# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import paddle.fluid as fluid import numpy as np class Metric(object): """R """ __metaclass__ = abc.ABCMeta def __init__(self, config): """ """ pass def clear(self, scope=None): """ clear current value Args: scope: value container params: extend varilable for clear """ if scope is None: scope = fluid.global_scope() place = fluid.CPUPlace() for key in self._global_communicate_var: varname, dtype = self._global_communicate_var[key] if scope.find_var(varname) is None: continue var = scope.var(varname).get_tensor() data_array = np.zeros(var._get_dims()).astype(dtype) var.set(data_array, place) def get_global_metric(self, fleet, scope, metric_name, mode="sum"): """ reduce metric named metric_name from all worker Return: metric reduce result """ input = np.array(scope.find_var(metric_name).get_tensor()) if fleet is None: return input fleet._role_maker._barrier_worker() old_shape = np.array(input.shape) input = input.reshape(-1) output = np.copy(input) * 0 fleet._role_maker._all_reduce(input, output, mode=mode) output = output.reshape(old_shape) return output def cal_global_metrics(self, fleet, scope=None): """ calculate result Args: scope: value container params: extend varilable for clear """ if scope is None: scope = fluid.global_scope() global_metrics = dict() for key in self._global_communicate_var: varname, dtype = self._global_communicate_var[key] global_metrics[key] = self.get_global_metric(fleet, scope, varname) return self.calculate(global_metrics) def calculate(self, global_metrics): pass @abc.abstractmethod def get_result(self): """ Return: result(dict) : calculate result """ pass def __str__(self): """ Return: result(string) : calculate result with string format, for output """ pass