train.py 18.4 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
# GPU memory garbage collection optimization flags
os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0"

import sys
import argparse
import pprint
import shutil
import functools

import paddle
import numpy as np
import paddle.fluid as fluid

from utils.config import cfg
from utils.timer import Timer, calculate_eta
from metrics import ConfusionMatrix
from reader import SegDataset
from models.model_builder import build_model
from models.model_builder import ModelPhase
from models.model_builder import parse_shape_from_file
from eval import evaluate
from vis import visualize
43
from utils import dist_utils
W
wuzewu 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154


def parse_args():
    parser = argparse.ArgumentParser(description='PaddleSeg training')
    parser.add_argument(
        '--cfg',
        dest='cfg_file',
        help='Config file for training (and optionally testing)',
        default=None,
        type=str)
    parser.add_argument(
        '--use_gpu',
        dest='use_gpu',
        help='Use gpu or cpu',
        action='store_true',
        default=False)
    parser.add_argument(
        '--use_mpio',
        dest='use_mpio',
        help='Use multiprocess I/O or not',
        action='store_true',
        default=False)
    parser.add_argument(
        '--log_steps',
        dest='log_steps',
        help='Display logging information at every log_steps',
        default=10,
        type=int)
    parser.add_argument(
        '--debug',
        dest='debug',
        help='debug mode, display detail information of training',
        action='store_true')
    parser.add_argument(
        '--use_tb',
        dest='use_tb',
        help='whether to record the data during training to Tensorboard',
        action='store_true')
    parser.add_argument(
        '--tb_log_dir',
        dest='tb_log_dir',
        help='Tensorboard logging directory',
        default=None,
        type=str)
    parser.add_argument(
        '--do_eval',
        dest='do_eval',
        help='Evaluation models result on every new checkpoint',
        action='store_true')
    parser.add_argument(
        'opts',
        help='See utils/config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
    return parser.parse_args()


def save_vars(executor, dirname, program=None, vars=None):
    """
    Temporary resolution for Win save variables compatability.
    Will fix in PaddlePaddle v1.5.2
    """

    save_program = fluid.Program()
    save_block = save_program.global_block()

    for each_var in vars:
        # NOTE: don't save the variable which type is RAW
        if each_var.type == fluid.core.VarDesc.VarType.RAW:
            continue
        new_var = save_block.create_var(
            name=each_var.name,
            shape=each_var.shape,
            dtype=each_var.dtype,
            type=each_var.type,
            lod_level=each_var.lod_level,
            persistable=True)
        file_path = os.path.join(dirname, new_var.name)
        file_path = os.path.normpath(file_path)
        save_block.append_op(
            type='save',
            inputs={'X': [new_var]},
            outputs={},
            attrs={'file_path': file_path})

    executor.run(save_program)


def save_checkpoint(exe, program, ckpt_name):
    """
    Save checkpoint for evaluation or resume training
    """
    ckpt_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, str(ckpt_name))
    print("Save model checkpoint to {}".format(ckpt_dir))
    if not os.path.isdir(ckpt_dir):
        os.makedirs(ckpt_dir)

    save_vars(
        exe,
        ckpt_dir,
        program,
        vars=list(filter(fluid.io.is_persistable, program.list_vars())))

    return ckpt_dir


def load_checkpoint(exe, program):
    """
    Load checkpoiont from pretrained model directory for resume training
    """

W
wuzewu 已提交
155 156
    print('Resume model training from:', cfg.TRAIN.RESUME_MODEL_DIR)
    if not os.path.exists(cfg.TRAIN.RESUME_MODEL_DIR):
W
wuzewu 已提交
157
        raise ValueError("TRAIN.PRETRAIN_MODEL {} not exist!".format(
W
wuzewu 已提交
158
            cfg.TRAIN.RESUME_MODEL_DIR))
W
wuzewu 已提交
159 160

    fluid.io.load_persistables(
W
wuzewu 已提交
161
        exe, cfg.TRAIN.RESUME_MODEL_DIR, main_program=program)
W
wuzewu 已提交
162

W
wuzewu 已提交
163
    model_path = cfg.TRAIN.RESUME_MODEL_DIR
W
wuzewu 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    # Check is path ended by path spearator
    if model_path[-1] == os.sep:
        model_path = model_path[0:-1]
    epoch_name = os.path.basename(model_path)
    # If resume model is final model
    if epoch_name == 'final':
        begin_epoch = cfg.SOLVER.NUM_EPOCHS
    # If resume model path is end of digit, restore epoch status
    elif epoch_name.isdigit():
        epoch = int(epoch_name)
        begin_epoch = epoch + 1
    else:
        raise ValueError("Resume model path is not valid!")
    print("Model checkpoint loaded successfully!")

