# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from float16_transpiler import Float16Transpiler import argparse import paddle import paddle.fluid as fluid import contextlib import math import sys import numpy as np import os parser = argparse.ArgumentParser( 'Float16 inference accuracy test and benchmark.') parser.add_argument( '--train_batch_size', type=int, default=16, help="Batch size for training.") parser.add_argument( '--inf_batch_size', type=int, default=32, help="Batch size for inference.") parser.add_argument( '--repeat', type=int, default=1, help="How many times to run the test.") parser.add_argument( '--data_set', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help="Optional dataset for benchmark.") parser.add_argument( '--model', type=str, default='vgg', choices=['vgg', 'resnet'], help="Optional model for benchmark.") parser.add_argument( '--threshold', type=float, default=0.005, help='Save inference model when test accuracy reach this threshold.') parser.add_argument('--learning_rate', type=float, default=0.001) args = parser.parse_args() def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'): conv1 = fluid.layers.conv2d( input=input, filter_size=filter_size, num_filters=ch_out, stride=stride, padding=padding, act=None, bias_attr=False) return fluid.layers.batch_norm(input=conv1, act=act) def shortcut(input, ch_out, stride): ch_in = input.shape[1] if ch_in != ch_out: return conv_bn_layer(input, ch_out, 1, stride, 0, None) else: return input def basicblock(input, ch_out, stride): short = shortcut(input, ch_out, stride) conv1 = conv_bn_layer(input, ch_out, 3, stride, 1) conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None) return fluid.layers.elementwise_add(x=short, y=conv2, act='relu') def bottleneck(input, ch_out, stride): short = shortcut(input, ch_out * 4, stride) conv1 = conv_bn_layer(input, ch_out, 1, stride, 0) conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1) conv3 = conv_bn_layer(conv2, ch_out * 4, 1, 1, 0, act=None) return fluid.layers.elementwise_add(x=short, y=conv3, act='relu') def layer_warp(block_func, input, ch_out, count, stride): res_out = block_func(input, ch_out, stride) for i in range(1, count): res_out = block_func(res_out, ch_out, 1) return res_out def resnet_imagenet(input, depth=50): cfg = { 18: ([2, 2, 2, 1], basicblock), 34: ([3, 4, 6, 3], basicblock), 50: ([3, 4, 6, 3], bottleneck), 101: ([3, 4, 23, 3], bottleneck), 152: ([3, 8, 36, 3], bottleneck) } stages, block_func = cfg[depth] conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3) pool1 = fluid.layers.pool2d( input=conv1, pool_type='avg', pool_size=3, pool_stride=2) res1 = layer_warp(block_func, pool1, 64, stages[0], 1) res2 = layer_warp(block_func, res1, 128, stages[1], 2) res3 = layer_warp(block_func, res2, 256, stages[2], 2) res4 = layer_warp(block_func, res3, 512, stages[3], 2) pool2 = fluid.layers.pool2d( input=res4, pool_size=7, pool_type='avg', pool_stride=1, global_pooling=True) return pool2 def resnet_cifar10(input, depth=32): assert (depth - 2) % 6 == 0 n = (depth - 2) // 6 conv1 = conv_bn_layer( input=input, ch_out=16, filter_size=3, stride=1, padding=1) res1 = layer_warp(basicblock, conv1, 16, n, 1) res2 = layer_warp(basicblock, res1, 32, n, 2) res3 = layer_warp(basicblock, res2, 64, n, 2) pool = fluid.layers.pool2d( input=res3, pool_size=8, pool_type='avg', pool_stride=1) return pool def vgg16(input): def conv_block(input, num_filter, groups, dropouts): return fluid.nets.img_conv_group( input=input, pool_size=2, pool_stride=2, conv_num_filter=[num_filter] * groups, conv_filter_size=3, conv_act='relu', conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, pool_type='max') conv1 = conv_block(input, 64, 2, [0.3, 0]) conv2 = conv_block(conv1, 128, 2, [0.4, 0]) conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5) fc1 = fluid.layers.fc(input=drop, size=4096, act=None) bn = fluid.layers.batch_norm(input=fc1, act='relu') drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5) fc2 = fluid.layers.fc(input=drop2, size=4096, act=None) return fc2 def train(place, save_dirname): if args.data_set == "cifar10": class_dim = 10 data_shape = [3, 32, 32] elif args.data_set == "imagenet": class_dim = 102 data_shape = [3, 224, 224] else: raise ValueError("%s dataset is not supported" % data_set) images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') if args.model == "vgg": print("train vgg") net = vgg16(images) elif args.model == "resnet": print("train resnet") if args.data_set == "cifar10": net = resnet_cifar10(images) elif args.data_set == "imagenet": net = resnet_imagenet(images) else: raise ValueError("%s dataset is not supported" % args.data_set) else: raise ValueError("%s network is not supported" % args.model) predict = fluid.layers.fc(input=net, size=class_dim, act='softmax') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=predict, label=label) #Test program test_program = fluid.default_main_program().clone(for_test=True) optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate) optimizer.minimize(avg_cost) BATCH_SIZE = args.train_batch_size PASS_NUM = 100 train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.flowers.train() if args.data_set == 'imagenet' else paddle.dataset.cifar.train10(), buf_size=128 * 10), batch_size=args.train_batch_size) test_reader = paddle.batch( paddle.dataset.flowers.test() if args.data_set == 'imagenet' else paddle.dataset.cifar.test10(), batch_size=args.inf_batch_size) exe = fluid.Executor(place) feeder = fluid.DataFeeder(place=place, feed_list=[images, label]) exe.run(fluid.default_startup_program()) main_program = fluid.default_main_program() for pass_id in range(PASS_NUM): for batch_id, data in enumerate(train_reader()): train_image = np.array( map(lambda x: x[0].reshape(data_shape), data)).astype("float32") train_label = np.array(map(lambda x: x[1], data)).astype("int64") train_label = train_label.reshape([-1, 1]) exe.run(main_program, feed={'pixel': train_image, 'label': train_label}) if (batch_id % 100) == 0: acc_list = [] avg_loss_list = [] for tid, test_data in enumerate(test_reader()): test_image = np.array( map(lambda x: x[0].reshape(data_shape), test_data)).astype("float32") test_label = np.array(map(lambda x: x[1], test_data)).astype("int64") test_label = test_label.reshape([-1, 1]) loss_t, acc_t = exe.run( program=test_program, feed={"pixel": test_image, "label": test_label}, fetch_list=[avg_cost, acc]) if math.isnan(float(loss_t)): sys.exit("got NaN loss, training failed.") acc_list.append(float(acc_t)) avg_loss_list.append(float(loss_t)) acc_value = np.array(acc_list).mean() avg_loss_value = np.array(avg_loss_list).mean() print( 'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Accuracy {3:2.2}'. format(pass_id, batch_id + 1, float(avg_loss_value), float(acc_value))) if acc_value > args.threshold: print( 'Save inference model with test accuracy of {0} at {1}'. format(float(acc_value), save_dirname)) fluid.io.save_inference_model(save_dirname, ["pixel"], [predict], exe) return def test_accuracy(executor, inference_program, feed_target_names, fetch_targets): if args.data_set == "cifar10": data_shape = [3, 32, 32] elif args.data_set == "imagenet": data_shape = [3, 224, 224] else: raise ValueError("%s dataset is not supported" % data_set) test_reader = paddle.batch( paddle.dataset.cifar.test10() if args.data_set == "cifar10" else paddle.dataset.flowers.test(), batch_size=args.inf_batch_size) test_num = 0 correct_num = 0 for test_data in test_reader(): test_image = np.array( map(lambda x: x[0].reshape(data_shape), test_data)).astype( "float32") test_label = np.array(map(lambda x: x[1], test_data)).astype("int64") test_label = test_label.reshape([-1, 1]) results = executor.run(program=inference_program, feed={feed_target_names[0]: test_image}, fetch_list=fetch_targets) prediction = np.argmax(results[0], axis=1).reshape([-1, 1]) correct_num += np.sum(prediction == test_label) test_num += test_label.size print("{0} out of {1} predictions are correct.".format(correct_num, test_num)) print("Test accuray is {0}.".format(float(correct_num) / float(test_num))) def infer(place, save_dirname): exe = fluid.Executor(place) inference_scope = fluid.core.Scope() with fluid.scope_guard(inference_scope): # Use fluid.io.load_inference_model to obtain the inference program desc, # the feed_target_names (the names of variables that will be feeded # data using feed operators), and the fetch_targets (variables that # we want to obtain data from using fetch operators). print("Load inference model from {0}".format(save_dirname)) [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model(save_dirname, exe) print("The test set accuracy of inference in float mode is:") test_accuracy(exe, inference_program, feed_target_names, fetch_targets) float16_inference_program = inference_program.clone() t = Float16Transpiler() t.transpile(float16_inference_program, place) print("The test set accuracy of inference in float16 mode is:") test_accuracy(exe, float16_inference_program, feed_target_names, fetch_targets) fp16_save_dirname = "float16_" + save_dirname fluid.io.save_inference_model(fp16_save_dirname, feed_target_names, fetch_targets, exe, float16_inference_program) @contextlib.contextmanager def scope_prog_guard(): prog = fluid.Program() startup_prog = fluid.Program() scope = fluid.core.Scope() with fluid.scope_guard(scope): with fluid.program_guard(prog, startup_prog): yield if __name__ == "__main__": if not fluid.core.is_compiled_with_cuda(): raise Exception("This test requires CUDA GPUs!") place = fluid.CUDAPlace(0) if not fluid.core.is_float16_supported(place): raise Exception( "This test requires compute capability of CUDA GPU >= 5.3!") for i in range(args.repeat): with scope_prog_guard(): save_dirname = "image_classification_" + args.data_set + "_" + args.model + ".inference.model" train(place, save_dirname) infer(place, save_dirname)