""" A paddle trainer Adapt to Abacus """ import abc import sys import copy import yaml import time import json import datetime import kagle.kagle_fs import kagle.kagle_util import kagle.kagle_model import kagle.kagle_metric import kagle.kagle_dataset import kagle.trainer.kagle_trainer import paddle.fluid as fluid from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet class AbacusPaddleTrainer(kagle_trainer.Trainer): """R """ def __init__(self, config): """R """ kagle_trainer.Trainer.__init__(self, config) config['output_path'] = kagle_util.get_absolute_path( config['output_path'], config['io']['afs']) self.global_config = config self._place = fluid.CPUPlace() self._exe = fluid.Executor(self._place) self._exector_context = {} self._metrics = {} self._path_generator = kagle_util.PathGenerator({ 'templates': [ {'name': 'xbox_base_done', 'template': config['output_path'] + '/xbox_base_done.txt'}, {'name': 'xbox_delta_done', 'template': config['output_path'] + '/xbox_patch_done.txt'}, {'name': 'xbox_base', 'template': config['output_path'] + '/xbox/{day}/base/'}, {'name': 'xbox_delta', 'template': config['output_path'] + '/xbox/{day}/delta-{pass_id}/'}, {'name': 'batch_model', 'template': config['output_path'] + '/batch_model/{day}/{pass_id}/'} ] }) if 'path_generator' in config: self._path_generator.add_path_template(config['path_generator']) self.regist_context_processor('uninit', self.init) self.regist_context_processor('startup', self.startup) self.regist_context_processor('begin_day', self.begin_day) self.regist_context_processor('train_pass', self.train_pass) self.regist_context_processor('end_day', self.end_day) def init(self, context): """R """ fleet.init(self._exe) data_var_list = [] data_var_name_dict = {} runnnable_scope = [] runnnable_cost_op = [] context['status'] = 'startup' for executor in self.global_config['executor']: scope = fluid.Scope() self._exector_context[executor['name']] = {} self._exector_context[executor['name']]['scope'] = scope self._exector_context[executor['name']]['model'] = kagle_model.create(executor) model = self._exector_context[executor['name']]['model'] self._metrics.update(model.get_metrics()) runnnable_scope.append(scope) runnnable_cost_op.append(model.get_cost_op()) for var in model._data_var: if var.name in data_var_name_dict: continue data_var_list.append(var) data_var_name_dict[var.name] = var optimizer = kagle_model.FluidModel.build_optimizer({ 'metrics': self._metrics, 'optimizer_conf': self.global_config['optimizer'] }) optimizer.minimize(runnnable_cost_op, runnnable_scope) for executor in self.global_config['executor']: scope = self._exector_context[executor['name']]['scope'] model = self._exector_context[executor['name']]['model'] program = model._build_param['model']['train_program'] if not executor['is_update_sparse']: program._fleet_opt["program_configs"][str(id(model.get_cost_op().block.program))]["push_sparse"] = [] if 'train_thread_num' not in executor: executor['train_thread_num'] = self.global_config['train_thread_num'] with fluid.scope_guard(scope): self._exe.run(model._build_param['model']['startup_program']) model.dump_model_program('./') #server init done if fleet.is_server(): return 0 self._dataset = {} for dataset_item in self.global_config['dataset']['data_list']: dataset_item['data_vars'] = data_var_list dataset_item.update(self.global_config['io']['afs']) dataset_item["batch_size"] = self.global_config['batch_size'] self._dataset[dataset_item['name']] = kagle_dataset.FluidTimeSplitDataset(dataset_item) #if config.need_reqi_changeslot and config.reqi_dnn_plugin_day >= last_day and config.reqi_dnn_plugin_pass >= last_pass: # util.reqi_changeslot(config.hdfs_dnn_plugin_path, join_save_params, common_save_params, update_save_params, scope2, scope3) fleet.init_worker() pass def print_log(self, log_str, params): """R """ params['index'] = fleet.worker_index() return kagle_util.print_log(log_str, params) def print_global_metrics(self, scope, model, monitor_data, stdout_str): """R """ metrics = model.get_metrics() metric_calculator = kagle_metric.PaddleAUCMetric(None) for metric in metrics: metric_param = {'label': metric, 'metric_dict': metrics[metric]} metric_calculator.calculate(scope, metric_param) metric_result = metric_calculator.get_result_to_string() self.print_log(metric_result, {'master': True, 'stdout': stdout_str}) monitor_data += metric_result metric_calculator.clear(scope, metric_param) def save_model(self, day, pass_index, base_key): """R """ cost_printer = kagle_util.CostPrinter(kagle_util.print_cost, {'master': True, 'log_format': 'save model cost %s sec'}) model_path = self._path_generator.generate_path('batch_model', {'day': day, 'pass_id': pass_index}) save_mode = 0 # just save all if pass_index < 1: #batch_model save_mode = 3 # unseen_day++, save all kagle_util.rank0_print("going to save_model %s" % model_path) fleet.save_persistables(None, model_path, mode=save_mode) self._train_pass.save_train_progress(day, pass_index, base_key, model_path, is_checkpoint=True) cost_printer.done() return model_path def save_xbox_model(self, day, pass_index, xbox_base_key, monitor_data): """R """ stdout_str = "" xbox_patch_id = str(int(time.time())) kagle_util.rank0_print("begin save delta model") model_path = "" xbox_model_donefile = "" cost_printer = kagle_util.CostPrinter(kagle_util.print_cost, {'master': True, \ 'log_format': 'save xbox model cost %s sec', 'stdout': stdout_str}) if pass_index < 1: save_mode = 2 xbox_patch_id = xbox_base_key model_path = self._path_generator.generate_path('xbox_base', {'day': day}) xbox_model_donefile = self._path_generator.generate_path('xbox_base_done', {'day': day}) else: save_mode = 1 model_path = self._path_generator.generate_path('xbox_delta', {'day': day, 'pass_id': pass_index}) xbox_model_donefile = self._path_generator.generate_path('xbox_delta_done', {'day': day}) total_save_num = fleet.save_persistables(None, model_path, mode=save_mode) cost_printer.done() cost_printer = kagle_util.CostPrinter(kagle_util.print_cost, {'master': True, 'log_format': 'save cache model cost %s sec', 'stdout': stdout_str}) model_file_handler = kagle_fs.FileHandler(self.global_config['io']['afs']) if self.global_config['save_cache_model']: cache_save_num = fleet.save_cache_model(None, model_path, mode=save_mode) model_file_handler.write( "file_prefix:part\npart_num:16\nkey_num:%d\n" % cache_save_num, model_path + '/000_cache/sparse_cache.meta', 'w') cost_printer.done() kagle_util.rank0_print("save xbox cache model done, key_num=%s" % cache_save_num) save_env_param = { 'executor': self._exe, 'save_combine': True } cost_printer = kagle_util.CostPrinter(kagle_util.print_cost, {'master': True, 'log_format': 'save dense model cost %s sec', 'stdout': stdout_str}) for executor in self.global_config['executor']: if 'layer_for_inference' not in executor: continue executor_name = executor['name'] model = self._exector_context[executor_name]['model'] save_env_param['inference_list'] = executor['layer_for_inference'] save_env_param['scope'] = self._exector_context[executor_name]['scope'] model.dump_inference_param(save_env_param) for dnn_layer in executor['layer_for_inference']: model_file_handler.cp(dnn_layer['save_file_name'], model_path + '/dnn_plugin/' + dnn_layer['save_file_name']) cost_printer.done() xbox_done_info = { "id": xbox_patch_id, "key": xbox_base_key, "ins_path": "", "ins_tag": "feasign", "partition_type": "2", "record_count": "111111", "monitor_data": monitor_data, "mpi_size": str(fleet.worker_num()), "input": model_path.rstrip("/") + "/000", "job_id": kagle_util.get_env_value("JOB_ID"), "job_name": kagle_util.get_env_value("JOB_NAME") } model_file_handler.write(json.dumps(xbox_done_info) + "\n", xbox_model_donefile, 'a') if pass_index > 0: self._train_pass.save_train_progress(day, pass_index, xbox_base_key, model_path, is_checkpoint=False) return stdout_str def run_executor(self, executor_config, dataset, stdout_str): """R """ day = self._train_pass.date() pass_id = self._train_pass._pass_id xbox_base_key = self._train_pass._base_key executor_name = executor_config['name'] scope = self._exector_context[executor_name]['scope'] model = self._exector_context[executor_name]['model'] with fluid.scope_guard(scope): kagle_util.rank0_print("Begin " + executor_name + " pass") begin = time.time() program = model._build_param['model']['train_program'] self._exe.train_from_dataset(program, dataset, scope, thread=executor_config['train_thread_num'], debug=self.global_config['debug']) end = time.time() local_cost = (end - begin) / 60.0 avg_cost = kagle_util.worker_numric_avg(local_cost) min_cost = kagle_util.worker_numric_min(local_cost) max_cost = kagle_util.worker_numric_max(local_cost) kagle_util.rank0_print("avg train time %s mins, min %s mins, max %s mins" % (avg_cost, min_cost, max_cost)) self._exector_context[executor_name]['cost'] = max_cost monitor_data = "" self.print_global_metrics(scope, model, monitor_data, stdout_str) kagle_util.rank0_print("End " + executor_name + " pass") if self._train_pass.need_dump_inference(pass_id) and executor_config['dump_inference_model']: stdout_str += self.save_xbox_model(day, pass_id, xbox_base_key, monitor_data) def startup(self, context): """R """ if fleet.is_server(): fleet.run_server() context['status'] = 'wait' return stdout_str = "" self._train_pass = kagle_util.TimeTrainPass(self.global_config) if not self.global_config['cold_start']: cost_printer = kagle_util.CostPrinter(kagle_util.print_cost, {'master': True, 'log_format': 'load model cost %s sec', 