# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import paddle.fluid as fluid import numpy as np class Metric(object): """R """ __metaclass__ = abc.ABCMeta def __init__(self, config): """R """ pass def clear(self, scope=None): """R """ if scope is None: scope = fluid.global_scope() place = fluid.CPUPlace() for key in self._global_metric_state_vars: varname, dtype = self._global_metric_state_vars[key] var = scope.find_var(varname) if not var: continue var = var.get_tensor() data_array = np.zeros(var._get_dims()).astype(dtype) var.set(data_array, place) def _get_global_metric_state(self, fleet, scope, metric_name, mode="sum"): """R """ var = scope.find_var(metric_name) if not var: return None input = np.array(var.get_tensor()) if fleet is None: return input fleet._role_maker._barrier_worker() old_shape = np.array(input.shape) input = input.reshape(-1) output = np.copy(input) * 0 fleet._role_maker._all_reduce(input, output, mode=mode) output = output.reshape(old_shape) return output def calc_global_metrics(self, fleet, scope=None): """R """ if scope is None: scope = fluid.global_scope() global_metrics = dict() for key in self._global_metric_state_vars: varname, dtype = self._global_metric_state_vars[key] global_metrics[key] = self._get_global_metric_state(fleet, scope, varname) return self._calculate(global_metrics) def _calculate(self, global_metrics): pass @abc.abstractmethod def get_result(self): """ Return: result(dict) : calculate result """ pass def __str__(self): """ Return: result(string) : calculate result with string format, for output """ pass