/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include namespace paddle { namespace framework { namespace ir { static std::unordered_map operator_cuda_table = { {"elementwise_add", "var$ + var$"}, {"elementwise_sub", "var$ - var$"}, {"elementwise_mul", "var$ * var$"}, {"elementwise_div", "var$ / var$"}, {"elementwise_min", "real_min(var$, var$)"}, {"elementwise_max", "real_max(var$, var$)"}, {"relu", "real_max(var$, 0)"}, {"sigmoid", "1.0 / (1.0 + real_exp(-var$))"}}; // op computation is composed by single or many operation class OperationExpression { public: OperationExpression(std::vector input_ids, int output_id, std::string search_oprtation); std::string GetExpression(); std::vector GetInputIds() { return input_ids_; } int GetOutputId() { return output_id_; } private: std::vector input_ids_; int output_id_; std::string search_operation_; }; static const char indentation[] = R"( )"; static const char const_kernel_start[] = R"( template extern "C" __global__ void )"; static const char const_kernel_mid[] = R"( { for(int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < N; idx += gridDim.x * blockDim.x) { )"; static const char const_kernel_end[] = R"( } } )"; } // namespace ir } // namespace framework } // namespace paddle