# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os from paddlerec.core.utils.envs import lazy_instance_by_fliename from paddlerec.core.utils.envs import get_global_env from paddlerec.core.utils.envs import get_runtime_environ from paddlerec.core.reader import SlotReader from paddlerec.core.trainer import EngineMode from paddlerec.core.utils.util import split_files, check_filelist def dataloader_by_name(readerclass, dataset_name, yaml_file, context, reader_class_name="Reader"): reader_class = lazy_instance_by_fliename(readerclass, reader_class_name) name = "dataset." + dataset_name + "." data_path = get_global_env(name + "data_path") if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) hidden_file_list, files = check_filelist( hidden_file_list=[], data_file_list=[], train_data_path=data_path) if (hidden_file_list is not None): print( "Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:{}". format(hidden_file_list)) files.sort() need_split_files = False if context["engine"] == EngineMode.LOCAL_CLUSTER: # for local cluster: split files for multi process need_split_files = True elif context["engine"] == EngineMode.CLUSTER and context[ "cluster_type"] == "K8S": # for k8s mount mode, split files for every node need_split_files = True print("need_split_files: {}".format(need_split_files)) if need_split_files: files = split_files(files, context["fleet"].worker_index(), context["fleet"].worker_num()) context["file_list"] = files reader = reader_class(yaml_file) reader.init() def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() if hasattr(reader, "batch_tensor_creator"): return reader.batch_tensor_creator(gen_reader) return gen_reader def slotdataloader_by_name(readerclass, dataset_name, yaml_file, context): name = "dataset." + dataset_name + "." reader_name = "SlotReader" data_path = get_global_env(name + "data_path") if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) hidden_file_list, files = check_filelist( hidden_file_list=[], data_file_list=[], train_data_path=data_path) if (hidden_file_list is not None): print( "Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:{}". format(hidden_file_list)) files.sort() need_split_files = False if context["engine"] == EngineMode.LOCAL_CLUSTER: # for local cluster: split files for multi process need_split_files = True elif context["engine"] == EngineMode.CLUSTER and context[ "cluster_type"] == "K8S": # for k8s mount mode, split files for every node need_split_files = True if need_split_files: files = split_files(files, context["fleet"].worker_index(), context["fleet"].worker_num()) context["file_list"] = files sparse = get_global_env(name + "sparse_slots", "#") if sparse == "": sparse = "#" dense = get_global_env(name + "dense_slots", "#") if dense == "": dense = "#" padding = get_global_env(name + "padding", 0) reader = SlotReader(yaml_file) reader.init(sparse, dense, int(padding)) def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader def slotdataloader(readerclass, train, yaml_file, context): if train == "TRAIN": reader_name = "SlotReader" namespace = "train.reader" data_path = get_global_env("train_data_path", None, namespace) else: reader_name = "SlotReader" namespace = "evaluate.reader" data_path = get_global_env("test_data_path", None, namespace) if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) hidden_file_list, files = check_filelist( hidden_file_list=[], data_file_list=[], train_data_path=data_path) if (hidden_file_list is not None): print( "Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:{}". format(hidden_file_list)) files.sort() need_split_files = False if context["engine"] == EngineMode.LOCAL_CLUSTER: # for local cluster: split files for multi process need_split_files = True elif context["engine"] == EngineMode.CLUSTER and context[ "cluster_type"] == "K8S": # for k8s mount mode, split files for every node need_split_files = True if need_split_files: files = split_files(files, context["fleet"].worker_index(), context["fleet"].worker_num()) context["file_list"] = files sparse = get_global_env("sparse_slots", "#", namespace) if sparse == "": sparse = "#" dense = get_global_env("dense_slots", "#", namespace) if dense == "": dense = "#" padding = get_global_env("padding", 0, namespace) reader = SlotReader(yaml_file) reader.init(sparse, dense, int(padding)) def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader