# 召回模型库 ## 简介 我们提供了常见的召回任务中使用的模型算法的PaddleRec实现, 单机训练&预测效果指标以及分布式训练&预测性能指标等。实现的召回模型包括 [SR-GNN](http://gitlab.baidu.com/tangwei12/paddlerec/tree/develop/models/recall/gnn)、[GRU4REC](http://gitlab.baidu.com/tangwei12/paddlerec/tree/develop/models/recall/gru4rec)、[Sequence Semantic Retrieval Model](http://gitlab.baidu.com/tangwei12/paddlerec/tree/develop/models/recall/ssr)、[Word2Vector](http://gitlab.baidu.com/tangwei12/paddlerec/tree/develop/models/recall/word2vec)。 模型算法库在持续添加中,欢迎关注。 ## 目录 * [整体介绍](#整体介绍) * [召回模型列表](#召回模型列表) * [使用教程](#使用教程) * [训练&预测](#训练&预测) * [效果对比](#效果对比) * [模型效果列表](#模型效果列表) ## 整体介绍 ### 召回模型列表 | 模型 | 简介 | 论文 | | :------------------: | :--------------------: | :---------: | | Word2Vec | word2vector | [Distributed Representations of Words and Phrases and their Compositionality](https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf)(2013) | | GRU4REC | SR-GRU | [Session-based Recommendations with Recurrent Neural Networks](https://arxiv.org/abs/1511.06939)(2015) | | SSR | Sequence Semantic Retrieval Model | [Multi-Rate Deep Learning for Temporal Recommendation](http://sonyis.me/paperpdf/spr209-song_sigir16.pdf)(2016) | | GNN | SR-GNN | [Session-based Recommendation with Graph Neural Networks](https://arxiv.org/abs/1811.00855)(2018) | 下面是每个模型的简介(注:图片引用自链接中的论文) [Word2Vec](https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf):

[GRU4REC](https://arxiv.org/abs/1511.06939):

[SSR](http://sonyis.me/paperpdf/spr209-song_sigir16.pdf):

[GNN](https://arxiv.org/abs/1811.00855):

## 使用教程 ### 训练&预测 ```shell python -m paddlerec.run -m paddlerec.models.recall.word2vec # word2vec python -m paddlerec.run -m paddlerec.models.recall.ssr # ssr python -m paddlerec.run -m paddlerec.models.recall.gru4rec # gru4rec python -m paddlerec.run -m paddlerec.models.recall.gnn # gnn ``` ## 效果对比 ### 模型效果列表 | 数据集 | 模型 | loss | Recall@20 | | :------------------: | :--------------------: | :---------: |:---------: | | DIGINETICA | GNN | -- | 0.507 | | RSC15 | GRU4REC | -- | 0.670 | | RSC15 | SSR | -- | 0.590 | | 1 Billion Word Language Model Benchmark | Word2Vec | -- | 0.54 |