# -*- coding=utf-8 -*- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training use fluid with one node only. """ from __future__ import print_function import logging import paddle.fluid as fluid from paddlerec.core.trainers.transpiler_trainer import TranspileTrainer from paddlerec.core.trainers.single_trainer import SingleTrainer from paddlerec.core.utils import envs import numpy as np logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) special_param = ["TDM_Tree_Travel", "TDM_Tree_Layer", "TDM_Tree_Info", "TDM_Tree_Emb"] class TDMSingleTrainer(SingleTrainer): def startup(self, context): namespace = "train.startup" load_persistables = envs.get_global_env( "single.load_persistables", False, namespace) persistables_model_path = envs.get_global_env( "single.persistables_model_path", "", namespace) load_tree = envs.get_global_env( "tree.load_tree", False, namespace) self.tree_layer_path = envs.get_global_env( "tree.tree_layer_path", "", namespace) self.tree_travel_path = envs.get_global_env( "tree.tree_travel_path", "", namespace) self.tree_info_path = envs.get_global_env( "tree.tree_info_path", "", namespace) self.tree_emb_path = envs.get_global_env( "tree.tree_emb_path", "", namespace) save_init_model = envs.get_global_env( "single.save_init_model", False, namespace) init_model_path = envs.get_global_env( "single.init_model_path", "", namespace) self._exe.run(fluid.default_startup_program()) if load_persistables: # 从paddle二进制模型加载参数 fluid.io.load_persistables( executor=self._exe, dirname=persistables_model_path, main_program=fluid.default_main_program()) logger.info("Load persistables from \"{}\"".format( persistables_model_path)) if load_tree: # 将明文树结构及数据,set到组网中的Variale中 # 不使用NumpyInitialize方法是考虑到树结构相关数据size过大,有性能风险 for param_name in special_param: param_t = fluid.global_scope().find_var(param_name).get_tensor() param_array = self.tdm_prepare(param_name) if param_name == 'TDM_Tree_Emb': param_t.set(param_array.astype('float32'), self._place) else: param_t.set(param_array.astype('int32'), self._place) if save_init_model: logger.info("Begin Save Init model.") fluid.io.save_persistables( executor=self._exe, dirname=init_model_path) logger.info("End Save Init model.") context['status'] = 'train_pass' def tdm_prepare(self, param_name): if param_name == "TDM_Tree_Travel": travel_array = self.tdm_travel_prepare() return travel_array elif param_name == "TDM_Tree_Layer": layer_array, _ = self.tdm_layer_prepare() return layer_array elif param_name == "TDM_Tree_Info": info_array = self.tdm_info_prepare() return info_array elif param_name == "TDM_Tree_Emb": emb_array = self.tdm_emb_prepare() return emb_array else: raise " {} is not a special tdm param name".format(param_name) def tdm_travel_prepare(self): """load tdm tree param from npy/list file""" travel_array = np.load(self.tree_travel_path) logger.info("TDM Tree leaf node nums: {}".format( travel_array.shape[0])) return travel_array def tdm_emb_prepare(self): """load tdm tree param from npy/list file""" emb_array = np.load(self.tree_emb_path) logger.info("TDM Tree node nums from emb: {}".format( emb_array.shape[0])) return emb_array def tdm_layer_prepare(self): """load tdm tree param from npy/list file""" layer_list = [] layer_list_flat = [] with open(self.tree_layer_path, 'r') as fin: for line in fin.readlines(): l = [] layer = (line.split('\n'))[0].split(',') for node in layer: if node: layer_list_flat.append(node) l.append(node) layer_list.append(l) layer_array = np.array(layer_list_flat) layer_array = layer_array.reshape([-1, 1]) logger.info("TDM Tree max layer: {}".format(len(layer_list))) logger.info("TDM Tree layer_node_num_list: {}".format( [len(i) for i in layer_list])) return layer_array, layer_list def tdm_info_prepare(self): """load tdm tree param from list file""" info_array = np.load(self.tree_info_path) return info_array