Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
af3dad94
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
af3dad94
编写于
4月 10, 2020
作者:
T
tangwei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
code fix
上级
47720eac
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
75 addition
and
69 deletion
+75
-69
fleetrec/models/base.py
fleetrec/models/base.py
+6
-2
fleetrec/models/ctr_dnn/model.py
fleetrec/models/ctr_dnn/model.py
+27
-30
fleetrec/trainer/cluster_trainer.py
fleetrec/trainer/cluster_trainer.py
+17
-18
fleetrec/trainer/ctr_trainer.py
fleetrec/trainer/ctr_trainer.py
+0
-4
fleetrec/trainer/single_trainer.py
fleetrec/trainer/single_trainer.py
+17
-11
fleetrec/trainer/trainer.py
fleetrec/trainer/trainer.py
+8
-4
未找到文件。
fleetrec/models/base.py
浏览文件 @
af3dad94
...
...
@@ -85,7 +85,7 @@ class Model(object):
self
.
_cost
=
None
self
.
_metrics
=
{}
self
.
_data_var
=
[]
pass
self
.
_fetch_interval
=
10
def
get_cost_op
(
self
):
"""R
...
...
@@ -97,6 +97,9 @@ class Model(object):
"""
return
self
.
_metrics
def
get_fetch_period
(
self
):
return
self
.
_fetch_interval
@
abc
.
abstractmethod
def
shrink
(
self
,
params
):
"""R
...
...
@@ -169,6 +172,7 @@ class Model(object):
class
YamlModel
(
Model
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
...
...
@@ -218,7 +222,7 @@ class YamlModel(Model):
inference_param
=
extend_output
[
'inference_param'
]
param_name
=
inference_param
[
'name'
]
if
param_name
not
in
self
.
_build_param
[
'table'
]:
self
.
_build_param
[
'table'
][
param_name
]
=
{
'params'
:
[]}
self
.
_build_param
[
'table'
][
param_name
]
=
{
'params'
:
[]}
table_meta
=
table
.
TableMeta
.
alloc_new_table
(
inference_param
[
'table_id'
])
self
.
_build_param
[
'table'
][
param_name
][
'_meta'
]
=
table_meta
self
.
_build_param
[
'table'
][
param_name
][
'params'
]
+=
inference_param
[
'params'
]
...
...
fleetrec/models/ctr_dnn/model.py
浏览文件 @
af3dad94
...
...
@@ -16,24 +16,17 @@ import math
import
paddle.fluid
as
fluid
from
fleetrec.utils
import
envs
from
fleetrec.models.base
import
Model
class
Train
(
object
):
def
__init__
(
self
):
self
.
sparse_inputs
=
[]
self
.
dense_input
=
None
self
.
label_input
=
None
self
.
sparse_input_varnames
=
[]
self
.
dense_input_varname
=
None
self
.
label_input_varname
=
None
class
Train
(
Model
):
def
__init__
(
self
,
config
):
super
().
__init__
(
config
)
self
.
namespace
=
"train.model"
def
input
(
self
):
def
sparse_inputs
():
ids
=
envs
.
get_global_env
(
"hyper_parameters.sparse_inputs_slots"
,
None
,
self
.
namespace
)
ids
=
envs
.
get_global_env
(
"hyper_parameters.sparse_inputs_slots"
,
None
,
self
.
namespace
)
sparse_input_ids
=
[
fluid
.
layers
.
data
(
name
=
"C"
+
str
(
i
),
...
...
@@ -44,7 +37,7 @@ class Train(object):
return
sparse_input_ids
,
[
var
.
name
for
var
in
sparse_input_ids
]
def
dense_input
():
dim
=
envs
.
get_global_env
(
"hyper_parameters.dense_input_dim"
,
None
,
self
.
namespace
)
dim
=
envs
.
get_global_env
(
"hyper_parameters.dense_input_dim"
,
None
,
self
.
namespace
)
dense_input_var
=
fluid
.
layers
.
data
(
name
=
"dense_input"
,
shape
=
[
dim
],
...
