train: trainer: # for cluster training strategy: "async" epochs: 10 workspace: "paddlerec.models.rank.dnn" reader: batch_size: 512 class: "{workspace}/../criteo_reader.py" train_data_path: "train_data" reader_debug_mode: False model: models: "{workspace}/model.py" hyper_parameters: sparse_inputs_slots: 27 sparse_feature_number: 1000001 sparse_feature_dim: 10 dense_input_dim: 13 fc_sizes: [400, 400, 400] learning_rate: 0.0001 optimizer: adam save: increment: dirname: "increment" epoch_interval: 2 save_last: True inference: dirname: "inference" epoch_interval: 4 save_last: True