// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/fleet/fleet_wrapper.h" #include #include #include "paddle/fluid/framework/data_feed.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/scope.h" namespace paddle { namespace framework { const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100; std::shared_ptr FleetWrapper::s_instance_ = NULL; bool FleetWrapper::is_initialized_ = false; #ifdef PADDLE_WITH_PSLIB template paddle::ps::Archive& operator<<(paddle::ps::Archive& ar, const MultiSlotType& ins) { ar << ins.GetType(); ar << ins.GetOffset(); ar << ins.GetFloatData(); ar << ins.GetUint64Data(); return ar; } template paddle::ps::Archive& operator>>(paddle::ps::Archive& ar, MultiSlotType& ins) { ar >> ins.MutableType(); ar >> ins.MutableOffset(); ar >> ins.MutableFloatData(); ar >> ins.MutableUint64Data(); return ar; } #endif #ifdef PADDLE_WITH_PSLIB std::shared_ptr FleetWrapper::pslib_ptr_ = NULL; #endif void FleetWrapper::InitServer(const std::string& dist_desc, int index) { #ifdef PADDLE_WITH_PSLIB if (!is_initialized_) { VLOG(3) << "Going to init server"; pslib_ptr_ = std::shared_ptr( new paddle::distributed::PSlib()); pslib_ptr_->init_server(dist_desc, index); is_initialized_ = true; } else { VLOG(3) << "Server can be initialized only once"; } #endif } void FleetWrapper::InitWorker(const std::string& dist_desc, const std::vector& host_sign_list, int node_num, int index) { #ifdef PADDLE_WITH_PSLIB if (!is_initialized_) { VLOG(3) << "Going to init worker"; pslib_ptr_ = std::shared_ptr( new paddle::distributed::PSlib()); pslib_ptr_->init_worker(dist_desc, const_cast(host_sign_list.data()), node_num, index); is_initialized_ = true; } else { VLOG(3) << "Worker can be initialized only once"; } #endif } void FleetWrapper::StopServer() { #ifdef PADDLE_WITH_PSLIB VLOG(3) << "Going to stop server"; pslib_ptr_->stop_server(); #endif } uint64_t FleetWrapper::RunServer() { #ifdef PADDLE_WITH_PSLIB VLOG(3) << "Going to run server"; return pslib_ptr_->run_server(); #else return 0; #endif } void FleetWrapper::GatherServers(const std::vector& host_sign_list, int node_num) { #ifdef PADDLE_WITH_PSLIB VLOG(3) << "Going to gather server ips"; pslib_ptr_->gather_servers(const_cast(host_sign_list.data()), node_num); #endif } void FleetWrapper::GatherClients(const std::vector& host_sign_list) { #ifdef PADDLE_WITH_PSLIB VLOG(3) << "Going to gather client ips"; size_t len = host_sign_list.size(); pslib_ptr_->gather_clients(const_cast(host_sign_list.data()), len); #endif } std::vector FleetWrapper::GetClientsInfo() { #ifdef PADDLE_WITH_PSLIB VLOG(3) << "Going to get client info"; return pslib_ptr_->get_client_info(); #endif return std::vector(); } void FleetWrapper::CreateClient2ClientConnection() { #ifdef PADDLE_WITH_PSLIB VLOG(3) << "Going to create client2client connection"; pslib_ptr_->create_client2client_connection(); #endif } void FleetWrapper::PullSparseVarsSync( const Scope& scope, const uint64_t table_id, const std::vector& var_names, std::vector* fea_keys, std::vector>* fea_values, int fea_value_dim) { #ifdef PADDLE_WITH_PSLIB std::vector<::std::future> pull_sparse_status; pull_sparse_status.resize(0); fea_keys->clear(); fea_keys->resize(0); fea_keys->reserve(MAX_FEASIGN_NUM); for (auto name : var_names) { Variable* var = scope.FindVar(name); if (var == nullptr) { continue; } LoDTensor* tensor = var->GetMutable(); CHECK(tensor != nullptr) << "tensor of var " << name << " is null"; int64_t* ids = tensor->data(); int len = tensor->numel(); for (auto i = 0u; i < len; ++i) { if (ids[i] == 0u) { continue; } fea_keys->push_back(static_cast(ids[i])); } } fea_values->resize(fea_keys->size() + 1); for (auto& t : *fea_values) { t.resize(fea_value_dim); } std::vector pull_result_ptr; for (auto& t : *fea_values) { pull_result_ptr.push_back(t.data()); } auto status = pslib_ptr_->_worker_ptr->pull_sparse( pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size()); pull_sparse_status.push_back(std::move(status)); for (auto& t : pull_sparse_status) { t.wait(); auto status = t.get(); if (status != 0) { LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]"; exit(-1); } } #endif } void FleetWrapper::PullDenseVarsAsync( const Scope& scope, const uint64_t tid, const std::vector& var_names, std::vector<::std::future>* pull_dense_status) { #ifdef PADDLE_WITH_PSLIB auto& regions = _regions[tid]; regions.clear(); regions.resize(var_names.size()); for (auto i = 0u; i < var_names.size(); ++i) { Variable* var = scope.FindVar(var_names[i]); LoDTensor* tensor = var->GetMutable(); float* w = tensor->data(); paddle::ps::Region reg(w, tensor->numel()); regions[i] = std::move(reg); } auto status = pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid); pull_dense_status->push_back(std::move(status)); #endif } void FleetWrapper::PullDenseVarsSync( const Scope& scope, const uint64_t tid, const std::vector& var_names) { #ifdef PADDLE_WITH_PSLIB auto& regions = _regions[tid]; regions.clear(); regions.reserve(var_names.size()); for (auto& t : var_names) { Variable* var = scope.FindVar(t); LoDTensor* tensor = var->GetMutable(); float* w = tensor->data(); paddle::ps::Region reg(w, tensor->numel()); regions.emplace_back(std::move(reg)); } auto status = pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid); status.wait(); #endif } void FleetWrapper::PushDenseParamSync( const Scope& scope, const uint64_t table_id, const std::vector& var_names) { #ifdef PADDLE_WITH_PSLIB auto place = platform::CPUPlace(); std::vector regions; for (auto& t : var_names) { Variable* var = scope.FindVar(t); CHECK(var != nullptr) << "var[" << t << "] not found"; LoDTensor* tensor = var->GetMutable(); float* g = tensor->mutable_data(place); paddle::ps::Region reg(g, tensor->numel()); regions.emplace_back(std::move(reg)); } auto push_status = pslib_ptr_->_worker_ptr->push_dense_param( regions.data(), regions.size(), table_id); push_status.wait(); auto status = push_status.get(); CHECK(status == 0) << "push dense param failed, status[" << status << "]"; #endif } void FleetWrapper::PushDenseVarsSync( Scope* scope, const uint64_t table_id, const std::vector& var_names) {} void FleetWrapper::PushDenseVarsAsync( const Scope& scope, const uint64_t table_id, const std::vector& var_names, std::vector<::std::future>* push_sparse_status) { #ifdef PADDLE_WITH_PSLIB std::vector regions; for (auto& t : var_names) { Variable* var = scope.FindVar(t); LoDTensor* tensor = var->GetMutable(); int count = tensor->numel(); float* g = tensor->data(); paddle::ps::Region reg(g, count); regions.emplace_back(std::move(reg)); } auto status = pslib_ptr_->_worker_ptr->push_dense(regions.data(), regions.size(), table_id); push_sparse_status->push_back(std::move(status)); #endif } void FleetWrapper::PushSparseVarsWithLabelAsync( const Scope& scope, const uint64_t table_id, const std::vector& fea_keys, const std::vector& fea_labels, const std::vector& sparse_key_names, const std::vector& sparse_grad_names, const int emb_dim, std::vector>* push_values, std::vector<::std::future>* push_sparse_status, const int batch_size, const bool use_cvm) { #ifdef PADDLE_WITH_PSLIB int offset = 2; int grad_dim = emb_dim; if (use_cvm) { offset = 0; grad_dim = emb_dim - 2; } CHECK_GE(grad_dim, 0); push_values->resize(fea_keys.size() + 1); for (auto& t : *push_values) { t.resize(emb_dim + offset); } uint64_t fea_idx = 0u; for (size_t i = 0; i < sparse_key_names.size(); ++i) { Variable* var = scope.FindVar(sparse_key_names[i]); if (var == nullptr) { continue; } LoDTensor* tensor = var->GetMutable(); if (tensor == nullptr) { LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null"; exit(-1); } int len = tensor->numel(); int64_t* ids = tensor->data(); Variable* g_var = scope.FindVar(sparse_grad_names[i]); CHECK(g_var != nullptr) << "var[" << sparse_grad_names[i] << "] not found"; LoDTensor* g_tensor = g_var->GetMutable(); if (g_tensor == nullptr) { LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null"; exit(-1); } float* g = g_tensor->data(); if (scale_sparse_gradient_with_batch_size_ && grad_dim > 0) { int dim = emb_dim + offset; Eigen::Map< Eigen::Matrix> g_mat(g, g_tensor->numel() / dim, dim); g_mat.rightCols(grad_dim) *= batch_size; } for (auto id_idx = 0u; id_idx < len; ++id_idx) { if (ids[id_idx] == 0) { g += emb_dim; continue; } CHECK(fea_idx < (*push_values).size()); CHECK(fea_idx < fea_labels.size()); if (use_cvm) { memcpy((*push_values)[fea_idx].data() + offset, g, sizeof(float) * emb_dim); } else { memcpy((*push_values)[fea_idx].data() + offset, g, sizeof(float) * emb_dim); (*push_values)[fea_idx][0] = 1.0f; (*push_values)[fea_idx][1] = static_cast(fea_labels[fea_idx]); } g += emb_dim; fea_idx++; } } CHECK(fea_idx == fea_keys.size()) << "fea_idx: " << fea_idx << "features size: " << fea_keys.size(); std::vector push_g_vec; for (auto i = 0u; i < fea_keys.size(); ++i) { push_g_vec.push_back((*push_values)[i].data()); } auto status = pslib_ptr_->_worker_ptr->push_sparse( table_id, fea_keys.data(), (const float**)push_g_vec.data(), fea_keys.size()); push_sparse_status->push_back(std::move(status)); #endif } void FleetWrapper::LoadFromPaddleModel(Scope& scope, const uint64_t table_id, std::vector var_list, std::string model_path, std::string model_proto_file, bool load_combine) { // load ProgramDesc from model file auto read_proto_func = [](const std::string& filename) -> ProgramDesc { std::string contents; std::ifstream fin(filename, std::ios::in | std::ios::binary); fin.seekg(0, std::ios::end); contents.resize(fin.tellg()); fin.seekg(0, std::ios::beg); fin.read(&contents[0], contents.size()); fin.close(); ProgramDesc program_desc(contents); return program_desc; }; const ProgramDesc old_program = read_proto_func(model_proto_file); Scope* old_scope = new Scope(); auto& old_block = old_program.Block(0); auto place = platform::CPUPlace(); std::vector old_param_list; for (auto& t : var_list) { VarDesc* old_var_desc = old_block.FindVar(t); if (old_var_desc == nullptr) { continue; } // init variable in scope Variable* old_var = old_scope->Var(old_var_desc->Name()); InitializeVariable(old_var, old_var_desc->GetType()); old_param_list.push_back(t); if (load_combine) { continue; } // load variable from model paddle::framework::AttributeMap attrs; attrs.insert({"file_path", model_path + "/" + old_var_desc->Name()}); auto load_op = paddle::framework::OpRegistry::CreateOp( "load", {}, {{"Out", {old_var_desc->Name()}}}, attrs); load_op->Run(*old_scope, place); } if (load_combine) { std::sort(old_param_list.begin(), old_param_list.end()); paddle::framework::AttributeMap attrs; attrs.insert({"file_path", model_path}); auto load_op = paddle::framework::OpRegistry::CreateOp( "load_combine", {}, {{"Out", old_param_list}}, attrs); load_op->Run(*old_scope, place); } for (auto& t : old_param_list) { Variable* old_var = old_scope->Var(t); // old model data, here we assume data type is float LoDTensor* old_tensor = old_var->GetMutable(); float* old_data = old_tensor->data(); // new model data, here we assume data type is float Variable* var = scope.FindVar(t); CHECK(var != nullptr) << "var[" << t << "] not found"; LoDTensor* tensor = var->GetMutable(); float* data = tensor->data(); // copy from old data to new data if (old_tensor->numel() > tensor->numel()) { memcpy(data, old_data, tensor->numel() * sizeof(float)); } else { memcpy(data, old_data, old_tensor->numel() * sizeof(float)); } } delete old_scope; PushDenseParamSync(scope, table_id, old_param_list); } void FleetWrapper::LoadModel(const std::string& path, const int mode) { #ifdef PADDLE_WITH_PSLIB auto ret = pslib_ptr_->_worker_ptr->load(path, std::to_string(mode)); ret.wait(); if (ret.get() != 0) { LOG(ERROR) << "load model from path:" << path << " failed"; exit(-1); } #else VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib"; #endif } void FleetWrapper::LoadModelOneTable(const uint64_t table_id, const std::string& path, const int mode) { #ifdef PADDLE_WITH_PSLIB auto ret = pslib_ptr_->_worker_ptr->load(table_id, path, std::to_string(mode)); ret.wait(); if (ret.get() != 0) { LOG(ERROR) << "load model of table id: " << table_id << ", from path: " << path << " failed"; } #else VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib"; #endif } void FleetWrapper::SaveModel(const std::string& path, const int mode) { #ifdef PADDLE_WITH_PSLIB auto ret = pslib_ptr_->_worker_ptr->save(path, std::to_string(mode)); ret.wait(); int32_t feasign_cnt = ret.get(); if (feasign_cnt == -1) { LOG(ERROR) << "save model failed"; exit(-1); } #else VLOG(0) << "FleetWrapper::SaveModel does nothing when no pslib"; #endif } void FleetWrapper::ShrinkSparseTable(int table_id) { #ifdef PADDLE_WITH_PSLIB auto ret = pslib_ptr_->_worker_ptr->shrink(table_id); ret.wait(); #else VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib"; #endif } void FleetWrapper::ShrinkDenseTable(int table_id, Scope* scope, std::vector var_list, float decay) { #ifdef PADDLE_WITH_PSLIB std::vector regions; for (std::string& name : var_list) { if (name.find("batch_sum") != std::string::npos) { Variable* var = scope->FindVar(name); CHECK(var != nullptr) << "var[" << name << "] not found"; VLOG(3) << "prepare shrink dense batch_sum"; LoDTensor* tensor = var->GetMutable(); float* g = tensor->data(); Eigen::Map mat(g, 1, tensor->numel()); mat *= decay; paddle::ps::Region reg(g, tensor->numel()); regions.emplace_back(std::move(reg)); } else { Variable* var = scope->FindVar(name); CHECK(var != nullptr) << "var[" << name << "] not found"; LoDTensor* tensor = var->GetMutable(); float* g = tensor->data(); paddle::ps::Region reg(g, tensor->numel()); regions.emplace_back(std::move(reg)); } } auto push_status = pslib_ptr_->_worker_ptr->push_dense_param( regions.data(), regions.size(), table_id); push_status.wait(); auto status = push_status.get(); if (status != 0) { LOG(FATAL) << "push shrink dense param failed, status[" << status << "]"; exit(-1); } #else VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib"; #endif } void FleetWrapper::ClientFlush() { #ifdef PADDLE_WITH_PSLIB auto ret = pslib_ptr_->_worker_ptr->flush(); ret.wait(); #else VLOG(0) << "FleetWrapper::ServerFlush does nothing when no pslib"; #endif } int FleetWrapper::RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler) { #ifdef PADDLE_WITH_PSLIB VLOG(3) << "calling FleetWrapper::RegisterClientToClientMsgHandler"; VLOG(3) << "pslib_ptr_=" << pslib_ptr_; VLOG(3) << "_worker_ptr=" << pslib_ptr_->_worker_ptr; return pslib_ptr_->_worker_ptr->registe_client2client_msg_handler(msg_type, handler); #else VLOG(0) << "FleetWrapper::RegisterClientToClientMsgHandler" << " does nothing when no pslib"; #endif return 0; } std::future FleetWrapper::SendClientToClientMsg( int msg_type, int to_client_id, const std::string& msg) { #ifdef PADDLE_WITH_PSLIB return pslib_ptr_->_worker_ptr->send_client2client_msg(msg_type, to_client_id, msg); #else VLOG(0) << "FleetWrapper::SendClientToClientMsg" << " does nothing when no pslib"; #endif return std::future(); } template void FleetWrapper::Serialize(const std::vector& t, std::string* str) { #ifdef PADDLE_WITH_PSLIB paddle::ps::BinaryArchive ar; for (size_t i = 0; i < t.size(); ++i) { ar << *(t[i]); } *str = std::string(ar.buffer(), ar.length()); #else VLOG(0) << "FleetWrapper::Serialize does nothing when no pslib"; #endif } template void FleetWrapper::Deserialize(std::vector* t, const std::string& str) { #ifdef PADDLE_WITH_PSLIB if (str.length() == 0) { return; } paddle::ps::BinaryArchive ar; ar.set_read_buffer(const_cast(str.c_str()), str.length(), nullptr); if (ar.cursor() == ar.finish()) { return; } while (ar.cursor() < ar.finish()) { t->push_back(ar.get()); } CHECK(ar.cursor() == ar.finish()); VLOG(3) << "Deserialize size " << t->size(); #else VLOG(0) << "FleetWrapper::Deserialize does nothing when no pslib"; #endif } std::default_random_engine& FleetWrapper::LocalRandomEngine() { struct engine_wrapper_t { std::default_random_engine engine; #ifdef PADDLE_WITH_PSLIB engine_wrapper_t() { struct timespec tp; clock_gettime(CLOCK_REALTIME, &tp); double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9; static std::atomic x(0); std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)}; engine.seed(sseq); } #endif }; thread_local engine_wrapper_t r; return r.engine; } template void FleetWrapper::Serialize>( const std::vector*>&, std::string*); template void FleetWrapper::Deserialize>( std::vector>*, const std::string&); } // end namespace framework } // end namespace paddle