Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
8d442864
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8d442864
编写于
8月 18, 2020
作者:
W
wuzhihua
提交者:
GitHub
8月 18, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'master' into vslyu-fixhidefiles
上级
d229f76f
d4a280b5
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
388 addition
and
4 deletion
+388
-4
README.md
README.md
+1
-0
core/factory.py
core/factory.py
+13
-0
core/trainers/finetuning_trainer.py
core/trainers/finetuning_trainer.py
+140
-0
core/trainers/framework/network.py
core/trainers/framework/network.py
+83
-1
core/trainers/framework/startup.py
core/trainers/framework/startup.py
+121
-1
doc/pre_train_model.md
doc/pre_train_model.md
+15
-0
models/rank/dnn/config.yaml
models/rank/dnn/config.yaml
+0
-1
run.py
run.py
+15
-1
未找到文件。
README.md
浏览文件 @
8d442864
...
...
@@ -147,6 +147,7 @@ python -m paddlerec.run -m models/rank/dnn/config.yaml
*
[
启动分布式训练
](
doc/distributed_train.md
)
*
[
启动预测
](
doc/predict.md
)
*
[
快速部署
](
doc/serving.md
)
*
[
预训练模型
](
doc/pre_train_model.md
)
### 进阶教程
...
...
core/factory.py
浏览文件 @
8d442864
...
...
@@ -22,6 +22,19 @@ trainers = {}
def
trainer_registry
():
trainers
[
"SingleTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"single_trainer.py"
)
trainers
[
"ClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"cluster_trainer.py"
)
trainers
[
"CtrCodingTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"ctr_coding_trainer.py"
)
trainers
[
"CtrModulTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"ctr_modul_trainer.py"
)
trainers
[
"TDMSingleTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"tdm_single_trainer.py"
)
trainers
[
"TDMClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"tdm_cluster_trainer.py"
)
trainers
[
"OnlineLearningTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"online_learning_trainer.py"
)
# Definition of procedure execution process
trainers
[
"CtrCodingTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"ctr_coding_trainer.py"
)
...
...
core/trainers/finetuning_trainer.py
0 → 100644
浏览文件 @
8d442864
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
General Trainer, applicable to many situations: Single/Cluster/Local_Cluster + PS/COLLECTIVE
"""
from
__future__
import
print_function
import
os
from
paddlerec.core.utils
import
envs
from
paddlerec.core.trainer
import
Trainer
,
EngineMode
,
FleetMode
class
FineTuningTrainer
(
Trainer
):
"""
Trainer for various situations
"""
def
__init__
(
self
,
config
=
None
):
Trainer
.
__init__
(
self
,
config
)
self
.
processor_register
()
self
.
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
self
.
runner_env_name
=
"runner."
+
self
.
_context
[
"runner_name"
]
def
processor_register
(
self
):
print
(
"processor_register begin"
)
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'network_pass'
,
self
.
network
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
runner
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
instance_class_path
=
envs
.
get_global_env
(
self
.
runner_env_name
+
".instance_class_path"
,
default_value
=
None
)
if
instance_class_path
:
instance_class
=
envs
.
lazy_instance_by_fliename
(
instance_class_path
,
"Instance"
)(
context
)
else
:
if
self
.
engine
==
EngineMode
.
SINGLE
:
instance_class_name
=
"SingleInstance"
else
:
raise
ValueError
(
"FineTuningTrainer can only support SingleTraining."
)
instance_path
=
os
.
path
.
join
(
self
.
abs_dir
,
"framework"
,
"instance.py"
)
instance_class
=
envs
.
lazy_instance_by_fliename
(
instance_path
,
instance_class_name
)(
context
)
instance_class
.
instance
(
context
)
def
network
(
self
,
context
):
network_class_path
=
envs
.
get_global_env
(
self
.
runner_env_name
+
".network_class_path"
,
default_value
=
None
)
if
network_class_path
:
network_class
=
envs
.
lazy_instance_by_fliename
(
network_class_path
,
"Network"
)(
context
)
else
:
if
self
.
engine
==
EngineMode
.
SINGLE
:
network_class_name
=
"FineTuningNetwork"
else
:
raise
ValueError
(
"FineTuningTrainer can only support SingleTraining."
