import paddle.fluid as fluid import math from fleetrec.core.utils import envs from fleetrec.core.model import Model as ModelBase import paddle.fluid as fluid import paddle.fluid.layers.nn as nn import paddle.fluid.layers.tensor as tensor import paddle.fluid.layers.control_flow as cf class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) def train_net(self): """ network definition """ data = fluid.data(name="input", shape=[None, max_len], dtype='int64') label = fluid.data(name="label", shape=[None, 1], dtype='int64') seq_len = fluid.data(name="seq_len", shape=[None], dtype='int64') # embedding layer emb = fluid.embedding(input=data, size=[dict_dim, emb_dim]) emb = fluid.layers.sequence_unpad(emb, length=seq_len) # convolution layer conv = fluid.nets.sequence_conv_pool( input=emb, num_filters=cnn_dim, filter_size=cnn_filter_size, act="tanh", pool_type="max") # full connect layer fc_1 = fluid.layers.fc(input=[conv], size=hid_dim) # softmax layer prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax") #if is_prediction: # return prediction cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) self.cost = avg_cost self.metrics["acc"] = cos_pos def get_cost_op(self): return self.cost def get_metrics(self): return self.metrics def optimizer(self): learning_rate = 0.01#envs.get_global_env("hyper_parameters.base_lr", None, self._namespace) sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=learning_rate) #sgd_optimizer.minimize(avg_cost) return sgd_optimizer def infer_net(self, parameter_list): self.train_net()