'stdout': stdout_str}) self.print_log("going to load model %s" % self._train_pass._checkpoint_model_path, {'master': True}) #if config.need_reqi_changeslot and config.reqi_dnn_plugin_day >= self._train_pass.date() # and config.reqi_dnn_plugin_pass >= self._pass_id: # fleet.load_one_table(0, self._train_pass._checkpoint_model_path) #else: fleet.init_server(self._train_pass._checkpoint_model_path, mode=0) cost_printer.done() if self.global_config['save_first_base']: self.print_log("save_first_base=True", {'master': True}) self.print_log("going to save xbox base model", {'master': True, 'stdout': stdout_str}) self._train_pass._base_key = int(time.time()) stdout_str += self.save_xbox_model(self._train_pass.date(), 0, self._train_pass._base_key, "") context['status'] = 'begin_day' def begin_day(self, context): """R """ stdout_str = "" if not self._train_pass.next(): context['is_exit'] = True day = self._train_pass.date() pass_id = self._train_pass._pass_id self.print_log("======== BEGIN DAY:%s ========" % day, {'master': True, 'stdout': stdout_str}) if pass_id == self._train_pass.max_pass_num_day(): context['status'] = 'end_day' else: context['status'] = 'train_pass' def end_day(self, context): """R """ day = self._train_pass.date() pass_id = self._train_pass._pass_id xbox_base_key = int(time.time()) context['status'] = 'begin_day' kagle_util.rank0_print("shrink table") cost_printer = kagle_util.CostPrinter(kagle_util.print_cost, {'master': True, 'log_format': 'shrink table done, cost %s sec'}) fleet.shrink_sparse_table() for executor in self._exector_context: self._exector_context[executor]['model'].shrink({ 'scope': self._exector_context[executor]['scope'], 'decay': self.global_config['optimizer']['dense_decay_rate'] }) cost_printer.done() next_date = self._train_pass.date(delta_day=1) kagle_util.rank0_print("going to save xbox base model") self.save_xbox_model(next_date, 0, xbox_base_key, "") kagle_util.rank0_print("going to save batch model") self.save_model(next_date, 0, xbox_base_key) self._train_pass._base_key = xbox_base_key def train_pass(self, context): """R """ stdout_str = "" day = self._train_pass.date() pass_id = self._train_pass._pass_id base_key = self._train_pass._base_key pass_time = self._train_pass._current_train_time.strftime("%Y%m%d%H%M") self.print_log(" ==== begin delta:%s ========" % pass_id, {'master': True, 'stdout': stdout_str}) train_begin_time = time.time() cost_printer = kagle_util.CostPrinter(kagle_util.print_cost, \ {'master': True, 'log_format': 'load into memory done, cost %s sec', 'stdout': stdout_str}) current_dataset = {} for name in self._dataset: current_dataset[name] = self._dataset[name].load_dataset({ 'node_num': fleet.worker_num(), 'node_idx': fleet.worker_index(), 'begin_time': pass_time, 'time_window_min': self._train_pass._interval_per_pass }) cost_printer.done() kagle_util.rank0_print("going to global shuffle") cost_printer = kagle_util.CostPrinter(kagle_util.print_cost, { 'master': True, 'stdout': stdout_str, 'log_format': 'global shuffle done, cost %s sec'}) for name in current_dataset: current_dataset[name].global_shuffle(fleet, self.global_config['dataset']['shuffle_thread']) cost_printer.done() # str(dataset.get_shuffle_data_size(fleet)) if self.global_config['prefetch_data']: next_pass_time = (self._train_pass._current_train_time + datetime.timedelta(minutes=self._train_pass._interval_per_pass)).strftime("%Y%m%d%H%M") for name in self._dataset: self._dataset[name].preload_dataset({ 'node_num': fleet.worker_num(), 'node_idx': fleet.worker_index(), 'begin_time': next_pass_time, 'time_window_min': self._train_pass._interval_per_pass }) pure_train_begin = time.time() for executor in self.global_config['executor']: self.run_executor(executor, current_dataset[executor['dataset_name']], stdout_str) cost_printer = kagle_util.CostPrinter(kagle_util.print_cost, \ {'master': True, 'log_format': 'release_memory cost %s sec'}) for name in current_dataset: current_dataset[name].release_memory() pure_train_cost = time.time() - pure_train_begin if self._train_pass.is_checkpoint_pass(pass_id): self.save_model(day, pass_id, base_key) train_end_time = time.time() train_cost = train_end_time - train_begin_time other_cost = train_cost - pure_train_cost log_str = "finished train day %s pass %s time cost:%s sec job time cost:" % (day, pass_id, train_cost) for executor in self._exector_context: log_str += '[' + executor + ':' + str(self._exector_context[executor]['cost']) + ']' log_str += '[other_cost:' + str(other_cost) + ']' kagle_util.rank0_print(log_str) stdout_str += kagle_util.now_time_str() + log_str sys.stdout.write(stdout_str) stdout_str = "" if pass_id == self._train_pass.max_pass_num_day(): context['status'] = 'end_day' return elif not self._train_pass.next(): context['is_exit'] = True