# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. train: trainer: # for cluster training strategy: "async" epochs: 10 workspace: "paddlerec.models.rank.dcn" reader: batch_size: 2 train_data_path: "{workspace}/data/slot_train" feat_dict_name: "{workspace}/data/vocab" sparse_slots: "label C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26" dense_slots: "I1:1 I2:1 I3:1 I4:1 I5:1 I6:1 I7:1 I8:1 I9:1 I10:1 I11:1 I12:1 I13:1" model: models: "{workspace}/model.py" hyper_parameters: cross_num: 2 dnn_hidden_units: [128, 128] l2_reg_cross: 0.00005 dnn_use_bn: False clip_by_norm: 100.0 cat_feat_num: "{workspace}/data/cat_feature_num.txt" is_sparse: False is_test: False num_field: 39 learning_rate: 0.0001 act: "relu" optimizer: adam save: increment: dirname: "increment" epoch_interval: 2 save_last: True inference: dirname: "inference" epoch_interval: 4 save_last: True