# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid from paddlerec.core.utils import envs from paddlerec.core.model import ModelBase class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) self.dict_dim = 100 self.max_len = 10 self.cnn_dim = 32 self.cnn_filter_size = 128 self.emb_dim = 8 self.hid_dim = 128 self.class_dim = 2 self.is_sparse = envs.get_global_env("hyper_parameters.is_sparse", False) def input_data(self, is_infer=False, **kwargs): data = fluid.data( name="input", shape=[None, self.max_len], dtype='int64') label = fluid.data(name="label", shape=[None, 1], dtype='int64') seq_len = fluid.data(name="seq_len", shape=[None], dtype='int64') return [data, label, seq_len] def net(self, input, is_infer=False): """ network definition """ data = input[0] label = input[1] seq_len = input[2] # embedding layer emb = fluid.embedding( input=data, size=[self.dict_dim, self.emb_dim], is_sparse=self.is_sparse) emb = fluid.layers.sequence_unpad(emb, length=seq_len) # convolution layer conv = fluid.nets.sequence_conv_pool( input=emb, num_filters=self.cnn_dim, filter_size=self.cnn_filter_size, act="tanh", pool_type="max") # full connect layer fc_1 = fluid.layers.fc(input=[conv], size=self.hid_dim) # softmax layer prediction = fluid.layers.fc(input=[fc_1], size=self.class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) self._cost = avg_cost if is_infer: self._infer_results["acc"] = acc else: self._metrics["acc"] = acc