# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from paddlerec.core.reader import Reader from paddlerec.core.utils import envs from collections import defaultdict import numpy as np class TrainReader(Reader): def init(self): self.watch_vec_size = envs.get_global_env("hyper_parameters.watch_vec_size", None, "train.model") self.search_vec_size = envs.get_global_env("hyper_parameters.search_vec_size", None, "train.model") self.other_feat_size = envs.get_global_env("hyper_parameters.other_feat_size", None, "train.model") self.output_size = envs.get_global_env("hyper_parameters.output_size", None, "train.model") def generate_sample(self, line): """ the file is not used """ def reader(): """ This function needs to be implemented by the user, based on data format """ feature_name = ["watch_vec", "search_vec", "other_feat", "label"] yield zip(feature_name, [np.random.rand(self.watch_vec_size).tolist()] + [np.random.rand(self.search_vec_size).tolist()] + [np.random.rand(self.other_feat_size).tolist()] + [[np.random.randint(self.output_size)]] ) return reader