)
network_path
=
os
.
path
.
join
(
self
.
abs_dir
,
"framework"
,
"network.py"
)
network_class
=
envs
.
lazy_instance_by_fliename
(
network_path
,
network_class_name
)(
context
)
network_class
.
build_network
(
context
)
def
startup
(
self
,
context
):
startup_class_path
=
envs
.
get_global_env
(
self
.
runner_env_name
+
".startup_class_path"
,
default_value
=
None
)
if
startup_class_path
:
startup_class
=
envs
.
lazy_instance_by_fliename
(
startup_class_path
,
"Startup"
)(
context
)
else
:
if
self
.
engine
==
EngineMode
.
SINGLE
and
not
context
[
"is_infer"
]:
startup_class_name
=
"FineTuningStartup"
else
:
raise
ValueError
(
"FineTuningTrainer can only support SingleTraining."
)
startup_path
=
os
.
path
.
join
(
self
.
abs_dir
,
"framework"
,
"startup.py"
)
startup_class
=
envs
.
lazy_instance_by_fliename
(
startup_path
,
startup_class_name
)(
context
)
startup_class
.
startup
(
context
)
def
runner
(
self
,
context
):
runner_class_path
=
envs
.
get_global_env
(
self
.
runner_env_name
+
".runner_class_path"
,
default_value
=
None
)
if
runner_class_path
:
runner_class
=
envs
.
lazy_instance_by_fliename
(
runner_class_path
,
"Runner"
)(
context
)
else
:
if
self
.
engine
==
EngineMode
.
SINGLE
and
not
context
[
"is_infer"
]:
runner_class_name
=
"SingleRunner"
else
:
raise
ValueError
(
"FineTuningTrainer can only support SingleTraining."
)
runner_path
=
os
.
path
.
join
(
self
.
abs_dir
,
"framework"
,
"runner.py"
)
runner_class
=
envs
.
lazy_instance_by_fliename
(
runner_path
,
runner_class_name
)(
context
)
runner_class
.
run
(
context
)
def
terminal
(
self
,
context
):
terminal_class_path
=
envs
.
get_global_env
(
self
.
runner_env_name
+
".terminal_class_path"
,
default_value
=
None
)
if
terminal_class_path
:
terminal_class
=
envs
.
lazy_instance_by_fliename
(
terminal_class_path
,
"Terminal"
)(
context
)
terminal_class
.
terminal
(
context
)
else
:
terminal_class_name
=
"TerminalBase"
if
self
.
engine
!=
EngineMode
.
SINGLE
and
self
.
fleet_mode
!=
FleetMode
.
COLLECTIVE
:
terminal_class_name
=
"PSTerminal"
terminal_path
=
os
.
path
.
join
(
self
.
abs_dir
,
"framework"
,
"terminal.py"
)
terminal_class
=
envs
.
lazy_instance_by_fliename
(
terminal_path
,
terminal_class_name
)(
context
)
terminal_class
.
terminal
(
context
)
context
[
'is_exit'
]
=
True
core/trainers/framework/network.py
浏览文件 @
8d442864
...
...
@@ -23,7 +23,7 @@ from paddlerec.core.trainers.framework.dataset import DataLoader, QueueDataset
__all__
=
[
"NetworkBase"
,
"SingleNetwork"
,
"PSNetwork"
,
"PslibNetwork"
,
"CollectiveNetwork"
"CollectiveNetwork"
,
"FineTuningNetwork"
]
...
...
@@ -109,6 +109,88 @@ class SingleNetwork(NetworkBase):
context
[
"status"
]
=
"startup_pass"
class
FineTuningNetwork
(
NetworkBase
):
"""R
"""
def
__init__
(
self
,
context
):
print
(
"Running FineTuningNetwork."
)
def
build_network
(
self
,
context
):
context
[
"model"
]
=
{}
for
model_dict
in
context
[
"phases"
]:
context
[
"model"
][
model_dict
[
"name"
]]
=
{}
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
dataset_name
=
model_dict
[
"dataset_name"
]
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
model_path
=
envs
.
os_path_adapter
(
envs
.
workspace_adapter
(
model_dict
[
"model"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
context
[
"env"
])
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
model
.
_init_dataloader
(
is_infer
=
context
[
"is_infer"
])
data_loader
=
DataLoader
(
context
)
data_loader
.
get_dataloader
(
context
,
dataset_name
,
model
.
_data_loader
)
model
.
net
(
model
.
_data_var
,
context
[
"is_infer"
])
finetuning_varnames
=
envs
.
get_global_env
(
"runner."
