# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle.fluid as fluid from fleetrec.core.utils import envs from fleetrec.core.model import Model as ModelBase import numpy as np class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) def fc(self,tag, data, out_dim, active='prelu'): init_stddev = 1.0 scales = 1.0 / np.sqrt(data.shape[1]) p_attr = fluid.param_attr.ParamAttr(name='%s_weight' % tag, initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=init_stddev * scales)) b_attr = fluid.ParamAttr(name='%s_bias' % tag, initializer=fluid.initializer.Constant(0.1)) out = fluid.layers.fc(input=data, size=out_dim, act=active, param_attr=p_attr, bias_attr =b_attr, name=tag) return out def input_data(self): sparse_input_ids = [ fluid.data(name="field_" + str(i), shape=[-1, 1], dtype="int64", lod_level=1) for i in range(0,23) ] label_ctr = fluid.data(name="ctr", shape=[-1, 1], dtype="int64") label_cvr = fluid.data(name="cvr", shape=[-1, 1], dtype="int64") inputs = sparse_input_ids + [label_ctr] + [label_cvr] self._data_var.extend(inputs) return inputs def net(self, inputs): vocab_size = envs.get_global_env("hyper_parameters.vocab_size", None, self._namespace) embed_size = envs.get_global_env("hyper_parameters.embed_size", None, self._namespace) emb = [] for data in inputs[0:-2]: feat_emb = fluid.embedding(input=data, size=[vocab_size, embed_size], param_attr=fluid.ParamAttr(name='dis_emb', learning_rate=5, initializer=fluid.initializer.Xavier(fan_in=embed_size,fan_out=embed_size) ), is_sparse=True) field_emb = fluid.layers.sequence_pool(input=feat_emb,pool_type='sum') emb.append(field_emb) concat_emb = fluid.layers.concat(emb, axis=1) # ctr active = 'relu' ctr_fc1 = self.fc('ctr_fc1', concat_emb, 200, active) ctr_fc2 = self.fc('ctr_fc2', ctr_fc1, 80, active) ctr_out = self.fc('ctr_out', ctr_fc2, 2, 'softmax') # cvr cvr_fc1 = self.fc('cvr_fc1', concat_emb, 200, active) cvr_fc2 = self.fc('cvr_fc2', cvr_fc1, 80, active) cvr_out = self.fc('cvr_out', cvr_fc2, 2,'softmax') ctr_clk = inputs[-2] ctcvr_buy = inputs[-1] ctr_prop_one = fluid.layers.slice(ctr_out, axes=[1], starts=[1], ends=[2]) cvr_prop_one = fluid.layers.slice(cvr_out, axes=[1], starts=[1], ends=[2]) ctcvr_prop_one = fluid.layers.elementwise_mul(ctr_prop_one, cvr_prop_one) ctcvr_prop = fluid.layers.concat(input=[1-ctcvr_prop_one,ctcvr_prop_one], axis = 1) loss_ctr = fluid.layers.cross_entropy(input=ctr_out, label=ctr_clk) loss_ctcvr = fluid.layers.cross_entropy(input=ctcvr_prop, label=ctcvr_buy) cost = loss_ctr + loss_ctcvr avg_cost = fluid.layers.mean(cost) auc_ctr, batch_auc_ctr, auc_states_ctr = fluid.layers.auc(input=ctr_out, label=ctr_clk) auc_ctcvr, batch_auc_ctcvr, auc_states_ctcvr = fluid.layers.auc(input=ctcvr_prop, label=ctcvr_buy) self._cost = avg_cost self._metrics["AUC_ctr"] = auc_ctr self._metrics["BATCH_AUC_ctr"] = batch_auc_ctr self._metrics["AUC_ctcvr"] = auc_ctcvr self._metrics["BATCH_AUC_ctcvr"] = batch_auc_ctcvr def train_net(self): input_data = self.input_data() self.net(input_data) def infer_net(self): pass