Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
f145df7b
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f145df7b
编写于
9月 21, 2020
作者:
Y
yinhaofeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fm add data
上级
3b0a9cf5
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
257 addition
and
0 deletion
+257
-0
models/rank/fm/data/download_preprocess.py
models/rank/fm/data/download_preprocess.py
+39
-0
models/rank/fm/data/get_slot_data.py
models/rank/fm/data/get_slot_data.py
+91
-0
models/rank/fm/data/preprocess.py
models/rank/fm/data/preprocess.py
+114
-0
models/rank/fm/data/run.sh
models/rank/fm/data/run.sh
+13
-0
未找到文件。
models/rank/fm/data/download_preprocess.py
0 → 100644
浏览文件 @
f145df7b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
shutil
import
sys
LOCAL_PATH
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
TOOLS_PATH
=
os
.
path
.
join
(
LOCAL_PATH
,
".."
,
".."
,
"tools"
)
sys
.
path
.
append
(
TOOLS_PATH
)
from
paddlerec.tools.tools
import
download_file_and_uncompress
,
download_file
if
__name__
==
'__main__'
:
url
=
"https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz"
url2
=
"https://paddlerec.bj.bcebos.com/deepfm%2Ffeat_dict_10.pkl2"
print
(
"download and extract starting..."
)
download_file_and_uncompress
(
url
)
download_file
(
url2
,
"./deepfm%2Ffeat_dict_10.pkl2"
,
True
)
print
(
"download and extract finished"
)
print
(
"preprocessing..."
)
os
.
system
(
"python preprocess.py"
)
print
(
"preprocess done"
)
shutil
.
rmtree
(
"raw_data"
)
print
(
"done"
)
models/rank/fm/data/get_slot_data.py
0 → 100644
浏览文件 @
f145df7b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddlerec.core.utils
import
envs
import
paddle.fluid.incubate.data_generator
as
dg
try
:
import
cPickle
as
pickle
except
ImportError
:
import
pickle
class
Reader
(
dg
.
MultiSlotDataGenerator
):
def
__init__
(
self
,
config
):
dg
.
MultiSlotDataGenerator
.
__init__
(
self
)
_config
=
envs
.
load_yaml
(
config
)
def
init
(
self
):
self
.
cont_min_
=
[
0
,
-
3
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]
self
.
cont_max_
=
[
5775
,
257675
,
65535
,
969
,
23159456
,
431037
,
56311
,
6047
,
29019
,
46
,
231
,
4008
,
7393
]
self
.
cont_diff_
=
[
self
.
cont_max_
[
i
]
-
self
.
cont_min_
[
i
]
for
i
in
range
(
len
(
self
.
cont_min_
))
]
self
.
continuous_range_
=
range
(
1
,
14
)
self
.
categorical_range_
=
range
(
14
,
40
)
# load preprocessed feature dict
self
.
feat_dict_name
=
"sample_data/feat_dict_10.pkl2"
self
.
feat_dict_
=
pickle
.
load
(
open
(
self
.
feat_dict_name
,
'rb'
))
def
_process_line
(
self
,
line
):
features
=
line
.
rstrip
(
'
\n
'
).
split
(
'
\t
'
)
feat_idx
=
[]
feat_value
=
[]
for
idx
in
self
.
continuous_range_
:
if
features
[
idx
]
==
''
:
feat_idx
.
append
(
0
)
feat_value
.
append
(
0.0
)
else
:
feat_idx
.
append
(
self
.
feat_dict_
[
idx
])
feat_value
.
append
(
(
float
(
features
[
idx
])
-
self
.
cont_min_
[
idx
-
1
])
/
self
.
cont_diff_
[
idx
-
1
])
for
idx
in
self
.
categorical_range_
:
if
features
[
idx
]
==
''
or
features
[
idx
]
not
in
self
.
feat_dict_
:
feat_idx
.
append
(
0
)
feat_value
.
append
(
0.0
)
else
:
feat_idx
.
append
(
self
.
feat_dict_
[
features
[
idx
]])
feat_value
.
append
(
1.0
)
label
=
[
int
(
features
[
0
])]
return
feat_idx
,
feat_value
,
label
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
data_iter
():
feat_idx
,
feat_value
,
label
=
self
.
