape)
                    residual = fluid.layers.elementwise_add(
                        x=residual, y=y, act=None)
                elif j < i:
                    y = x[j]
                    for k in range(i - j):
                        if k == i - j - 1:
                            y = self._conv_bn_layer(
                                y,
                                filter_size=3,
                                num_filters=channels[i],
                                stride=2,
                                if_act=False,
                                name=name + '_layer_' + str(i + 1) + '_' +
                                str(j + 1) + '_' + str(k + 1))
                        else:
                            y = self._conv_bn_layer(
                                y,
                                filter_size=3,
                                num_filters=channels[j],
                                stride=2,
                                name=name + '_layer_' + str(i + 1) + '_' +
                                str(j + 1) + '_' + str(k + 1))
                    residual = fluid.layers.elementwise_add(
                        x=residual, y=y, act=None)

            residual = fluid.layers.relu(residual)
            out.append(residual)
        return out

    def _branches(self, x, block_num, channels, name=None):
        out = []
        for i in range(len(channels)):
            residual = x[i]
            for j in range(block_num[i]):
                residual = self._basic_block(
                    residual,
                    channels[i],
                    name=name + '_branch_layer_' + str(i + 1) + '_' +
                    str(j + 1))
            out.append(residual)
        return out

    def _high_resolution_module(self,
                                x,
                                blocks,
                                channels,
                                multi_scale_output=True,
                                name=None):
        residual = self._branches(x, blocks, channels, name=name)
        out = self._fuse_layers(
            residual,
            channels,
            multi_scale_output=multi_scale_output,
            name=name)
        return out

    def _transition_layer(self, x, in_channels, out_channels, name=None):
        num_in = len(in_channels)
        num_out = len(out_channels)
        out = []
        for i in range(num_out):
            if i < num_in:
                if in_channels[i] != out_channels[i]:
                    residual = self._conv_bn_layer(
                        x[i],
                        filter_size=3,
                        num_filters=out_channels[i],
                        name=name + '_layer_' + str(i + 1))
                    out.append(residual)
                else:
                    out.append(x[i])
            else:
                residual = self._conv_bn_layer(
                    x[-1],
                    filter_size=3,
                    num_filters=out_channels[i],
                    stride=2,
                    name=name + '_layer_' + str(i + 1))
                out.append(residual)
        return out

    def _stage(self,
               x,
               num_modules,
               num_blocks,
               num_channels,
               multi_scale_output=True,
               name=None):
        out = x
        for i in range(num_modules):
            if i == num_modules - 1 and multi_scale_output == False:
                out = self._high_resolution_module(
                    out,
                    num_blocks,
                    num_channels,
                    multi_scale_output=False,
                    name=name + '_' + str(i + 1))
            else:
                out = self._high_resolution_module(
                    out, num_blocks, num_channels, name=name + '_' + str(i + 1))

        return out

    def _layer1(self, input, num_modules, num_blocks, num_channels, name=None):
        # num_modules 默认为1,是否增加处理,官网实现为[1],是否对齐。
        conv = input
        for i in range(num_blocks[0]):
            conv = self._bottleneck_block(
                conv,
                num_filters=num_channels[0],
                downsample=True if i == 0 else False,
                name=name + '_' + str(i + 1))
        return conv

    def _high_resolution_net(self, input, num_classes):
        x = self._conv_bn_layer(
            input=input,
            filter_size=3,
            num_filters=self.stage1_num_channels[0],
            stride=2,
            if_act=True,
            name='layer1_1')
        x = self._conv_bn_layer(
            input=x,
            filter_size=3,
            num_filters=self.stage1_num_channels[0],
            stride=2,
            if_act=True,
            name='layer1_2')

        la1 = self._layer1(
            x,
            self.stage1_num_modules,
            self.stage1_num_blocks,
            self.stage1_num_channels,
            name='layer2')
        tr1 = self._transition_layer([la1],
                                     self.stage1_num_channels,
                                     self.stage2_num_channels,
                                     name='tr1')
        st2 = self._stage(
            tr1,
            self.stage2_num_modules,
            self.stage2_num_blocks,
            self.stage2_num_channels,
            name='st2')
        tr2 = self._transition_layer(
            st2, self.stage2_num_channels, self.stage3_num_channels, name='tr2')
        st3 = self._stage(
            tr2,
            self.stage3_num_modules,
            self.stage3_num_blocks,
            self.stage3_num_channels,
            name='st3')
        tr3 = self._transition_layer(
            st3, self.stage3_num_channels, self.stage4_num_channels, name='tr3')
        st4 = self._stage(
            tr3,
            self.stage4_num_modules,
            self.stage4_num_blocks,
            self.stage4_num_channels,
            name='st4')

        # upsample
        shape = fluid.layers.shape(st4[0])[-2:]
        st4[1] = fluid.layers.resize_bilinear(st4[1], out_shape=shape)
        st4[2] = fluid.layers.resize_bilinear(st4[2], out_shape=shape)
        st4[3] = fluid.layers.resize_bilinear(st4[3], out_shape=shape)

        out = fluid.layers.concat(st4, axis=1)
        last_channels = sum(self.stage4_num_channels)

        out = self._conv_bn_layer(
            input=out,
            filter_size=1,
            num_filters=last_channels,
            stride=1,
            if_act=True,
            name='conv-2')
        out = fluid.layers.conv2d(
            input=out,
            num_filters=num_classes,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            param_attr=ParamAttr(initializer=MSRA(), name='conv-1_weights'),
            bias_attr=False)

        input_shape = fluid.layers.shape(input)[-2:]
        out = fluid.layers.resize_bilinear(out, input_shape)

        return out