# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddlerec.core.model import Model as ModelBase import paddle.fluid as fluid class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) self.dict_dim = 100 self.max_len = 10 self.cnn_dim = 32 self.cnn_filter_size = 128 self.emb_dim = 8 self.hid_dim = 128 self.class_dim = 2 def train_net(self): """ network definition """ data = fluid.data(name="input", shape=[None, self.max_len], dtype='int64') label = fluid.data(name="label", shape=[None, 1], dtype='int64') seq_len = fluid.data(name="seq_len", shape=[None], dtype='int64') self._data_var = [data, label, seq_len] # embedding layer emb = fluid.embedding(input=data, size=[self.dict_dim, self.emb_dim]) emb = fluid.layers.sequence_unpad(emb, length=seq_len) # convolution layer conv = fluid.nets.sequence_conv_pool( input=emb, num_filters=self.cnn_dim, filter_size=self.cnn_filter_size, act="tanh", pool_type="max") # full connect layer fc_1 = fluid.layers.fc(input=[conv], size=self.hid_dim) # softmax layer prediction = fluid.layers.fc(input=[fc_1], size=self.class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) self.cost = avg_cost self._metrics["acc"] = acc def get_cost_op(self): return self.cost def get_metrics(self): return self._metrics def optimizer(self): learning_rate = 0.01 sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=learning_rate) return sgd_optimizer def infer_net(self): self.train_net()