From 9c0b0a06aeb56b653a99a7eae1ef132ace9b78a3 Mon Sep 17 00:00:00 2001 From: seiriosPlus Date: Mon, 7 Sep 2020 10:49:25 +0800 Subject: [PATCH] fix online runer --- models/demo/online_learning/README.md | 261 ------------------ models/demo/online_learning/backend.yaml | 63 ----- models/demo/online_learning/config.yaml | 4 +- .../online_learning/online_learning_runner.py | 42 --- 4 files changed, 2 insertions(+), 368 deletions(-) delete mode 100644 models/demo/online_learning/README.md delete mode 100644 models/demo/online_learning/backend.yaml diff --git a/models/demo/online_learning/README.md b/models/demo/online_learning/README.md deleted file mode 100644 index 9656adc6..00000000 --- a/models/demo/online_learning/README.md +++ /dev/null @@ -1,261 +0,0 @@ -# 基于DNN模型的点击率预估模型 - -## 介绍 -`CTR(Click Through Rate)`,即点击率,是“推荐系统/计算广告”等领域的重要指标,对其进行预估是商品推送/广告投放等决策的基础。简单来说,CTR预估对每次广告的点击情况做出预测,预测用户是点击还是不点击。CTR预估模型综合考虑各种因素、特征,在大量历史数据上训练,最终对商业决策提供帮助。本模型实现了下述论文中提出的DNN模型: - -```text -@inproceedings{guo2017deepfm, - title={DeepFM: A Factorization-Machine based Neural Network for CTR Prediction}, - author={Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li and Xiuqiang He}, - booktitle={the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI)}, - pages={1725--1731}, - year={2017} -} -``` - -# -## 数据准备 -### 数据来源 -训练及测试数据集选用[Display Advertising Challenge](https://www.kaggle.com/c/criteo-display-ad-challenge/)所用的Criteo数据集。该数据集包括两部分:训练集和测试集。训练集包含一段时间内Criteo的部分流量,测试集则对应训练数据后一天的广告点击流量。 -每一行数据格式如下所示: -```bash -