...
@@ -65,10 +58,10 @@ class Train(object):
def
input_varnames
(
self
):
return
[
input
.
name
for
input
in
self
.
input_vars
()]
def
net
(
self
):
def
build_model
(
self
):
def
embedding_layer
(
input
):
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
namespace
)
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
namespace
)
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
namespace
)
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
namespace
)
emb
=
fluid
.
layers
.
embedding
(
input
=
input
,
...
...
@@ -94,7 +87,7 @@ class Train(object):
concated
=
fluid
.
layers
.
concat
(
sparse_embed_seq
+
[
self
.
dense_input
],
axis
=
1
)
fcs
=
[
concated
]
hidden_layers
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
,
None
,
self
.
namespace
)
hidden_layers
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
,
None
,
self
.
namespace
)
for
size
in
hidden_layers
:
fcs
.
append
(
fc
(
fcs
[
-
1
],
size
))
...
...
@@ -111,30 +104,34 @@ class Train(object):
def
avg_loss
(
self
):
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
self
.
predict
,
label
=
self
.
label_input
)
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
self
.
loss
=
avg_cost
return
avg_cost
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
_cost
=
avg_cost
def
metrics
(
self
):
auc
,
batch_auc
,
_
=
fluid
.
layers
.
auc
(
input
=
self
.
predict
,
label
=
self
.
label_input
,
num_thresholds
=
2
**
12
,
slide_steps
=
20
)
self
.
metrics
=
(
auc
,
batch_auc
)
return
self
.
metrics
def
metric_extras
(
self
):
self
.
metric_vars
=
[
self
.
metrics
[
0
]]
self
.
metric_alias
=
[
"AUC"
]
self
.
fetch_interval_batchs
=
10
return
(
self
.
metric_vars
,
self
.
metric_alias
,
self
.
fetch_interval_batchs
)
self
.
_metrics
[
"AUC"
]
=
auc
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
namespace
)
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
,
lazy_mode
=
True
)
return
optimizer
def
dump_model_program
(
self
,
path
):
pass
def
dump_inference_param
(
self
,
params
):
pass
def
dump_inference_program
(
self
,
inference_layer
,
path
):
pass
def
shrink
(
self
,
params
):
pass
class
Evaluate
(
object
):
def
input
(
self
):
...
...
fleetrec/trainer/cluster_trainer.py
浏览文件 @
af3dad94
...
...
@@ -70,24 +70,27 @@ class ClusterTrainerWithDataset(TranspileTrainer):
return
strategy
def
init
(
self
,
context
):
print
(
"init pass"
)
self
.
model
.
input
()
self
.
model
.
net
()
self
.
metrics
=
self
.
model
.
metrics
()
self
.
metric_extras
=
self
.
model
.
metric_extras
()
loss
=
self
.
model
.
avg_loss
()
self
.
model
.
metrics
()
self
.
model
.
avg_loss
()
optimizer
=
self
.
model
.
optimizer
()
strategy
=
self
.
build_strategy
()
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
)
optimizer
.
minimize
(
loss
)
optimizer
.
minimize
(
self
.
model
.
_cost
)
if
fleet
.
is_server
():
context
[
'status'
]
=
'server_pass'
else
:
self
.
fetch_vars
=
[]
self
.
fetch_alias
=
[]
self
.
fetch_period
=
self
.
model
.
get_fetch_period
()
metrics
=
self
.
model
.
get_metrics
()
if
metrics
:
self
.
fetch_vars
=
metrics
.
values
()
self
.
fetch_alias
=
metrics
.
keys
()
context
[
'status'
]
=
'train_pass'
def
server
(
self
,
context
):
...
...
@@ -95,23 +98,19 @@ class ClusterTrainerWithDataset(TranspileTrainer):
fleet
.
run_server
()
context
[
'is_exit'
]
=
True
def
terminal
(
self
,
context
):
fleet
.
stop_worker
()
context
[
'is_exit'
]
=
True
def
train
(
self
,
context
):
self
.
exe
.
run
(
fleet
.
startup_program
)
self
.
