// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/cudnn_placement_pass.h" #include #include "paddle/fluid/framework/ir/pass_tester_helper.h" #include "paddle/fluid/framework/operator.h" namespace paddle { namespace framework { namespace ir { void RegisterOpKernel() { static bool is_registered = false; if (!is_registered) { auto& all_kernels = OperatorWithKernel::AllOpKernels(); platform::CUDAPlace place = platform::CUDAPlace(0); OpKernelType plain_kernel_type = OpKernelType(proto::VarType::FP32, place, DataLayout::kAnyLayout, LibraryType::kPlain); OpKernelType cudnn_kernel_type = OpKernelType(proto::VarType::FP32, place, DataLayout::kAnyLayout, LibraryType::kCUDNN); auto fake_kernel_func = [](const ExecutionContext&) -> void { static int num_calls = 0; num_calls++; }; all_kernels["conv2d"][cudnn_kernel_type] = fake_kernel_func; all_kernels["pool2d"][cudnn_kernel_type] = fake_kernel_func; all_kernels["depthwise_conv2d"][plain_kernel_type] = fake_kernel_func; all_kernels["relu"][plain_kernel_type] = fake_kernel_func; is_registered = true; } } void MainTest(std::initializer_list cudnn_enabled_op_types, unsigned expected_use_cudnn_true_count) { // operator use_cudnn // -------------------------------------------------- // (a,b)->concat->c - // (c,weights,bias)->conv2d->f false // f->relu->g - // g->pool2d->h false // (h,weights2,bias2)->depthwise_conv2d->k false // k->relu->l - Layers layers; VarDesc* a = layers.data("a"); VarDesc* b = layers.data("b"); VarDesc* c = layers.concat(std::vector({a, b})); VarDesc* weights_0 = layers.data("weights_0"); VarDesc* bias_0 = layers.data("bias_0"); VarDesc* f = layers.conv2d(c, weights_0, bias_0, false); VarDesc* g = layers.relu(f); VarDesc* h = layers.pool2d(g, false); VarDesc* weights_1 = layers.data("weights_1"); VarDesc* bias_1 = layers.data("bias_1"); VarDesc* k = layers.depthwise_conv2d(h, weights_1, bias_1, false); layers.relu(k); RegisterOpKernel(); std::unique_ptr graph(new ir::Graph(layers.main_program())); auto pass = PassRegistry::Instance().Get("cudnn_placement_pass"); pass->Set("cudnn_enabled_op_types", new std::unordered_set(cudnn_enabled_op_types)); graph.reset(pass->Apply(graph.release())); unsigned use_cudnn_true_count = 0; for (auto* node : graph->Nodes()) { if (node->IsOp() && node->Op()) { auto* op = node->Op(); if (op->HasAttr("use_cudnn") && boost::get(op->GetAttr("use_cudnn"))) { ++use_cudnn_true_count; } } } EXPECT_EQ(use_cudnn_true_count, expected_use_cudnn_true_count); } TEST(CUDNNPlacementPass, enable_conv2d) { // 1 conv2d MainTest({"conv2d"}, 1); } TEST(CUDNNPlacementPass, enable_relu_pool) { // 1 conv2d + 1 pool2d MainTest({"conv2d", "pool2d"}, 2); } TEST(CUDNNPlacementPass, enable_all) { // 1 conv2d + 1 pool2d // depthwise_conv2d doesnot have CUDNN kernel. MainTest({}, 2); } } // namespace ir } // namespace framework } // namespace paddle USE_PASS(cudnn_placement_pass);