_process_line
(
line
)
s
=
""
for
i
in
[(
'feat_idx'
,
feat_idx
),
(
'feat_value'
,
feat_value
),
(
'label'
,
label
)]:
k
=
i
[
0
]
v
=
i
[
1
]
for
j
in
v
:
s
+=
" "
+
k
+
":"
+
str
(
j
)
print
(
s
.
strip
())
yield
None
return
data_iter
reader
=
Reader
(
"../config.yaml"
)
# run this file in original folder to find config.yaml
reader
.
init
()
reader
.
run_from_stdin
()
models/rank/fm/data/preprocess.py
0 → 100644
浏览文件 @
f145df7b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
numpy
from
collections
import
Counter
import
shutil
import
pickle
def
get_raw_data
():
if
not
os
.
path
.
isdir
(
'raw_data'
):
os
.
mkdir
(
'raw_data'
)
fin
=
open
(
'train.txt'
,
'r'
)
fout
=
open
(
'raw_data/part-0'
,
'w'
)
for
line_idx
,
line
in
enumerate
(
fin
):
if
line_idx
%
200000
==
0
and
line_idx
!=
0
:
fout
.
close
()
cur_part_idx
=
int
(
line_idx
/
200000
)
fout
=
open
(
'raw_data/part-'
+
str
(
cur_part_idx
),
'w'
)
fout
.
write
(
line
)
fout
.
close
()
fin
.
close
()
def
split_data
():
split_rate_
=
0.9
dir_train_file_idx_
=
'aid_data/train_file_idx.txt'
filelist_
=
[
'raw_data/part-%d'
%
x
for
x
in
range
(
len
(
os
.
listdir
(
'raw_data'
)))
]
if
not
os
.
path
.
exists
(
dir_train_file_idx_
):
train_file_idx
=
list
(
numpy
.
random
.
choice
(
len
(
filelist_
),
int
(
len
(
filelist_
)
*
split_rate_
),
False
))
with
open
(
dir_train_file_idx_
,
'w'
)
as
fout
:
fout
.
write
(
str
(
train_file_idx
))
else
:
with
open
(
dir_train_file_idx_
,
'r'
)
as
fin
:
train_file_idx
=
eval
(
fin
.
read
())
for
idx
in
range
(
len
(
filelist_
)):
if
idx
in
train_file_idx
:
shutil
.
move
(
filelist_
[
idx
],
'train_data'
)
else
:
shutil
.
move
(
filelist_
[
idx
],
'test_data'
)
def
get_feat_dict
():
freq_
=
10
dir_feat_dict_
=
'aid_data/feat_dict_'
+
str
(
freq_
)
+
'.pkl2'
continuous_range_
=
range
(
1
,
14
)
categorical_range_
=
range
(
14
,
40
)
if
not
os
.
path
.
exists
(
dir_feat_dict_
):
# Count the number of occurrences of discrete features
feat_cnt
=
Counter
()
with
open
(
'train.txt'
,
'r'
)
as
fin
:
for
line_idx
,
line
in
enumerate
(
fin
):
if
line_idx
%
100000
==
0
:
print
(
'generating feature dict'
,
line_idx
/
45000000
)
features
=
line
.
rstrip
(
'
\n
'
).
split
(
'
\t
'
)
for
idx
in
categorical_range_
:
if
features
[
idx
]
==
''
:
continue
feat_cnt
.
update
([
features
[
idx
]])
# Only retain discrete features with high frequency
dis_feat_set
=
set
()
for
feat
,
ot
in
feat_cnt
.
items
():
if
ot
>=
freq_
:
dis_feat_set
.
add
(
feat
)
# Create a dictionary for continuous and discrete features
feat_dict
=
{}
tc
=
1
# Continuous features
for
idx
in
continuous_range_
:
feat_dict
[
idx
]
=
tc
tc
+=
1
for
feat
in
dis_feat_set
:
feat_dict
[
feat
]
=
tc
tc
+=
1
# Save dictionary
with
open
(
dir_feat_dict_
,
'wb'
)
as
fout
:
pickle
.
dump
(
feat_dict
,
fout
,
protocol
=
2
)
print
(
'args.num_feat '
,
len
(
feat_dict
)
+
1
)
if
__name__
==
'__main__'
:
if
not
os
.
path
.
isdir
(
'train_data'
):
os
.
mkdir
(
'train_data'
)
if
not
os
.
path
.
isdir
(
'test_data'
):
os
.
mkdir
(
'test_data'
)
if
not
os
.
path
.
isdir
(
'aid_data'
):
os
.
mkdir
(
'aid_data'
)
get_raw_data
()
split_data
()
get_feat_dict
()
print
(
'Done!'
)
models/rank/fm/data/run.sh
0 → 100644
浏览文件 @
f145df7b
python download_preprocess.py
mv
./deepfm%2Ffeat_dict_10.pkl2 sample_data/feat_dict_10.pkl2
mkdir
slot_train_data
for
i
in
`
ls
./train_data
`
do
cat
train_data/
$i
| python get_slot_data.py
>
slot_train_data/
$i
done
mkdir
slot_test_data
for
i
in
`
ls
./test_data
`
do
cat
test_data/
$i
| python get_slot_data.py
>
slot_test_data/
$i
done
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录