/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include // NOLINT #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/inference/io.h" void ThreadedRunInference( const std::unique_ptr& inference_program, paddle::framework::Executor* executor, paddle::framework::Scope* scope, const int thread_id, const std::vector& cpu_feeds, const std::vector& cpu_fetchs) { auto copy_program = std::unique_ptr( new paddle::framework::ProgramDesc(*inference_program)); std::string feed_holder_name = "feed_" + paddle::string::to_string(thread_id); std::string fetch_holder_name = "fetch_" + paddle::string::to_string(thread_id); copy_program->SetFeedHolderName(feed_holder_name); copy_program->SetFetchHolderName(fetch_holder_name); // 3. Get the feed_target_names and fetch_target_names const std::vector& feed_target_names = copy_program->GetFeedTargetNames(); const std::vector& fetch_target_names = copy_program->GetFetchTargetNames(); // 4. Prepare inputs: set up maps for feed targets std::map feed_targets; for (size_t i = 0; i < feed_target_names.size(); ++i) { // Please make sure that cpu_feeds[i] is right for feed_target_names[i] feed_targets[feed_target_names[i]] = cpu_feeds[i]; } // 5. Define Tensor to get the outputs: set up maps for fetch targets std::map fetch_targets; for (size_t i = 0; i < fetch_target_names.size(); ++i) { fetch_targets[fetch_target_names[i]] = cpu_fetchs[i]; } // 6. Run the inference program executor->Run(*copy_program, scope, feed_targets, fetch_targets, true, feed_holder_name, fetch_holder_name); } template void TestMultiThreadInference( const std::string& dirname, const std::vector>& cpu_feeds, const std::vector>& cpu_fetchs, const int num_threads) { // 1. Define place, executor, scope auto place = Place(); auto executor = paddle::framework::Executor(place); auto* scope = new paddle::framework::Scope(); // 2. Initialize the inference_program and load parameters std::unique_ptr inference_program = paddle::inference::Load(executor, *scope, dirname); std::vector threads; for (int i = 0; i < num_threads; ++i) { threads.push_back(new std::thread( ThreadedRunInference, std::ref(inference_program), &executor, scope, i, std::ref(cpu_feeds[i]), std::ref(cpu_fetchs[i]))); } for (int i = 0; i < num_threads; ++i) { threads[i]->join(); delete threads[i]; } delete scope; }