dist_utils.py 3.3 KB
Newer Older
W
wuyefeilin 已提交
1 2
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
L
LielinJiang 已提交
3
#
W
wuyefeilin 已提交
4 5 6
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LielinJiang 已提交
7 8 9
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
wuyefeilin 已提交
10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LielinJiang 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import paddle.fluid as fluid


def nccl2_prepare(args, startup_prog, main_prog):
    config = fluid.DistributeTranspilerConfig()
    config.mode = "nccl2"
    t = fluid.DistributeTranspiler(config=config)

    envs = args.dist_env

    t.transpile(
        envs["trainer_id"],
        trainers=','.join(envs["trainer_endpoints"]),
        current_endpoint=envs["current_endpoint"],
        startup_program=startup_prog,
        program=main_prog)


def pserver_prepare(args, train_prog, startup_prog):
    config = fluid.DistributeTranspilerConfig()
    config.slice_var_up = args.split_var
    t = fluid.DistributeTranspiler(config=config)
    envs = args.dist_env
    training_role = envs["training_role"]

    t.transpile(
        envs["trainer_id"],
        program=train_prog,
        pservers=envs["pserver_endpoints"],
        trainers=envs["num_trainers"],
        sync_mode=not args.async_mode,
        startup_program=startup_prog)
    if training_role == "PSERVER":
        pserver_program = t.get_pserver_program(envs["current_endpoint"])
        pserver_startup_program = t.get_startup_program(
            envs["current_endpoint"],
            pserver_program,
            startup_program=startup_prog)
        return pserver_program, pserver_startup_program
    elif training_role == "TRAINER":
        train_program = t.get_trainer_program()
        return train_program, startup_prog
    else:
        raise ValueError(
            'PADDLE_TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
        )


def nccl2_prepare_paddle(trainer_id, startup_prog, main_prog):
    config = fluid.DistributeTranspilerConfig()
    config.mode = "nccl2"
    t = fluid.DistributeTranspiler(config=config)
    t.transpile(
        trainer_id,
        trainers=os.environ.get('PADDLE_TRAINER_ENDPOINTS'),
        current_endpoint=os.environ.get('PADDLE_CURRENT_ENDPOINT'),
        startup_program=startup_prog,
        program=main_prog)


def prepare_for_multi_process(exe, build_strategy, train_prog):
    # prepare for multi-process
    trainer_id = int(os.environ.get('PADDLE_TRAINER_ID', 0))
    num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    if num_trainers < 2: return

    build_strategy.num_trainers = num_trainers
    build_strategy.trainer_id = trainer_id
    # NOTE(zcd): use multi processes to train the model,
    # and each process use one GPU card.
    startup_prog = fluid.Program()
    nccl2_prepare_paddle(trainer_id, startup_prog, train_prog)
    # the startup_prog are run two times, but it doesn't matter.
    exe.run(startup_prog)