""" DnnLayer: analyse layer config, and parse to Paddle Operator, build net """ import abc import paddle.fluid as fluid class Layer(object): """R """ __metaclass__ = abc.ABCMeta def __init__(self, config): """R """ pass def generate(self, mode, param): """R """ if mode == 'fluid': return self.generate_fluid(param) elif mode == 'tensorflow': return self.generate_tensorflow(param) print ('unsupport this mode: ' + mode) return None, None @abc.abstractmethod def generate_fluid(self, param): """R """ pass def generate_tensorflow(self, param): """ Not implement currently """ pass class EmbeddingInputLayer(Layer): """R """ def __init__(self, config): """R """ self._cvm = config['cvm'] self._name = config['name'] self._slots = [str(slot) for slot in config['slots']] self._mf_dim = config['mf_dim'] self._backward = config['backward'] self._emb_dim = self._mf_dim + 3 #append show ctr lr self._emb_layers = [] def generate_fluid(self, param): """R """ show_clk = fluid.layers.concat( [param['layer']['show'], param['layer']['click']], axis=1) show_clk.stop_gradient = True data_var = [] for slot in self._slots: l = fluid.layers.data(name=slot, shape=[1], dtype="int64", lod_level=1) data_var.append(l) emb = fluid.layers.embedding(input=l, size=[10, self._emb_dim], \ is_sparse=True, is_distributed=True, param_attr=fluid.ParamAttr(name="embedding")) emb = fluid.layers.sequence_pool(input=emb, pool_type='sum') emb = fluid.layers.continuous_value_model(emb, show_clk, self._cvm) self._emb_layers.append(emb) output = fluid.layers.concat(input=self._emb_layers, axis=1, name=self._name) return output, {'data_var' : data_var} class LabelInputLayer(Layer): """R """ def __init__(self, config): """R """ self._name = config['name'] self._dim = config.get('dim', 1) self._data_type = config.get('data_type', "int64") self._label_idx = config['label_idx'] def generate_fluid(self, param): """R """ label = fluid.layers.data(name=self._name, shape=[-1, self._dim], \ dtype=self._data_type, lod_level=0, append_batch_size=False) cast_label = fluid.layers.cast(label, dtype='float32') cast_label.stop_gradient = True return cast_label, {'data_var': [label]} class TagInputLayer(Layer): """R """ def __init__(self, config): """R """ self._name = config['name'] self._tag = config['tag'] self._dim = config.get('dim', 1) self._data_type = config['data_type'] def generate_fluid(self, param): """R """ output = fluid.layers.data(name=self._name, shape=[-1, self._dim], \ dtype=self._data_type, lod_level=0, append_batch_size=False, stop_gradient=True) return output, {'data_var': [output]} class ParamLayer(Layer): """R """ def __init__(self, config): """R """ self._name = config['name'] self._coln = config['coln'] self._table_id = config.get('table_id', -1) self._init_range = config.get('init_range', 1) self._data_type = config.get('data_type', 'float32') self._config = config def generate_fluid(self, param): """R """ return self._config, {'inference_param': {'name':'param', 'params': [], 'table_id': self._table_id}} class SummaryLayer(Layer): """R """ def __init__(self, config): """R """ self._name = config['name'] self._table_id = config.get('table_id', -1) self._data_type = config.get('data_type', 'float32') self._config = config def generate_fluid(self, param): """R """ return self._config, {'inference_param': {'name': 'summary', 'params': [], 'table_id': self._table_id}} class NormalizetionLayer(Layer): """R """ def __init__(self, config): """R """ self._name = config['name'] self._input = config['input'] self._summary = config['summary'] self._table_id = config.get('table_id', -1) def generate_fluid(self, param): """R """ input_layer = param['layer'][self._input[0]] summary_layer = param['layer'][self._summary] if len(self._input) > 0: input_list=[param['layer'][i] for