/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/platform/cudnn_helper.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using ScopedSpatialTransformerDescriptor = platform::ScopedSpatialTransformerDescriptor; template class CUDNNAffineGridOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "It must use CUDAPlace."); auto& dev_ctx = ctx.template device_context(); auto handle = dev_ctx.cudnn_handle(); auto* theta = ctx.Input("Theta"); auto* output = ctx.Output("Output"); const T* theta_data = theta->data(); int n = theta->dims()[0]; auto size_attr = ctx.Attr>("output_shape"); Tensor h_sizes; int* h_size_data; if (size_attr.size() == 0) { auto* output_shape = ctx.Input("OutputShape"); framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes); h_size_data = h_sizes.data(); } else { h_size_data = h_sizes.mutable_data({4}, platform::CPUPlace()); h_size_data[0] = n; h_size_data[1] = size_attr[1]; h_size_data[2] = size_attr[2]; h_size_data[3] = size_attr[3]; } T* output_data = output->mutable_data( {n, h_size_data[2], h_size_data[3], 2}, ctx.GetPlace()); ScopedSpatialTransformerDescriptor st_desc; cudnnSpatialTransformerDescriptor_t cudnn_st_desc = st_desc.descriptor(4, h_size_data); PADDLE_ENFORCE(platform::dynload::cudnnSpatialTfGridGeneratorForward( handle, cudnn_st_desc, theta_data, output_data)); } }; template class CUDNNAffineGridGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "It must use CUDAPlace."); auto& dev_ctx = ctx.template device_context(); auto handle = dev_ctx.cudnn_handle(); auto output_grad = ctx.Input(framework::GradVarName("Output")); auto theta_grad = ctx.Output(framework::GradVarName("Theta")); int n = output_grad->dims()[0]; auto size_attr = ctx.Attr>("output_shape"); Tensor h_sizes; int* h_size_data; if (size_attr.size() == 0) { auto* output_shape = ctx.Input("OutputShape"); framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes); h_size_data = h_sizes.data(); } else { h_size_data = h_sizes.mutable_data({4}, platform::CPUPlace()); h_size_data[0] = n; h_size_data[1] = size_attr[1]; h_size_data[2] = size_attr[2]; h_size_data[3] = size_attr[3]; } ScopedSpatialTransformerDescriptor st_desc; cudnnSpatialTransformerDescriptor_t cudnn_st_desc = st_desc.descriptor(4, h_size_data); const T* output_grad_data = output_grad->data(); T* theta_grad_data = theta_grad->mutable_data(ctx.GetPlace()); PADDLE_ENFORCE(platform::dynload::cudnnSpatialTfGridGeneratorBackward( handle, cudnn_st_desc, output_grad_data, theta_grad_data)); } }; } // namespace operators } // namespace paddle namespace plat = paddle::platform; REGISTER_OP_KERNEL(affine_grid, CUDNN, plat::CUDAPlace, paddle::operators::CUDNNAffineGridOpKernel, paddle::operators::CUDNNAffineGridOpKernel); REGISTER_OP_KERNEL(affine_grid_grad, CUDNN, plat::CUDAPlace, paddle::operators::CUDNNAffineGridGradOpKernel, paddle::operators::CUDNNAffineGridGradOpKernel);