# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from paddlerec.core.metrics import PrecisionRecall import paddle import paddle.fluid as fluid def calc_precision(tp_count, fp_count): if tp_count > 0.0 or fp_count > 0.0: return tp_count / (tp_count + fp_count) return 1.0 def calc_recall(tp_count, fn_count): if tp_count > 0.0 or fn_count > 0.0: return tp_count / (tp_count + fn_count) return 1.0 def calc_f1_score(precision, recall): if precision > 0.0 or recall > 0.0: return 2 * precision * recall / (precision + recall) return 0.0 def get_states(idxs, labels, cls_num, weights=None, batch_nums=1): ins_num = idxs.shape[0] # TP FP TN FN states = np.zeros((cls_num, 4)).astype('float32') for i in range(ins_num): w = weights[i] if weights is not None else 1.0 idx = idxs[i][0] label = labels[i][0] if idx == label: states[idx][0] += w for j in range(cls_num): states[j][2] += w states[idx][2] -= w else: states[label][3] += w states[idx][1] += w for j in range(cls_num): states[j][2] += w states[label][2] -= w states[idx][2] -= w return states def compute_metrics(states, cls_num): total_tp_count = 0.0 total_fp_count = 0.0 total_fn_count = 0.0 macro_avg_precision = 0.0 macro_avg_recall = 0.0 for i in range(cls_num): total_tp_count += states[i][0] total_fp_count += states[i][1] total_fn_count += states[i][3] macro_avg_precision += calc_precision(states[i][0], states[i][1]) macro_avg_recall += calc_recall(states[i][0], states[i][3]) metrics = [] macro_avg_precision /= cls_num macro_avg_recall /= cls_num metrics.append(macro_avg_precision) metrics.append(macro_avg_recall) metrics.append(calc_f1_score(macro_avg_precision, macro_avg_recall)) micro_avg_precision = calc_precision(total_tp_count, total_fp_count) metrics.append(micro_avg_precision) micro_avg_recall = calc_recall(total_tp_count, total_fn_count) metrics.append(micro_avg_recall) metrics.append(calc_f1_score(micro_avg_precision, micro_avg_recall)) return np.array(metrics).astype('float32') class TestPrecisionRecall(unittest.TestCase): def setUp(self): self.ins_num = 64 self.cls_num = 10 self.batch_nums = 3 self.datas = [] self.states = np.zeros((self.cls_num, 4)).astype('float32') for i in range(self.batch_nums): probs = np.random.uniform(0, 1.0, (self.ins_num, self.cls_num)).astype('float32') idxs = np.array(np.argmax( probs, axis=1)).reshape(self.ins_num, 1).astype('int32') labels = np.random.choice(range(self.cls_num), self.ins_num).reshape( (self.ins_num, 1)).astype('int32') self.datas.append((probs, labels)) states = get_states(idxs, labels, self.cls_num) self.states = np.add(self.states, states) self.metrics = compute_metrics(self.states, self.cls_num) self.place = fluid.core.CPUPlace() def build_network(self): predict = fluid.data( name="predict", shape=[-1, self.cls_num], dtype='float32', lod_level=0) label = fluid.data( name="label", shape=[-1, 1], dtype='int32', lod_level=0) precision_recall = PrecisionRecall( input=predict, label=label, class_num=self.cls_num) return precision_recall def test_forward(self): precision_recall = self.build_network() metrics = precision_recall.get_result() fetch_vars = [] metric_keys = [] for item in metrics.items(): fetch_vars.append(item[1]) metric_keys.append(item[0]) exe = fluid.Executor(self.place) exe.run(fluid.default_startup_program()) for i in range(self.batch_nums): outs = exe.run( fluid.default_main_program(), feed={'predict': self.datas[i][0], 'label': self.datas[i][1]}, fetch_list=fetch_vars, return_numpy=True) outs = dict(zip(metric_keys, outs)) self.assertTrue(np.allclose(outs['accum_states'], self.states)) self.assertTrue(np.allclose(outs['precision_recall_f1'], self.metrics)) if __name__ == '__main__': unittest.main()