# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import numpy as np def eval_MAP(pred, gt): map_value = 0.0 r = 0.0 c = list(zip(pred, gt)) random.shuffle(c) c = sorted(c, key=lambda x: x[0], reverse=True) for j, (p, g) in enumerate(c): if g != 0: r += 1 map_value += r / (j + 1.0) if r == 0: return 0.0 else: return map_value / r filename = './result.txt' f = open(filename, "r") lines = f.readlines() f.close() result = [] for line in lines: if "prediction" in str(line): result.append(line) result = result[:-1] f = open(filename, "w") for i in range(len(result)): f.write(str(result[i])) f.close() filename = './data/relation.test.fold1.txt' gt = [] qid = [] f = open(filename, "r") f.readline() num = 0 for line in f.readlines(): num = num + 1 line = line.strip().split() gt.append(int(line[0])) qid.append(line[1]) f.close() print(num) filename = './result.txt' pred = [] for line in open(filename): line = line.strip().split(",") line[3] = line[3].split(":") line = line[3][1].strip(" ") line = line.strip("[") line = line.strip("]") pred.append(float(line)) result_dict = {} for i in range(len(pred)): if qid[i] not in result_dict: result_dict[qid[i]] = [] result_dict[qid[i]].append([gt[i], pred[i]]) print(len(result_dict)) map = 0 for qid in result_dict: gt = np.array(result_dict[qid])[:, 0] pred = np.array(result_dict[qid])[:, 1] map += eval_MAP(pred, gt) map = map / len(result_dict) print("map=", map)