reader.py 11.7 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import sys
import os
import math
import random
import functools
import io
import time
import codecs

import numpy as np
import paddle
import paddle.fluid as fluid
import cv2

import data_aug as aug
from utils.config import cfg
from data_utils import GeneratorEnqueuer
from models.model_builder import ModelPhase


def cv2_imread(file_path, flag=cv2.IMREAD_COLOR):
    # resolve cv2.imread open Chinese file path issues on Windows Platform.
    return cv2.imdecode(np.fromfile(file_path, dtype=np.uint8), flag)


class SegDataset(object):
    def __init__(self,
                 file_list,
                 data_dir,
                 shuffle=False,
                 mode=ModelPhase.TRAIN):
        self.mode = mode
        self.shuffle = shuffle
        self.data_dir = data_dir

        # NOTE: Please ensure file list was save in UTF-8 coding format
        with codecs.open(file_list, 'r', 'utf-8') as flist:
            self.lines = [line.strip() for line in flist]
            if shuffle:
                np.random.shuffle(self.lines)

    def generator(self):
        if self.shuffle:
            np.random.shuffle(self.lines)
        for line in self.lines:
            yield self.process_image(line, self.data_dir, self.mode)

    def sharding_generator(self, pid=0, num_processes=1):
        """
        Use line id as shard key for multiprocess io
        It's a normal generator if pid=0, num_processes=1
        """
        for index, line in enumerate(self.lines):
            # Use index and pid to shard file list
            if index % num_processes == pid:
                yield self.process_image(line, self.data_dir, self.mode)

    def batch_reader(self, batch_size):
        br = self.batch(self.reader, batch_size)
        for batch in br:
            yield batch[0], batch[1], batch[2]

    def multiprocess_generator(self, max_queue_size=32, num_processes=8):
        # Re-shuffle file list
        if self.shuffle:
            np.random.shuffle(self.lines)
        # Create multiple sharding generators according to num_processes for multiple processes
        generators = []
        for pid in range(num_processes):
            generators.append(self.sharding_generator(pid, num_processes))

        try:
            enqueuer = GeneratorEnqueuer(generators)
            enqueuer.start(max_queue_size=max_queue_size, workers=num_processes)
            while True:
                generator_out = None
                while enqueuer.is_running():
                    if not enqueuer.queue.empty():
                        generator_out = enqueuer.queue.get(timeout=5)
                        break
                    else:
                        time.sleep(0.01)
                if generator_out is None:
                    break
                yield generator_out
        finally:
            if enqueuer is not None:
                enqueuer.stop()

    def batch(self, reader, batch_size, is_test=False, drop_last=False):
        def batch_reader(is_test=False, drop_last=drop_last):
            if is_test:
W
wuzewu 已提交
109 110
                imgs, grts, img_names, valid_shapes, org_shapes = [], [], [], [], []
                for img, grt, img_name, valid_shape, org_shape in reader():
W
wuzewu 已提交
111
                    imgs.append(img)
W
wuzewu 已提交
112
                    grts.append(grt)
W
wuzewu 已提交
113 114 115 116
                    img_names.append(img_name)
                    valid_shapes.append(valid_shape)
                    org_shapes.append(org_shape)
                    if len(imgs) == batch_size:
W
wuzewu 已提交
117 118 119 120
                        yield np.array(imgs), np.array(
                            grts), img_names, np.array(valid_shapes), np.array(
                                org_shapes)
                        imgs, grts, img_names, valid_shapes, org_shapes = [], [], [], [], []
W
wuzewu 已提交
121 122

                if not drop_last and len(imgs) > 0:
W
wuzewu 已提交
123
                    yield np.array(imgs), np.array(grts), img_names, np.array(
W
wuzewu 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
                        valid_shapes), np.array(org_shapes)
            else:
                imgs, labs, ignore = [], [], []
                bs = 0
                for img, lab, ig in reader():
                    imgs.append(img)
                    labs.append(lab)
                    ignore.append(ig)
                    bs += 1
                    if bs == batch_size:
                        yield np.array(imgs), np.array(labs), np.array(ignore)
                        bs = 0
                        imgs, labs, ignore = [], [], []