    return begin_epoch

C
chenguowei01 已提交
181

C
chenguowei01 已提交
182 183 184 185 186
def update_best_model(ckpt_dir):
    best_model_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model')
    if os.path.exists(best_model_dir):
        shutil.rmtree(best_model_dir)
    shutil.copytree(ckpt_dir, best_model_dir)
W
wuzewu 已提交
187

C
chenguowei01 已提交
188

189 190 191
def print_info(*msg):
    if cfg.TRAINER_ID == 0:
        print(*msg)
W
wuzewu 已提交
192

W
wuzewu 已提交
193

W
wuzewu 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def train(cfg):
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    drop_last = True

    dataset = SegDataset(
        file_list=cfg.DATASET.TRAIN_FILE_LIST,
        mode=ModelPhase.TRAIN,
        shuffle=True,
        data_dir=cfg.DATASET.DATA_DIR)

    def data_generator():
        if args.use_mpio:
            data_gen = dataset.multiprocess_generator(
                num_processes=cfg.DATALOADER.NUM_WORKERS,
                max_queue_size=cfg.DATALOADER.BUF_SIZE)
        else:
            data_gen = dataset.generator()

        batch_data = []
        for b in data_gen:
            batch_data.append(b)
216
            if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS):
W
wuzewu 已提交
217 218 219 220 221 222 223 224 225 226
                for item in batch_data:
                    yield item[0], item[1], item[2]
                batch_data = []
        # If use sync batch norm strategy, drop last batch if number of samples
        # in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues
        if not cfg.TRAIN.SYNC_BATCH_NORM:
            for item in batch_data:
                yield item[0], item[1], item[2]

    # Get device environment
227 228 229 230
    # places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
    # place = places[0]
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
W
wuzewu 已提交
231
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
232

W
wuzewu 已提交
233
    # Get number of GPU
234 235
    dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places)
    print_info("#Device count: {}".format(dev_count))
W
wuzewu 已提交
236 237 238 239 240 241 242

    # Make sure BATCH_SIZE can divided by GPU cards
    assert cfg.BATCH_SIZE % dev_count == 0, (
        'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format(
            cfg.BATCH_SIZE, dev_count))
    # If use multi-gpu training mode, batch data will allocated to each GPU evenly
    batch_size_per_dev = cfg.BATCH_SIZE // dev_count
243
    print_info("batch_size_per_dev: {}".format(batch_size_per_dev))
W
wuzewu 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

    py_reader, avg_loss, lr, pred, grts, masks = build_model(
        train_prog, startup_prog, phase=ModelPhase.TRAIN)
    py_reader.decorate_sample_generator(
        data_generator, batch_size=batch_size_per_dev, drop_last=drop_last)

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    exec_strategy = fluid.ExecutionStrategy()
    # Clear temporary variables every 100 iteration
    if args.use_gpu:
        exec_strategy.num_threads = fluid.core.get_cuda_device_count()
    exec_strategy.num_iteration_per_drop_scope = 100
    build_strategy = fluid.BuildStrategy()
259 260 261 262 263

    if cfg.NUM_TRAINERS > 1 and args.use_gpu:
        dist_utils.prepare_for_multi_process(exe, build_strategy, train_prog)
        exec_strategy.num_threads = 1

W
wuzewu 已提交
264 265 266
    if cfg.TRAIN.SYNC_BATCH_NORM and args.use_gpu:
        if dev_count > 1:
            # Apply sync batch norm strategy
267
            print_info("Sync BatchNorm strategy is effective.")
W
wuzewu 已提交
268 269
            build_strategy.sync_batch_norm = True
        else:
W
wuzewu 已提交
270 271 272
            print_info(
                "Sync BatchNorm strategy will not be effective if GPU device"
                " count <= 1")
W
wuzewu 已提交
273 274 275 276 277 278 279
    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=avg_loss.name,
        exec_strategy=exec_strategy,
        build_strategy=build_strategy)