i in self._input] input_layer = fluid.layers.concat(input=input_list, axis=1) bn = fluid.layers.data_norm(input=input_layer, name=self._name, epsilon=1e-4, param_attr={ "batch_size": 1e4, "batch_sum_default": 0.0, "batch_square": 1e4}) inference_param = [self._name + '.batch_size', self._name + '.batch_sum', self._name + '.batch_square_sum'] return bn, {'inference_param' : {'name':'summary', 'params': inference_param, 'table_id': summary_layer.get('table_id', -1)}} class NeuralLayer(Layer): """R """ def __init__(self, config): """R """ self._name = config['name'] self._param = config['param'] self._input = config['input'] self._bias = config.get('bias', True) self._act_func = config.get('act_func', None) def generate_fluid(self, param): """R """ param_layer = param['layer'][self._param] input_layer = param['layer'][self._input[0]] if len(self._input) > 0: input_list=[param['layer'][i] for i in self._input] input_layer = fluid.layers.concat(input=input_list, axis=1) input_coln = input_layer.shape[1] scale = param_layer['init_range'] / (input_coln ** 0.5) bias = None if self._bias: bias = fluid.ParamAttr(learning_rate=1.0, initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=scale)) fc = fluid.layers.fc( name = self._name, input = input_layer, size = param_layer['coln'], act = self._act_func, param_attr = \ fluid.ParamAttr(learning_rate=1.0, \ initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=scale)), bias_attr = bias) inference_param = [self._name + '.w_0', self._name + '.b_0'] return fc, {'inference_param' : {'name':'param', 'params': inference_param, 'table_id': param_layer.get('table_id', -1)}} class SigmoidLossLayer(Layer): """R """ def __init__(self, config): """R """ self._name = config['name'] self._label = config['label'] self._input = config['input'] self._weight = config.get('weight', None) self._metric_label = config.get('metric_label', None) self._bound = config.get('bound', [-15.0, 15.0]) self._extend_output = { 'metric_label': self._metric_label, 'metric_dict': { 'auc': {'var': None}, 'batch_auc': {'var': None}, 'stat_pos': {'var': None, 'data_type': 'int64'}, 'stat_neg': {'var': None, 'data_type': 'int64'}, 'batch_stat_pos': {'var': None, 'data_type': 'int64'}, 'batch_stat_neg': {'var': None, 'data_type': 'int64'}, 'pos_ins_num': {'var': None}, 'abserr': {'var': None}, 'sqrerr': {'var': None}, 'prob': {'var': None}, 'total_ins_num': {'var': None}, 'q': {'var': None} } } def generate_fluid(self, param): """R """ input_layer = param['layer'][self._input[0]] label_layer = param['layer'][self._label] output = fluid.layers.clip(input_layer, self._bound[0], self._bound[1], name=self._name) norm = fluid.layers.sigmoid(output, name=self._name) output = fluid.layers.log_loss(norm, fluid.layers.cast(x=label_layer, dtype='float32')) if self._weight: weight_layer = param['layer'][self._weight] output = fluid.layers.elementwise_mul(output, weight_layer) output = fluid.layers.mean(x=output) self._extend_output['loss'] = output #For AUC Metric metric = self._extend_output['metric_dict'] binary_predict = fluid.layers.concat( input=[fluid.layers.elementwise_sub(fluid.layers.ceil(norm), norm), norm], axis=1) metric['auc']['var'], metric['batch_auc']['var'], [metric['batch_stat_pos']['var'], \ metric['batch_stat_neg']['var'], metric['stat_pos']['var'], metric['stat_neg']['var']] = \ fluid.layers.auc(input=binary_predict, label=fluid.layers.cast(x=label_layer, dtype='int64'), \ curve='ROC', num_thresholds=32) metric['sqrerr']['var'], metric['abserr']['var'], metric['prob']['var'], metric['q']['var'], \ metric['pos_ins_num']['var'], metric['total_ins_num']['var'] = \ fluid.contrib.layers.ctr_metric_bundle(norm, fluid.layers.cast(x=label_layer, dtype='float32')) return norm, self._extend_output