+
context
[
"runner_name"
]
+
".finetuning_aspect_varnames"
,
default_value
=
[])
if
len
(
finetuning_varnames
)
==
0
:
raise
ValueError
(
"nothing need to be fine tuning, you may use other traning mode"
)
if
len
(
finetuning_varnames
)
!=
1
:
raise
ValueError
(
"fine tuning mode can only accept one varname now"
)
varname
=
finetuning_varnames
[
0
]
finetuning_vars
=
train_program
.
global_block
().
vars
[
varname
]
finetuning_vars
.
stop_gradient
=
True
optimizer
=
model
.
optimizer
()
optimizer
.
minimize
(
model
.
_cost
)
context
[
"model"
][
model_dict
[
"name"
]][
"main_program"
]
=
train_program
context
[
"model"
][
model_dict
[
"name"
]][
"startup_program"
]
=
startup_program
context
[
"model"
][
model_dict
[
"name"
]][
"scope"
]
=
scope
context
[
"model"
][
model_dict
[
"name"
]][
"model"
]
=
model
context
[
"model"
][
model_dict
[
"name"
]][
"default_main_program"
]
=
train_program
.
clone
()
context
[
"model"
][
model_dict
[
"name"
]][
"compiled_program"
]
=
None
context
[
"dataset"
]
=
{}
for
dataset
in
context
[
"env"
][
"dataset"
]:
type
=
envs
.
get_global_env
(
"dataset."
+
dataset
[
"name"
]
+
".type"
)
if
type
==
"QueueDataset"
:
dataset_class
=
QueueDataset
(
context
)
context
[
"dataset"
][
dataset
[
"name"
]]
=
dataset_class
.
create_dataset
(
dataset
[
"name"
],
context
)
context
[
"status"
]
=
"startup_pass"
class
PSNetwork
(
NetworkBase
):
def
__init__
(
self
,
context
):
print
(
"Running PSNetwork."
)
...
...
core/trainers/framework/startup.py
浏览文件 @
8d442864
...
...
@@ -17,9 +17,13 @@ from __future__ import print_function
import
warnings
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddlerec.core.utils
import
envs
__all__
=
[
"StartupBase"
,
"SingleStartup"
,
"PSStartup"
,
"CollectiveStartup"
]
__all__
=
[
"StartupBase"
,
"SingleStartup"
,
"PSStartup"
,
"CollectiveStartup"
,
"FineTuningStartup"
]
class
StartupBase
(
object
):
...
...
@@ -65,6 +69,122 @@ class SingleStartup(StartupBase):
context
[
"status"
]
=
"train_pass"
class
FineTuningStartup
(
StartupBase
):
"""R
"""
def
__init__
(
self
,
context
):
self
.
op_name_scope
=
"op_namescope"
self
.
clip_op_name_scope
=
"@CLIP"
self
.
self
.
op_role_var_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleVarAttrName
(
)
print
(
"Running SingleStartup."
)
def
_is_opt_role_op
(
self
,
op
):
# NOTE: depend on oprole to find out whether this op is for
# optimize
op_maker
=
core
.
op_proto_and_checker_maker
optimize_role
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
if
op_maker
.
kOpRoleAttrName
()
in
op
.
attr_names
and
\
int
(
op
.
all_attrs
()[
op_maker
.
kOpRoleAttrName
()])
==
int
(
optimize_role
):
return
True
return
False
def
_get_params_grads
(
self
,
program
):
"""
Get optimizer operators, parameters and gradients from origin_program
Returns:
opt_ops (list): optimize operators.
params_grads (dict): parameter->gradient.
"""
block
=
program
.
global_block
()
params_grads
=
[]
# tmp set to dedup
optimize_params
=
set
()
origin_var_dict
=
program
.
global_block
().
vars
for
op
in
block
.
ops
:
if
self
.
_is_opt_role_op
(
op
):
# Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
# delete clip op from opt_ops when run in Parameter Server mode
if
self
.
op_name_scope
in
op
.
all_attrs
(
)
and
self
.
clip_op_name_scope
in
op
.
attr
(
self
.
op_name_scope
):
op
.
_set_attr
(
"op_role"
,
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
))
continue
if
op
.
attr
(
self
.
op_role_var_attr_name
):
param_name
=
op
.
attr
(
self
.
op_role_var_attr_name
)[
0
]
grad_name
=
op
.
attr
(
self
.
op_role_var_attr_name
)[
1
]
if
not
param_name
in
optimize_params
:
optimize_params
.
add
(
param_name
)
params_grads
.
append
([
origin_var_dict
[
param_name
],
origin_var_dict
[
grad_name
]
])
return
params_grads
@
staticmethod
def
is_persistable
(
var
):
"""
Check whether the given variable is persistable.
