# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from paddlerec.core.metrics import AUC import paddle import paddle.fluid as fluid class TestAUC(unittest.TestCase): def setUp(self): self.ins_num = 64 self.batch_nums = 3 self.datas = [] for i in range(self.batch_nums): probs = np.random.uniform(0, 1.0, (self.ins_num, 2)).astype('float32') labels = np.random.choice(range(2), self.ins_num).reshape( (self.ins_num, 1)).astype('int64') self.datas.append((probs, labels)) self.place = fluid.core.CPUPlace() self.num_thresholds = 2**12 python_auc = fluid.metrics.Auc(name="auc", curve='ROC', num_thresholds=self.num_thresholds) for i in range(self.batch_nums): python_auc.update(self.datas[i][0], self.datas[i][1]) self.auc = np.array(python_auc.eval()) def build_network(self): predict = fluid.data( name="predict", shape=[-1, 2], dtype='float32', lod_level=0) label = fluid.data( name="label", shape=[-1, 1], dtype='int64', lod_level=0) auc = AUC(input=predict, label=label, num_thresholds=self.num_thresholds, curve='ROC') return auc def test_forward(self): precision_recall = self.build_network() metrics = precision_recall.get_result() fetch_vars = [] metric_keys = [] for item in metrics.items(): fetch_vars.append(item[1]) metric_keys.append(item[0]) exe = fluid.Executor(self.place) exe.run(fluid.default_startup_program()) for i in range(self.batch_nums): outs = exe.run( fluid.default_main_program(), feed={'predict': self.datas[i][0], 'label': self.datas[i][1]}, fetch_list=fetch_vars, return_numpy=True) outs = dict(zip(metric_keys, outs)) self.assertTrue(np.allclose(outs['AUC'], self.auc)) def test_exception(self): self.assertRaises(Exception, AUC) self.assertRaises( Exception, AUC, input=self.datas[0][0], label=self.datas[0][1]), if __name__ == '__main__': unittest.main()