                if not drop_last and bs > 0:
                    yield np.array(imgs), np.array(labs), np.array(ignore)

        return batch_reader(is_test, drop_last)

    def load_image(self, line, src_dir, mode=ModelPhase.TRAIN):
        # original image cv2.imread flag setting
        cv2_imread_flag = cv2.IMREAD_COLOR
        if cfg.DATASET.IMAGE_TYPE == "rgba":
            # If use RBGA 4 channel ImageType, use IMREAD_UNCHANGED flags to
            # reserver alpha channel
            cv2_imread_flag = cv2.IMREAD_UNCHANGED

W
wuzewu 已提交
151 152 153
        parts = line.strip().split(cfg.DATASET.SEPARATOR)
        if len(parts) != 2:
            if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL:
W
wuzewu 已提交
154 155 156
                raise Exception("File list format incorrect! It should be"
                                " image_name{}label_name\\n".format(
                                    cfg.DATASET.SEPARATOR))
W
wuzewu 已提交
157 158
            img_name, grt_name = parts[0], None
        else:
W
wuzewu 已提交
159 160
            img_name, grt_name = parts[0], parts[1]

W
wuzewu 已提交
161 162 163 164 165
        img_path = os.path.join(src_dir, img_name)
        img = cv2_imread(img_path, cv2_imread_flag)

        if grt_name is not None:
            grt_path = os.path.join(src_dir, grt_name)
W
wuzewu 已提交
166
            grt = cv2_imread(grt_path, cv2.IMREAD_GRAYSCALE)
W
wuzewu 已提交
167 168
        else:
            grt = None
W
wuzewu 已提交
169

W
wuzewu 已提交
170 171 172 173
        if img is None:
            raise Exception(
                "Empty image, src_dir: {}, img: {} & lab: {}".format(
                    src_dir, img_path, grt_path))
W
wuzewu 已提交
174

W
wuzewu 已提交
175 176 177 178
        img_height = img.shape[0]
        img_width = img.shape[1]

        if grt is not None:
W
wuzewu 已提交
179 180 181 182 183 184
            grt_height = grt.shape[0]
            grt_width = grt.shape[1]

            if img_height != grt_height or img_width != grt_width:
                raise Exception(
                    "source img and label img must has the same size")
W
wuzewu 已提交
185 186
        else:
            if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL:
W
wuzewu 已提交
187
                raise Exception(
W
wuzewu 已提交
188 189
                    "Empty image, src_dir: {}, img: {} & lab: {}".format(
                        src_dir, img_path, grt_path))
W
wuzewu 已提交
190

W
wuzewu 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        if len(img.shape) < 3:
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

        img_channels = img.shape[2]
        if img_channels < 3:
            raise Exception("PaddleSeg only supports gray, rgb or rgba image")
        if img_channels != cfg.DATASET.DATA_DIM:
            raise Exception(
                "Input image channel({}) is not match cfg.DATASET.DATA_DIM({}), img_name={}"
                .format(img_channels, cfg.DATASET.DATADIM, img_name))
        if img_channels != len(cfg.MEAN):
            raise Exception(
                "img name {}, img chns {} mean size {}, size unequal".format(
                    img_name, img_channels, len(cfg.MEAN)))
        if img_channels != len(cfg.STD):
            raise Exception(
                "img name {}, img chns {} std size {}, size unequal".format(
                    img_name, img_channels, len(cfg.STD)))
W
wuzewu 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

        return img, grt, img_name, grt_name

    def normalize_image(self, img):
        """ 像素归一化后减均值除方差 """
        img = img.transpose((2, 0, 1)).astype('float32') / 255.0
        img_mean = np.array(cfg.MEAN).reshape((len(cfg.MEAN), 1, 1))
        img_std = np.array(cfg.STD).reshape((len(cfg.STD), 1, 1))
        img -= img_mean
        img /= img_std

