# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml from eleps.trainer.single_train import SingleTrainerWithDataloader from eleps.trainer.single_train import SingleTrainerWithDataset from eleps.trainer.cluster_train import ClusterTrainerWithDataloader from eleps.trainer.cluster_train import ClusterTrainerWithDataset from eleps.trainer.ctr_trainer import CtrPaddleTrainer from eleps.utils import envs class TrainerFactory(object): def __init__(self): pass @staticmethod def _build_trainer(config): train_mode = envs.get_global_env("train.trainer") reader_mode = envs.get_global_env("train.reader.mode") if train_mode == "SingleTraining": if reader_mode == "dataset": trainer = SingleTrainerWithDataset() elif reader_mode == "dataloader": trainer = SingleTrainerWithDataloader() else: raise ValueError("reader only support dataset/dataloader") elif train_mode == "ClusterTraining": if reader_mode == "dataset": trainer = ClusterTrainerWithDataset() elif reader_mode == "dataloader": trainer = ClusterTrainerWithDataloader() else: raise ValueError("reader only support dataset/dataloader") elif train_mode == "CtrTrainer": trainer = CtrPaddleTrainer(config) else: raise ValueError("trainer only support SingleTraining/ClusterTraining") return trainer @staticmethod def create(config): _config = None if isinstance(config, dict): _config = config elif isinstance(config, str): if os.path.exists(config) and os.path.isfile(config): with open(config, 'r') as rb: _config = yaml.load(rb.read()) else: raise ValueError("unknown config about eleps") envs.set_global_envs(_config) print(envs.pretty_print_envs()) trainer = TrainerFactory._build_trainer(_config) return trainer