    # Resume training
    begin_epoch = cfg.SOLVER.BEGIN_EPOCH
W
wuzewu 已提交
280
    if cfg.TRAIN.RESUME_MODEL_DIR:
W
wuzewu 已提交
281 282
        begin_epoch = load_checkpoint(exe, train_prog)
    # Load pretrained model
W
wuzewu 已提交
283
    elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
284
        print_info('Pretrained model dir: ', cfg.TRAIN.PRETRAINED_MODEL_DIR)
W
wuzewu 已提交
285
        load_vars = []
W
wuzewu 已提交
286
        load_fail_vars = []
W
wuzewu 已提交
287 288 289 290 291 292

        def var_shape_matched(var, shape):
            """
            Check whehter persitable variable shape is match with current network
            """
            var_exist = os.path.exists(
W
wuzewu 已提交
293
                os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
W
wuzewu 已提交
294 295
            if var_exist:
                var_shape = parse_shape_from_file(
W
wuzewu 已提交
296
                    os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
W
wuzewu 已提交
297 298
                return var_shape == shape
            return False
W
wuzewu 已提交
299 300 301 302 303 304 305

        for x in train_prog.list_vars():
            if isinstance(x, fluid.framework.Parameter):
                shape = tuple(fluid.global_scope().find_var(
                    x.name).get_tensor().shape())
                if var_shape_matched(x, shape):
                    load_vars.append(x)
W
wuzewu 已提交
306 307
                else:
                    load_fail_vars.append(x)
308 309 310

        fluid.io.load_vars(
            exe, dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR, vars=load_vars)
W
wuzewu 已提交
311
        for var in load_vars:
312
            print_info("Parameter[{}] loaded sucessfully!".format(var.name))
W
wuzewu 已提交
313
        for var in load_fail_vars:
W
wuzewu 已提交
314 315 316
            print_info(
                "Parameter[{}] don't exist or shape does not match current network, skip"
                " to load it.".format(var.name))
317
        print_info("{}/{} pretrained parameters loaded successfully!".format(
W
wuzewu 已提交
318 319
            len(load_vars),
            len(load_vars) + len(load_fail_vars)))
W
wuzewu 已提交
320
    else:
W
wuzewu 已提交
321 322 323
        print_info(
            'Pretrained model dir {} not exists, training from scratch...'.
            format(cfg.TRAIN.PRETRAINED_MODEL_DIR))
W
wuzewu 已提交
324 325 326 327 328 329 330 331 332 333 334 335

    fetch_list = [avg_loss.name, lr.name]
    if args.debug:
        # Fetch more variable info and use streaming confusion matrix to
        # calculate IoU results if in debug mode
        np.set_printoptions(
            precision=4, suppress=True, linewidth=160, floatmode="fixed")
        fetch_list.extend([pred.name, grts.name, masks.name])
        cm = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)

    if args.use_tb:
        if not args.tb_log_dir:
336
            print_info("Please specify the log directory by --tb_log_dir.")
W
wuzewu 已提交
337 338 339 340 341
            exit(1)

        from tb_paddle import SummaryWriter
        log_writer = SummaryWriter(args.tb_log_dir)

342 343
    # trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
    # num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
W
wuzewu 已提交
344 345 346 347 348 349 350
    global_step = 0
    all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE
    if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True:
        all_step += 1
    all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1)

    avg_loss = 0.0
C
chenguowei01 已提交
351 352
    best_mIoU = 0.0

W
wuzewu 已提交
353 354 355 356 357 358 359
    timer = Timer()
    timer.start()
    if begin_epoch > cfg.SOLVER.NUM_EPOCHS:
        raise ValueError(
            ("begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]").format(
                begin_epoch, cfg.SOLVER.NUM_EPOCHS))

W
wuzewu 已提交
360
    if args.use_mpio:
361
        print_info("Use multiprocess reader")
W
wuzewu 已提交
362
    else:
363
        print_info("Use multi-thread reader")
W
wuzewu 已提交
364

W
wuzewu 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1):
        py_reader.start()
        while True:
            try:
                if args.debug:
                    # Print category IoU and accuracy to check whether the
                    # traning process is corresponed to expectation
                    loss, lr, pred, grts, masks = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    cm.calculate(pred, grts, masks)
                    avg_loss += np.mean(np.array(loss))
                    global_step += 1

                    if global_step % args.log_steps == 0:
                        speed = args.log_steps / timer.elapsed_time()
                        avg_loss /= args.log_steps
                        category_acc, mean_acc = cm.accuracy()
                        category_iou, mean_iou = cm.mean_iou()

