# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid from paddlerec.core.utils import envs from paddlerec.core.model import Model as ModelBase class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) def all_vocab_network(self, is_infer=False): """ network definition """ recall_k = envs.get_global_env("hyper_parameters.recall_k", None, self._namespace) vocab_size = envs.get_global_env("hyper_parameters.vocab_size", None, self._namespace) hid_size = envs.get_global_env("hyper_parameters.hid_size", None, self._namespace) init_low_bound = envs.get_global_env("hyper_parameters.init_low_bound", None, self._namespace) init_high_bound = envs.get_global_env("hyper_parameters.init_high_bound", None, self._namespace) emb_lr_x = envs.get_global_env("hyper_parameters.emb_lr_x", None, self._namespace) gru_lr_x = envs.get_global_env("hyper_parameters.gru_lr_x", None, self._namespace) fc_lr_x = envs.get_global_env("hyper_parameters.fc_lr_x", None, self._namespace) # Input data src_wordseq = fluid.data( name="src_wordseq", shape=[None, 1], dtype="int64", lod_level=1) dst_wordseq = fluid.data( name="dst_wordseq", shape=[None, 1], dtype="int64", lod_level=1) if is_infer: self._infer_data_var = [src_wordseq, dst_wordseq] self._infer_data_loader = fluid.io.DataLoader.from_generator( feed_list=self._infer_data_var, capacity=64, use_double_buffer=False, iterable=False) emb = fluid.embedding( input=src_wordseq, size=[vocab_size, hid_size], param_attr=fluid.ParamAttr( name="emb", initializer=fluid.initializer.Uniform( low=init_low_bound, high=init_high_bound), learning_rate=emb_lr_x), is_sparse=True) fc0 = fluid.layers.fc(input=emb, size=hid_size * 3, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=init_low_bound, high=init_high_bound), learning_rate=gru_lr_x)) gru_h0 = fluid.layers.dynamic_gru( input=fc0, size=hid_size, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=init_low_bound, high=init_high_bound), learning_rate=gru_lr_x)) fc = fluid.layers.fc(input=gru_h0, size=vocab_size, act='softmax', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=init_low_bound, high=init_high_bound), learning_rate=fc_lr_x)) cost = fluid.layers.cross_entropy(input=fc, label=dst_wordseq) acc = fluid.layers.accuracy(input=fc, label=dst_wordseq, k=recall_k) if is_infer: self._infer_results['recall20'] = acc return avg_cost = fluid.layers.mean(x=cost) self._data_var.append(src_wordseq) self._data_var.append(dst_wordseq) self._cost = avg_cost self._metrics["cost"] = avg_cost self._metrics["acc"] = acc def train_net(self): self.all_vocab_network() def infer_net(self): self.all_vocab_network(is_infer=True)