#!/usr/bin/env python36 # -*- coding: utf-8 -*- """ Created on July, 2018 @author: Tangrizzly """ import argparse import time import csv import pickle import operator import datetime import os parser = argparse.ArgumentParser() parser.add_argument( '--dataset', default='sample', help='dataset name: diginetica/yoochoose/sample') opt = parser.parse_args() print(opt) dataset = 'sample_train-item-views.csv' if opt.dataset == 'diginetica': dataset = 'train-item-views.csv' elif opt.dataset == 'yoochoose': dataset = 'yoochoose-clicks.dat' print("-- Starting @ %ss" % datetime.datetime.now()) with open(dataset, "r") as f: if opt.dataset == 'yoochoose': reader = csv.DictReader(f, delimiter=',') else: reader = csv.DictReader(f, delimiter=';') sess_clicks = {} sess_date = {} ctr = 0 curid = -1 curdate = None for data in reader: sessid = data['session_id'] date = '' if opt.dataset == 'yoochoose': item = data['item_id'] date = time.mktime( time.strptime(data['timestamp'][:19], '%Y-%m-%dT%H:%M:%S')) else: item = data['item_id'], int(data['timeframe']) date = time.mktime(time.strptime(data['eventdate'], '%Y-%m-%d')) if sessid not in sess_date: sess_date[sessid] = date elif date > sess_date[sessid]: sess_date[sessid] = date if sessid in sess_clicks: sess_clicks[sessid] += [item] else: sess_clicks[sessid] = [item] ctr += 1 if opt.dataset != 'yoochoose': for i in list(sess_clicks): sorted_clicks = sorted(sess_clicks[i], key=operator.itemgetter(1)) sess_clicks[i] = [c[0] for c in sorted_clicks] print("-- Reading data @ %ss" % datetime.datetime.now()) # Filter out length 1 sessions for s in list(sess_clicks): if len(sess_clicks[s]) == 1: del sess_clicks[s] del sess_date[s] # Count number of times each item appears iid_counts = {} for s in sess_clicks: seq = sess_clicks[s] for iid in seq: if iid in iid_counts: iid_counts[iid] += 1 else: iid_counts[iid] = 1 sorted_counts = sorted(iid_counts.items(), key=operator.itemgetter(1)) length = len(sess_clicks) for s in list(sess_clicks): curseq = sess_clicks[s] filseq = list(filter(lambda i: iid_counts[i] >= 5, curseq)) if len(filseq) < 2: del sess_clicks[s] del sess_date[s] else: sess_clicks[s] = filseq # Split out test set based on dates dates = list(sess_date.items()) maxdate = dates[0][1] for _, date in dates: if maxdate < date: maxdate = date # 7 days for test splitdate = 0 if opt.dataset == 'yoochoose': splitdate = maxdate - 86400 * 1 # the number of seconds for a day:86400 else: splitdate = maxdate - 86400 * 7 print('Splitting date', splitdate) # Yoochoose: ('Split date', 1411930799.0) tra_sess = filter(lambda x: x[1] < splitdate, dates) tes_sess = filter(lambda x: x[1] > splitdate, dates) # Sort sessions by date tra_sess = sorted( tra_sess, key=operator.itemgetter(1)) # [(session_id, timestamp), (), ] tes_sess = sorted( tes_sess, key=operator.itemgetter(1)) # [(session_id, timestamp), (), ] print(len(tra_sess)) # 186670 # 7966257 print(len(tes_sess)) # 15979 # 15324 print(tra_sess[:3]) print(tes_sess[:3]) print("-- Splitting train set and test set @ %ss" % datetime.datetime.now()) # Choosing item count >=5 gives approximately the same number of items as reported in paper item_dict = {} # Convert training sessions to sequences and renumber items to start from 1 def obtian_tra(): train_ids = [] train_seqs = [] train_dates = [] item_ctr = 1 for s, date in tra_sess: seq = sess_clicks[s] outseq = [] for i in seq: if i in item_dict: outseq += [item_dict[i]] else: outseq += [item_ctr] item_dict[i] = item_ctr item_ctr += 1 if len(outseq) < 2: # Doesn't occur continue train_ids += [s] train_dates += [date] train_seqs += [outseq] print(item_ctr) # 43098, 37484 with open("./config.txt", "w") as fout: fout.write(str(item_ctr) + "\n") return train_ids, train_dates, train_seqs # Convert test sessions to sequences, ignoring items that do not appear in training set def obtian_tes(): test_ids = [] test_seqs = [] test_dates = [] for s, date in tes_sess: seq = sess_clicks[s] outseq = [] for i in seq: if i in item_dict: outseq += [item_dict[i]] if len(outseq) < 2: continue test_ids += [s] test_dates += [date] test_seqs += [outseq] return test_ids, test_dates, test_seqs tra_ids, tra_dates, tra_seqs = obtian_tra() tes_ids, tes_dates, tes_seqs = obtian_tes() def process_seqs(iseqs, idates): out_seqs = [] out_dates = [] labs = [] ids = [] for id, seq, date in zip(range(len(iseqs)), iseqs, idates): for i in range(1, len(seq)): tar = seq[-i] labs += [tar] out_seqs += [seq[:-i]] out_dates += [date] ids += [id] return out_seqs, out_dates, labs, ids tr_seqs, tr_dates, tr_labs, tr_ids = process_seqs(tra_seqs, tra_dates) te_seqs, te_dates, te_labs, te_ids = process_seqs(tes_seqs, tes_dates) tra = (tr_seqs, tr_labs) tes = (te_seqs, te_labs) print(len(tr_seqs)) print(len(te_seqs)) print(tr_seqs[:3], tr_dates[:3], tr_labs[:3]) print(te_seqs[:3], te_dates[:3], te_labs[:3]) all = 0 for seq in tra_seqs: all += len(seq) for seq in tes_seqs: all += len(seq) print('avg length: ', all / (len(tra_seqs) + len(tes_seqs) * 1.0)) if opt.dataset == 'diginetica': if not os.path.exists('diginetica'): os.makedirs('diginetica') pickle.dump(tra, open('diginetica/train', 'wb')) pickle.dump(tes, open('diginetica/test', 'wb')) pickle.dump(tra_seqs, open('diginetica/all_train_seq', 'wb')) elif opt.dataset == 'yoochoose': if not os.path.exists('yoochoose1_4'): os.makedirs('yoochoose1_4') if not os.path.exists('yoochoose1_64'): os.makedirs('yoochoose1_64') pickle.dump(tes, open('yoochoose1_4/test', 'wb')) pickle.dump(tes, open('yoochoose1_64/test', 'wb')) split4, split64 = int(len(tr_seqs) / 4), int(len(tr_seqs) / 64) print(len(tr_seqs[-split4:])) print(len(tr_seqs[-split64:])) tra4, tra64 = (tr_seqs[-split4:], tr_labs[-split4:]), (tr_seqs[-split64:], tr_labs[-split64:]) seq4, seq64 = tra_seqs[tr_ids[-split4]:], tra_seqs[tr_ids[-split64]:] pickle.dump(tra4, open('yoochoose1_4/train', 'wb')) pickle.dump(seq4, open('yoochoose1_4/all_train_seq', 'wb')) pickle.dump(tra64, open('yoochoose1_64/train', 'wb')) pickle.dump(seq64, open('yoochoose1_64/all_train_seq', 'wb')) else: if not os.path.exists('sample'): os.makedirs('sample') pickle.dump(tra, open('sample/train', 'wb')) pickle.dump(tes, open('sample/test', 'wb')) pickle.dump(tra_seqs, open('sample/all_train_seq', 'wb')) print('Done.')