# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid from paddlerec.core.utils import envs from paddlerec.core.model import ModelBase class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) def _init_hyper_parameters(self): self.recall_k = envs.get_global_env("hyper_parameters.recall_k") self.vocab_size = envs.get_global_env("hyper_parameters.vocab_size") self.hid_size = envs.get_global_env("hyper_parameters.hid_size") self.init_low_bound = envs.get_global_env( "hyper_parameters.init_low_bound") self.init_high_bound = envs.get_global_env( "hyper_parameters.init_high_bound") self.emb_lr_x = envs.get_global_env("hyper_parameters.emb_lr_x") self.gru_lr_x = envs.get_global_env("hyper_parameters.gru_lr_x") self.fc_lr_x = envs.get_global_env("hyper_parameters.fc_lr_x") def input_data(self, is_infer=False, **kwargs): # Input data src_wordseq = fluid.data( name="src_wordseq", shape=[None, 1], dtype="int64", lod_level=1) dst_wordseq = fluid.data( name="dst_wordseq", shape=[None, 1], dtype="int64", lod_level=1) return [src_wordseq, dst_wordseq] def net(self, inputs, is_infer=False): src_wordseq = inputs[0] dst_wordseq = inputs[1] emb = fluid.embedding( input=src_wordseq, size=[self.vocab_size, self.hid_size], param_attr=fluid.ParamAttr( name="emb", initializer=fluid.initializer.Uniform( low=self.init_low_bound, high=self.init_high_bound), learning_rate=self.emb_lr_x), is_sparse=True) fc0 = fluid.layers.fc(input=emb, size=self.hid_size * 3, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=self.init_low_bound, high=self.init_high_bound), learning_rate=self.gru_lr_x)) gru_h0 = fluid.layers.dynamic_gru( input=fc0, size=self.hid_size, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=self.init_low_bound, high=self.init_high_bound), learning_rate=self.gru_lr_x)) fc = fluid.layers.fc(input=gru_h0, size=self.vocab_size, act='softmax', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=self.init_low_bound, high=self.init_high_bound), learning_rate=self.fc_lr_x)) cost = fluid.layers.cross_entropy(input=fc, label=dst_wordseq) acc = fluid.layers.accuracy( input=fc, label=dst_wordseq, k=self.recall_k) if is_infer: self._infer_results['recall20'] = acc return avg_cost = fluid.layers.mean(x=cost) self._cost = avg_cost self._metrics["cost"] = avg_cost self._metrics["acc"] = acc