_
exe
.
run
(
fleet
.
startup_program
)
fleet
.
init_worker
()
dataset
=
self
.
_get_dataset
()
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
for
i
in
range
(
epochs
):
self
.
exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
self
.
_
exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
self
.
metric_extras
[
0
]
,
fetch_info
=
self
.
metric_extras
[
1
]
,
print_period
=
self
.
metric_extras
[
2
]
)
fetch_list
=
self
.
fetch_vars
,
fetch_info
=
self
.
fetch_alias
,
print_period
=
self
.
fetch_period
)
self
.
save
(
i
,
"train"
,
is_fleet
=
True
)
context
[
'status'
]
=
'infer_pass'
fleet
.
stop_worker
()
...
...
fleetrec/trainer/ctr_trainer.py
浏览文件 @
af3dad94
...
...
@@ -82,10 +82,6 @@ class CtrPaddleTrainer(Trainer):
config
[
'output_path'
]
=
util
.
get_absolute_path
(
config
[
'output_path'
],
config
[
'io'
][
'afs'
])
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
self
.
_exector_context
=
{}
self
.
global_config
=
config
self
.
_metrics
=
{}
...
...
fleetrec/trainer/single_trainer.py
浏览文件 @
af3dad94
...
...
@@ -46,29 +46,35 @@ class SingleTrainerWithDataset(TranspileTrainer):
def
init
(
self
,
context
):
self
.
model
.
input
()
self
.
model
.
net
()
self
.
metrics
=
self
.
model
.
metrics
()
self
.
metric_extras
=
self
.
model
.
metric_extras
()
loss
=
self
.
model
.
avg_loss
()
self
.
model
.
metrics
()
self
.
model
.
avg_loss
()
optimizer
=
self
.
model
.
optimizer
()
optimizer
.
minimize
(
loss
)
optimizer
.
minimize
(
self
.
model
.
_cost
)
self
.
fetch_vars
=
[]
self
.
fetch_alias
=
[]
self
.
fetch_period
=
self
.
model
.
get_fetch_period
()
metrics
=
self
.
model
.
get_metrics
()
if
metrics
:
self
.
fetch_vars
=
metrics
.
values
()
self
.
fetch_alias
=
metrics
.
keys
()
context
[
'status'
]
=
'train_pass'
def
train
(
self
,
context
):
# run startup program at once
self
.
exe
.
run
(
fluid
.
default_startup_program
())
self
.
_
exe
.
run
(
fluid
.
default_startup_program
())
dataset
=
self
.
_get_dataset
()
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
for
i
in
range
(
epochs
):
self
.
exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
self
.
_
exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
self
.
metric_extras
[
0
]
,
fetch_info
=
self
.
metric_extras
[
1
]
,
print_period
=
self
.
metric_extras
[
2
]
)
fetch_list
=
self
.
fetch_vars
,
fetch_info
=
self
.
fetch_alias
,
print_period
=
self
.
fetch_period
)
self
.
save
(
i
,
"train"
,
is_fleet
=
False
)
context
[
'status'
]
=
'infer_pass'
...
...
fleetrec/trainer/trainer.py
浏览文件 @
af3dad94
...
...
@@ -15,8 +15,9 @@
import
abc
import
time
import
yaml
from
paddle
import
fluid
from
..
utils
import
envs
from
..utils
import
envs
class
Trainer
(
object
):
...
...
@@ -26,6 +27,9 @@ class Trainer(object):
def
__init__
(
self
,
config
=
None
):
self
.
_status_processor
=
{}
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
self
.
_exector_context
=
{}
self
.
_context
=
{
'status'
:
'uninit'
,
'is_exit'
:
False
}
def
regist_context_processor
(
self
,
status_name
,
processor
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录