# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training use fluid with one node only. """ from __future__ import print_function import os import time import numpy as np import logging import paddle.fluid as fluid from .transpiler_trainer import TranspileTrainer from ..utils import envs logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) class SingleTrainerWithDataloader(TranspileTrainer): pass class SingleTrainerWithDataset(TranspileTrainer): def processor_register(self): self.regist_context_processor('uninit', self.instance) self.regist_context_processor('init_pass', self.init) self.regist_context_processor('train_pass', self.train) self.regist_context_processor('infer_pass', self.infer) self.regist_context_processor('terminal_pass', self.terminal) def init(self, context): self.model.input() self.model.net() self.metrics = self.model.metrics() self.metric_extras = self.model.metric_extras() loss = self.model.avg_loss() optimizer = self.model.optimizer() optimizer.minimize(loss) context['status'] = 'train_pass' def train(self, context): # run startup program at once self.exe.run(fluid.default_startup_program()) dataset = self._get_dataset() epochs = envs.get_global_env("train.epochs") for i in range(epochs): self.exe.train_from_dataset(program=fluid.default_main_program(), dataset=dataset, fetch_list=self.metric_extras[0], fetch_info=self.metric_extras[1], print_period=self.metric_extras[2]) self.save(i, "train", is_fleet=False) context['status'] = 'infer_pass' def infer(self, context): context['status'] = 'terminal_pass' def terminal(self, context): for model in self.increment_models: print("epoch :{}, dir: {}".format(model[0], model[1])) context['is_exit'] = True