386
                        print_info((
W
wuzewu 已提交
387 388 389 390
                            "epoch={} step={} lr={:.5f} loss={:.4f} acc={:.5f} mIoU={:.5f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, global_step, lr[0], avg_loss, mean_acc,
                                 mean_iou, speed,
                                 calculate_eta(all_step - global_step, speed)))
391 392
                        print_info("Category IoU: ", category_iou)
                        print_info("Category Acc: ", category_acc)
W
wuzewu 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                        if args.use_tb:
                            log_writer.add_scalar('Train/mean_iou', mean_iou,
                                                  global_step)
                            log_writer.add_scalar('Train/mean_acc', mean_acc,
                                                  global_step)
                            log_writer.add_scalar('Train/loss', avg_loss,
                                                  global_step)
                            log_writer.add_scalar('Train/lr', lr[0],
                                                  global_step)
                            log_writer.add_scalar('Train/step/sec', speed,
                                                  global_step)
                        sys.stdout.flush()
                        avg_loss = 0.0
                        cm.zero_matrix()
                        timer.restart()
                else:
                    # If not in debug mode, avoid unnessary log and calculate
                    loss, lr = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    avg_loss += np.mean(np.array(loss))
                    global_step += 1

417
                    if global_step % args.log_steps == 0 and cfg.TRAINER_ID == 0:
W
wuzewu 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
                        avg_loss /= args.log_steps
                        speed = args.log_steps / timer.elapsed_time()
                        print((
                            "epoch={} step={} lr={:.5f} loss={:.4f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, global_step, lr[0], avg_loss, speed,
                                 calculate_eta(all_step - global_step, speed)))
                        if args.use_tb:
                            log_writer.add_scalar('Train/loss', avg_loss,
                                                  global_step)
                            log_writer.add_scalar('Train/lr', lr[0],
                                                  global_step)
                            log_writer.add_scalar('Train/speed', speed,
                                                  global_step)
                        sys.stdout.flush()
                        avg_loss = 0.0
                        timer.restart()

            except fluid.core.EOFException:
                py_reader.reset()
                break
            except Exception as e:
                print(e)

C
chenguowei01 已提交
441 442
        if (epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0
                or epoch == cfg.SOLVER.NUM_EPOCHS) and cfg.TRAINER_ID == 0:
W
wuzewu 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
            ckpt_dir = save_checkpoint(exe, train_prog, epoch)

            if args.do_eval:
                print("Evaluation start")
                _, mean_iou, _, mean_acc = evaluate(
                    cfg=cfg,
                    ckpt_dir=ckpt_dir,
                    use_gpu=args.use_gpu,
                    use_mpio=args.use_mpio)
                if args.use_tb:
                    log_writer.add_scalar('Evaluate/mean_iou', mean_iou,
                                          global_step)
                    log_writer.add_scalar('Evaluate/mean_acc', mean_acc,
                                          global_step)

C
chenguowei01 已提交
458 459
                if mean_iou > best_mIoU:
                    best_mIoU = mean_iou
C
chenguowei01 已提交
460
                    update_best_model(ckpt_dir)
C
chenguowei01 已提交
461
                    print_info("Save best model {} to {}, mIoU = {:.4f}".format(
C
chenguowei01 已提交
462
                        ckpt_dir,
C
chenguowei01 已提交
463 464
                        os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model'),
                        mean_iou))
C
chenguowei01 已提交
465

W
wuzewu 已提交
466 467 468 469 470 471 472 473 474 475 476
            # Use Tensorboard to visualize results
            if args.use_tb and cfg.DATASET.VIS_FILE_LIST is not None:
                visualize(
                    cfg=cfg,
                    use_gpu=args.use_gpu,
                    vis_file_list=cfg.DATASET.VIS_FILE_LIST,
                    vis_dir="visual",
                    ckpt_dir=ckpt_dir,
                    log_writer=log_writer)

    # save final model
477 478
    if cfg.TRAINER_ID == 0:
        save_checkpoint(exe, train_prog, 'final')
W
wuzewu 已提交
479 480 481 482 483


def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
484
    if args.opts:
W
wuzewu 已提交
485
        cfg.update_from_list(args.opts)
486 487 488 489

    cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0))
    cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

W
wuzewu 已提交
490
    cfg.check_and_infer()
491
    print_info(pprint.pformat(cfg))
W
wuzewu 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505
    train(cfg)


if __name__ == '__main__':
    args = parse_args()
    if fluid.core.is_compiled_with_cuda() != True and args.use_gpu == True:
        print(
            "You can not set use_gpu = True in the model because you are using paddlepaddle-cpu."
        )
        print(
            "Please: 1. Install paddlepaddle-gpu to run your models on GPU or 2. Set use_gpu=False to run models on CPU."
        )
        sys.exit(1)
    main(args)