# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training use fluid with one node only. """ from __future__ import print_function import logging import paddle.fluid as fluid from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory from paddle.fluid.incubate.fleet.base.role_maker import PaddleCloudRoleMaker from ..utils import envs from .transpiler_trainer import TranspileTrainer logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) class ClusterTrainerWithDataloader(TranspileTrainer): pass class ClusterTrainerWithDataset(TranspileTrainer): def processor_register(self): role = PaddleCloudRoleMaker() fleet.init(role) if fleet.is_server(): self.regist_context_processor('uninit', self.instance) self.regist_context_processor('init_pass', self.init) self.regist_context_processor('server_pass', self.server) else: self.regist_context_processor('uninit', self.instance) self.regist_context_processor('init_pass', self.init) self.regist_context_processor('train_pass', self.train) self.regist_context_processor('terminal_pass', self.terminal) def build_strategy(self): mode = envs.get_global_env("train.strategy.mode") strategy = None if mode == "async": strategy = StrategyFactory.create_async_strategy() elif mode == "geo": push_num = envs.get_global_env("train.strategy.mode.push_num", 100) strategy = StrategyFactory.create_geo_strategy(push_num) elif mode == "sync": strategy = StrategyFactory.create_sync_strategy() elif mode == "half_async": strategy = StrategyFactory.create_half_async_strategy() assert strategy is not None return strategy def init(self, context): self.model.input() self.model.build_model() self.model.metrics() self.model.avg_loss() optimizer = self.model.optimizer() strategy = self.build_strategy() optimizer = fleet.distributed_optimizer(optimizer, strategy) optimizer.minimize(self.model._cost) if fleet.is_server(): context['status'] = 'server_pass' else: self.fetch_vars = [] self.fetch_alias = [] self.fetch_period = self.model.get_fetch_period() metrics = self.model.get_metrics() if metrics: self.fetch_vars = metrics.values() self.fetch_alias = metrics.keys() context['status'] = 'train_pass' def server(self, context): fleet.init_server() fleet.run_server() context['is_exit'] = True def train(self, context): self._exe.run(fleet.startup_program) fleet.init_worker() dataset = self._get_dataset() epochs = envs.get_global_env("train.epochs") for i in range(epochs): self._exe.train_from_dataset(program=fluid.default_main_program(), dataset=dataset, fetch_list=self.fetch_vars, fetch_info=self.fetch_alias, print_period=self.fetch_period) self.save(i, "train", is_fleet=True) context['status'] = 'terminal_pass' fleet.stop_worker() def infer(self, context): context['status'] = 'terminal_pass' def terminal(self, context): for model in self.increment_models: print("epoch :{}, dir: {}".format(model[0], model[1])) context['is_exit'] = True