        return img

    def process_image(self, line, data_dir, mode):
        """ process_image """
        img, grt, img_name, grt_name = self.load_image(
            line, data_dir, mode=mode)
        if mode == ModelPhase.TRAIN:
            img, grt = aug.resize(img, grt, mode)
            if cfg.AUG.RICH_CROP.ENABLE:
                if cfg.AUG.RICH_CROP.BLUR:
                    if cfg.AUG.RICH_CROP.BLUR_RATIO <= 0:
                        n = 0
                    elif cfg.AUG.RICH_CROP.BLUR_RATIO >= 1:
                        n = 1
                    else:
                        n = int(1.0 / cfg.AUG.RICH_CROP.BLUR_RATIO)
                    if n > 0:
                        if np.random.randint(0, n) == 0:
                            radius = np.random.randint(3, 10)
                            if radius % 2 != 1:
                                radius = radius + 1
                            if radius > 9:
                                radius = 9
                            img = cv2.GaussianBlur(img, (radius, radius), 0, 0)

                img, grt = aug.random_rotation(
                    img,
                    grt,
                    rich_crop_max_rotation=cfg.AUG.RICH_CROP.MAX_ROTATION,
F
fuyi02 已提交
249
                    mean_value=cfg.DATASET.PADDING_VALUE)
W
wuzewu 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263

                img, grt = aug.rand_scale_aspect(
                    img,
                    grt,
                    rich_crop_min_scale=cfg.AUG.RICH_CROP.MIN_AREA_RATIO,
                    rich_crop_aspect_ratio=cfg.AUG.RICH_CROP.ASPECT_RATIO)
                img = aug.hsv_color_jitter(
                    img,
                    brightness_jitter_ratio=cfg.AUG.RICH_CROP.
                    BRIGHTNESS_JITTER_RATIO,
                    saturation_jitter_ratio=cfg.AUG.RICH_CROP.
                    SATURATION_JITTER_RATIO,
                    contrast_jitter_ratio=cfg.AUG.RICH_CROP.
                    CONTRAST_JITTER_RATIO)
W
wuzewu 已提交
264 265 266 267 268 269 270 271 272 273 274 275

            if cfg.AUG.FLIP:
                if cfg.AUG.FLIP_RATIO <= 0:
                    n = 0
                elif cfg.AUG.FLIP_RATIO >= 1:
                    n = 1
                else:
                    n = int(1.0 / cfg.AUG.FLIP_RATIO)
                if n > 0:
                    if np.random.randint(0, n) == 0:
                        img = img[::-1, :, :]
                        grt = grt[::-1, :]
W
wuzewu 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

            if cfg.AUG.MIRROR:
                if np.random.randint(0, 2) == 1:
                    img = img[:, ::-1, :]
                    grt = grt[:, ::-1]

            img, grt = aug.rand_crop(img, grt, mode=mode)
        elif ModelPhase.is_eval(mode):
            img, grt = aug.resize(img, grt, mode=mode)
            img, grt = aug.rand_crop(img, grt, mode=mode)
        elif ModelPhase.is_visual(mode):
            org_shape = [img.shape[0], img.shape[1]]
            img, grt = aug.resize(img, grt, mode=mode)
            valid_shape = [img.shape[0], img.shape[1]]
            img, grt = aug.rand_crop(img, grt, mode=mode)
        else:
            raise ValueError("Dataset mode={} Error!".format(mode))

        # Normalize image
        img = self.normalize_image(img)

        if ModelPhase.is_train(mode) or ModelPhase.is_eval(mode):
            grt = np.expand_dims(np.array(grt).astype('int32'), axis=0)
            ignore = (grt != cfg.DATASET.IGNORE_INDEX).astype('int32')

        if ModelPhase.is_train(mode):
            return (img, grt, ignore)
        elif ModelPhase.is_eval(mode):
            return (img, grt, ignore)
        elif ModelPhase.is_visual(mode):
W
wuzewu 已提交
306
            return (img, grt, img_name, valid_shape, org_shape)