# FLEN 以下是本例的简要目录结构及说明: ``` ├── data #样例数据 ├── sample_data ├── train ├── sample_train.txt ├── run.sh ├── get_slot_data.py ├── __init__.py ├── README.md # 文档 ├── model.py #模型文件 ├── config.yaml #配置文件 ``` 注:在阅读该示例前,建议您先了解以下内容: [paddlerec入门教程](https://github.com/PaddlePaddle/PaddleRec/blob/master/README.md) --- ## 内容 - [模型简介](#模型简介) - [数据准备](#数据准备) - [运行环境](#运行环境) - [快速开始](#快速开始) - [论文复现](#论文复现) - [进阶使用](#进阶使用) - [FAQ](#FAQ) ## 模型简介 [《FLEN: Leveraging Field for Scalable CTR Prediction》](https://arxiv.org/pdf/1911.04690.pdf)文章提出了field-wise bi-interaction pooling技术,解决了在大规模应用特征field信息时存在的时间复杂度和空间复杂度高的困境,同时提出了一种缓解梯度耦合问题的方法dicefactor。该模型已应用于美图的大规模推荐系统中,持续稳定地取得业务效果的全面提升。 本项目在avazu数据集上验证模型效果, 本模型配置默认使用demo数据集,若进行精度验证,请参考[论文复现](#论文复现)部分。 本项目支持功能 训练:单机CPU、单机单卡GPU、单机多卡GPU、本地模拟参数服务器训练、增量训练,配置请参考 [启动训练](https://github.com/PaddlePaddle/PaddleRec/blob/master/doc/train.md) 预测:单机CPU、单机单卡GPU ;配置请参考[PaddleRec 离线预测](https://github.com/PaddlePaddle/PaddleRec/blob/master/doc/predict.md) ## 数据准备 ## 运行环境 PaddlePaddle>=1.7.2 python 2.7/3.5/3.6/3.7 PaddleRec >=0.1 os : windows/linux/macos ## 快速开始 ### 单机训练 CPU环境 在config.yaml文件中设置好设备,epochs等。 ``` # select runner by name mode: [single_cpu_train, single_cpu_infer] # config of each runner. # runner is a kind of paddle training class, which wraps the train/infer process. runner: - name: single_cpu_train class: train # num of epochs epochs: 4 # device to run training or infer device: cpu save_checkpoint_interval: 2 # save model interval of epochs save_inference_interval: 4 # save inference save_checkpoint_path: "increment_model" # save checkpoint path save_inference_path: "inference" # save inference path save_inference_feed_varnames: [] # feed vars of save inference save_inference_fetch_varnames: [] # fetch vars of save inference init_model_path: "" # load model path print_interval: 10 phases: [phase1] ``` ### 单机预测 CPU环境 在config.yaml文件中设置好epochs、device等参数。 ``` - name: single_cpu_infer class: infer # num of epochs epochs: 1 # device to run training or infer device: cpu #选择预测的设备 init_model_path: "increment_dnn" # load model path phases: [phase2] ``` ### 运行 ``` python -m paddlerec.run -m models/rank/flen ``` ## 论文复现 用原论文的完整数据复现论文效果需要在config.yaml中修改batch_size=512, thread_num=8, epoch_num=1 全量数据的效果未来补充。 ## 进阶使用 ## FAQ