# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. train: trainer: # for cluster training strategy: "async" epochs: 2 workspace: "fleetrec.models.recall.tdm" reader: batch_size: 32 class: "{workspace}/tdm_reader.py" train_data_path: "{workspace}/data/train" test_data_path: "{workspace}/data/test" model: models: "{workspace}/model.py" hyper_parameters: node_emb_size: 64 input_emb_size: 768 neg_sampling_list: [1, 2, 3, 4] output_positive: True topK: 1 learning_rate: 0.0001 act: "tanh" optimizer: ADAM tree_parameters: max_layers: 4 node_nums: 26 leaf_node_nums: 13 layer_node_num_list: [2, 4, 7, 12] child_nums: 2 startup: tree: # 单机训练建议tree只load一次,保存为paddle tensor,之后从paddle模型热启 # 分布式训练trainer需要独立load load_tree: True tree_layer_path: "{workspace}/tree/layer_list.txt" tree_travel_path: "{workspace}/tree/travel_list.npy" tree_info_path: "{workspace}/tree/tree_info.npy" tree_emb_path: "{workspace}/tree/tree_emb.npy" single: load_persistables: False persistables_model_path: "" save_init_model: True init_model_path: "{workspace}/init_model" cluster: init_model_path: "{workspace}/init_model" save: increment: dirname: "increment" epoch_interval: 1 save_last: True inference: dirname: "inference" epoch_interval: 10 save_last: True evaluate: workspace: "fleetrec.models.recall.tdm" reader: batch_size: 1 class: "{workspace}/tdm_evaluate_reader.py" test_data_path: "{workspace}/data/test"