Args:
var(Variable): The variable to be checked.
Returns:
bool: True if the given `var` is persistable
False if not.
Examples:
.. code-block:: python
import paddle.fluid as fluid
param = fluid.default_main_program().global_block().var('fc.b')
res = fluid.io.is_persistable(param)
"""
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
READER
:
return
False
return
var
.
persistable
def
load
(
self
,
context
,
is_fleet
=
False
,
main_program
=
None
):
dirname
=
envs
.
get_global_env
(
"runner."
+
context
[
"runner_name"
]
+
".init_model_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
print
(
"going to load "
,
dirname
)
params_grads
=
self
.
_get_params_grads
(
main_program
)
update_params
=
[
p
for
p
,
_
in
params_grads
]
need_load_vars
=
[]
parameters
=
list
(
filter
(
FineTuningStartup
.
is_persistable
,
main_program
.
list_vars
()))
for
param
in
parameters
:
if
param
not
in
update_params
:
need_load_vars
.
append
(
param
)
fluid
.
io
.
load_vars
(
context
[
"exe"
],
dirname
,
main_program
,
need_load_vars
)
print
(
"load from {} success"
.
format
(
dirname
))
def
startup
(
self
,
context
):
for
model_dict
in
context
[
"phases"
]:
with
fluid
.
scope_guard
(
context
[
"model"
][
model_dict
[
"name"
]][
"scope"
]):
train_prog
=
context
[
"model"
][
model_dict
[
"name"
]][
"main_program"
]
startup_prog
=
context
[
"model"
][
model_dict
[
"name"
]][
"startup_program"
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
context
[
"exe"
].
run
(
startup_prog
)
self
.
load
(
context
,
main_program
=
train_prog
)
context
[
"status"
]
=
"train_pass"
class
PSStartup
(
StartupBase
):
def
__init__
(
self
,
context
):
print
(
"Running PSStartup."
)
...
...
doc/pre_train_model.md
0 → 100644
浏览文件 @
8d442864
# PaddleRec 预训练模型
PaddleRec基于业务实践,使用真实数据,产出了推荐领域算法的若干预训练模型,方便开发者进行算法调研。
## 文本分类预训练模型
### 获取地址
```
bash
wget xxx.tar.gz
```
### 使用方法
解压后,得到的是一个paddle的模型文件夹,使用
`PaddleRec/models/contentunderstanding/classification_finetue`
模型进行加载
models/rank/dnn/config.yaml
浏览文件 @
8d442864
...
...
@@ -67,7 +67,6 @@ runner:
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
print_interval
:
10
phases
:
[
phase1
]
...
...
run.py
浏览文件 @
8d442864
...
...
@@ -16,7 +16,6 @@ import os
import
subprocess
import
sys
import
argparse
import
tempfile
import
warnings
import
copy
...
...
@@ -39,6 +38,7 @@ def engine_registry():
engines
[
"TRANSPILER"
][
"INFER"
]
=
single_infer_engine
engines
[
"TRANSPILER"
][
"LOCAL_CLUSTER_TRAIN"
]
=
local_cluster_engine
engines
[
"TRANSPILER"
][
"CLUSTER_TRAIN"
]
=
cluster_engine
engines
[
"TRANSPILER"
][
"ONLINE_LEARNING"
]
=
online_learning
engines
[
"PSLIB"
][
"TRAIN"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"LOCAL_CLUSTER_TRAIN"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"CLUSTER_TRAIN"
]
=
cluster_mpi_engine
...
...
@@ -259,6 +259,20 @@ def single_infer_engine(args):
return
trainer
def
online_learning
(
args
):
trainer
=
"OnlineLearningTrainer"
single_envs
=
{}
single_envs
[
"train.trainer.trainer"
]
=
trainer
single_envs
[
"train.trainer.threads"
]
=
"2"
single_envs
[
"train.trainer.engine"
]
=
"online_learning"
single_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
print
(
"use {} engine to run model: {}"
.
format
(
trainer
,
args
.
model
))
set_runtime_envs
(
single_envs
,
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
cluster_engine
(
args
):
def
master
():
from
paddlerec.core.engine.cluster.cluster
import
ClusterEngine
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录