# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training use fluid with DistributeTranspiler """ import os import paddle.fluid as fluid from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet from fleetrec.core.trainer import Trainer from fleetrec.core.utils import envs from fleetrec.core.utils import dataloader_instance class TranspileTrainer(Trainer): def __init__(self, config=None): Trainer.__init__(self, config) self.processor_register() self.model = None self.inference_models = [] self.increment_models = [] def processor_register(self): print("Need implement by trainer, `self.regist_context_processor('uninit', self.instance)` must be the first") def _get_dataloader(self, state): if state == "TRAIN": dataloader = self.model._data_loader namespace = "train.reader" class_name = "TrainReader" else: dataloader = self.model._infer_data_loader namespace = "evaluate.reader" class_name = "EvaluateReader" batch_size = envs.get_global_env("batch_size", None, namespace) reader_class = envs.get_global_env("class", None, namespace) reader = dataloader_instance.dataloader(reader_class, state, self._config_yaml) reader_class = envs.lazy_instance_by_fliename(reader_class, class_name) reader_ins = reader_class(self._config_yaml) if hasattr(reader_ins,'generate_batch_from_trainfiles'): dataloader.set_sample_list_generator(reader) else: dataloader.set_sample_generator(reader, batch_size) return dataloader def _get_dataset(self, state): if state == "TRAIN": inputs = self.model.get_inputs() namespace = "train.reader" train_data_path = envs.get_global_env("train_data_path", None, namespace) else: inputs = self.model.get_infer_inputs() namespace = "evaluate.reader" train_data_path = envs.get_global_env("test_data_path", None, namespace) threads = int(envs.get_runtime_environ("train.trainer.threads")) batch_size = envs.get_global_env("batch_size", None, namespace) reader_class = envs.get_global_env("class", None, namespace) abs_dir = os.path.dirname(os.path.abspath(__file__)) reader = os.path.join(abs_dir, '../utils', 'dataset_instance.py') pipe_cmd = "python {} {} {} {}".format(reader, reader_class, state, self._config_yaml) if train_data_path.startswith("fleetrec::"): package_base = envs.get_runtime_environ("PACKAGE_BASE") assert package_base is not None train_data_path = os.path.join(package_base, train_data_path.split("::")[1]) dataset = fluid.DatasetFactory().create_dataset() dataset.set_use_var(inputs) dataset.set_pipe_command(pipe_cmd) dataset.set_batch_size(batch_size) dataset.set_thread(threads) file_list = [ os.path.join(train_data_path, x) for x in os.listdir(train_data_path) ] dataset.set_filelist(file_list) return dataset def save(self, epoch_id, namespace, is_fleet=False): def need_save(epoch_id, epoch_interval, is_last=False): if is_last: return True if epoch_id == -1: return False return epoch_id % epoch_interval == 0 def save_inference_model(): save_interval = envs.get_global_env("save.inference.epoch_interval", -1, namespace) if not need_save(epoch_id, save_interval, False): return print("save inference model is not supported now.") return feed_varnames = envs.get_global_env("save.inference.feed_varnames", None, namespace) fetch_varnames = envs.get_global_env("save.inference.fetch_varnames", None, namespace) fetch_vars = [fluid.default_main_program().global_block().vars[varname] for varname in fetch_varnames] dirname = envs.get_global_env("save.inference.dirname", None, namespace) assert dirname is not None dirname = os.path.join(dirname, str(epoch_id)) if is_fleet: fleet.save_inference_model(dirname, feed_varnames, fetch_vars) else: fluid.io.save_inference_model(dirname, feed_varnames, fetch_vars, self._exe) self.inference_models.append((epoch_id, dirname)) def save_persistables(): save_interval = envs.get_global_env("save.increment.epoch_interval", -1, namespace) if not need_save(epoch_id, save_interval, False): return dirname = envs.get_global_env("save.increment.dirname", None, namespace) assert dirname is not None dirname = os.path.join(dirname, str(epoch_id)) if is_fleet: fleet.save_persistables(self._exe, dirname) else: fluid.io.save_persistables(self._exe, dirname) self.increment_models.append((epoch_id, dirname)) save_persistables() save_inference_model() def instance(self, context): models = envs.get_global_env("train.model.models") model_class = envs.lazy_instance_by_fliename(models, "Model") self.model = model_class(None) context['status'] = 'init_pass' def init(self, context): print("Need to be implement") context['is_exit'] = True def dataloader_train(self, context): print("Need to be implement") context['is_exit'] = True def dataset_train(self, context): print("Need to be implement") context['is_exit'] = True def infer(self, context): context['is_exit'] = True def terminal(self, context): print("clean up and exit") context['is_exit'] = True