import math import paddle.fluid as fluid from ...utils import envs class Train(object): def __init__(self): self.sparse_inputs = [] self.dense_input = None self.label_input = None self.sparse_input_varnames = [] self.dense_input_varname = None self.label_input_varname = None def input(self): def sparse_inputs(): ids = envs.get_global_env("sparse_inputs_counts") sparse_input_ids = [ fluid.layers.data(name="C" + str(i), shape=[1], lod_level=1, dtype="int64") for i in range(ids) ] return sparse_input_ids, [var.name for var in sparse_input_ids] def dense_input(): dense_input_dim = envs.get_global_env("dense_input_dim") dense_input_var = fluid.layers.data(name="dense_input", shape=dense_input_dim, dtype="float32") return dense_input_var, dense_input_var.name def label_input(): label = fluid.layers.data(name="label", shape=[1], dtype="int64") return label, label.name self.sparse_inputs, self.sparse_input_varnames = sparse_inputs() self.dense_input, self.dense_input_varname = dense_input() self.label_input, self.label_input_varname = label_input() def net(self): def embedding_layer(input): sparse_feature_number = envs.get_global_env("sparse_feature_number") sparse_feature_dim = envs.get_global_env("sparse_feature_dim") emb = fluid.layers.embedding( input=input, is_sparse=True, size=[{sparse_feature_number}, {sparse_feature_dim}], param_attr=fluid.ParamAttr( name="SparseFeatFactors", initializer=fluid.initializer.Uniform()), ) emb_sum = fluid.layers.sequence_pool( input=emb, pool_type='sum') return emb_sum def fc(input, output_size): output = fluid.layers.fc( input=input, size=output_size, act='relu', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Normal( scale=1.0 / math.sqrt(input.shape[1])))) return output sparse_embed_seq = list(map(embedding_layer, self.sparse_inputs)) concated = fluid.layers.concat(sparse_embed_seq + [self.dense_input], axis=1) fcs = [concated] hidden_layers = envs.get_global_env("fc_sizes") for size in hidden_layers: fcs.append(fc(fcs[-1], size)) predict = fluid.layers.fc( input=fcs[-1], size=2, act="softmax", param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal( scale=1 / math.sqrt(fcs[-1].shape[1]))), ) self.predict = predict def loss(self, predict): cost = fluid.layers.cross_entropy(input=predict, label=self.label_input) avg_cost = fluid.layers.reduce_sum(cost) self.loss = avg_cost def metric(self): auc, batch_auc, _ = fluid.layers.auc(input=self.predict, label=self.label_input, num_thresholds=2 ** 12, slide_steps=20) def optimizer(self): learning_rate = envs.get_global_env("learning_rate") optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True) return optimizer class Evaluate(object): def input(self): pass def net(self): pass