# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid from paddlerec.core.utils import envs from paddlerec.core.model import ModelBase class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) def _init_hyper_parameters(self): self.trigram_d = envs.get_global_env("hyper_parameters.trigram_d") self.neg_num = envs.get_global_env("hyper_parameters.neg_num") self.hidden_layers = envs.get_global_env("hyper_parameters.fc_sizes") self.hidden_acts = envs.get_global_env("hyper_parameters.fc_acts") self.learning_rate = envs.get_global_env( "hyper_parameters.learning_rate") def input_data(self, is_infer=False, **kwargs): query = fluid.data( name="query", shape=[-1, self.trigram_d], dtype='float32', lod_level=0) doc_pos = fluid.data( name="doc_pos", shape=[-1, self.trigram_d], dtype='float32', lod_level=0) if is_infer: return [query, doc_pos] doc_negs = [ fluid.data( name="doc_neg_" + str(i), shape=[-1, self.trigram_d], dtype="float32", lod_level=0) for i in range(self.neg_num) ] return [query, doc_pos] + doc_negs def net(self, inputs, is_infer=False): def fc(data, hidden_layers, hidden_acts, names): fc_inputs = [data] for i in range(len(hidden_layers)): xavier = fluid.initializer.Xavier( uniform=True, fan_in=fc_inputs[-1].shape[1], fan_out=hidden_layers[i]) out = fluid.layers.fc(input=fc_inputs[-1], size=hidden_layers[i], act=hidden_acts[i], param_attr=xavier, bias_attr=xavier, name=names[i]) fc_inputs.append(out) return fc_inputs[-1] query_fc = fc(inputs[0], self.hidden_layers, self.hidden_acts, ['query_l1', 'query_l2', 'query_l3']) doc_pos_fc = fc(inputs[1], self.hidden_layers, self.hidden_acts, ['doc_pos_l1', 'doc_pos_l2', 'doc_pos_l3']) R_Q_D_p = fluid.layers.cos_sim(query_fc, doc_pos_fc) if is_infer: self._infer_results["query_doc_sim"] = R_Q_D_p return R_Q_D_ns = [] for i in range(len(inputs) - 2): doc_neg_fc_i = fc( inputs[i + 2], self.hidden_layers, self.hidden_acts, [ 'doc_neg_l1_' + str(i), 'doc_neg_l2_' + str(i), 'doc_neg_l3_' + str(i) ]) R_Q_D_ns.append(fluid.layers.cos_sim(query_fc, doc_neg_fc_i)) concat_Rs = fluid.layers.concat(input=[R_Q_D_p] + R_Q_D_ns, axis=-1) prob = fluid.layers.softmax(concat_Rs, axis=1) hit_prob = fluid.layers.slice( prob, axes=[0, 1], starts=[0, 0], ends=[128, 1]) loss = -fluid.layers.reduce_sum(fluid.layers.log(hit_prob)) avg_cost = fluid.layers.mean(x=loss) self._cost = avg_cost self._metrics["LOSS"] = avg_cost