# 全局配置 debug: false workspace: "." # 用户可以配多个dataset,exector里不同阶段可以用不同的dataset dataset: - name: sample_1 type: DataLoader #或者QueueDataset batch_size: 5 data_path: "{workspace}/data/train" # 用户自定义reader data_converter: "{workspace}/rsc15_reader.py" - name: sample_2 type: QueueDataset #或者DataLoader batch_size: 5 data_path: "{workspace}/data/train" # 用户可以配置sparse_slots和dense_slots,无需再定义data_converter sparse_slots: "click ins_weight 6001 6002 6003 6005 6006 6007 6008 6009" dense_slots: "readlist:9" #示例一,用户自定义参数,用于组网配置 hyper_parameters: #优化器 optimizer: class: Adam learning_rate: 0.001 strategy: "{workspace}/conf/config_fleet.py" # 用户自定义配置 vocab_size: 1000 hid_size: 100 my_key1: 233 my_key2: 0.1 mode: runner1 runner: - name: runner1 # 示例一,train trainer_class: single_train epochs: 10 device: cpu init_model_path: "" save_checkpoint_interval: 2 save_inference_interval: 4 # 下面是保存模型路径配置 save_checkpoint_path: "xxxx" save_inference_path: "xxxx" - name: runner2 # 示例二,infer trainer_class: single_train epochs: 1 device: cpu init_model_path: "afs:/xxx/xxx" phase: - name: phase1 model: "{workspace}/model.py" dataset_name: sample_1 thread_num: 1