diff --git a/README.md b/README.md index 74fdd2ce617568c27616fd7d4ac3f07c0652b7d9..80d7fc261b210ac3c1c4c6649c8593378194deab 100644 --- a/README.md +++ b/README.md @@ -177,6 +177,7 @@ python -m paddlerec.run -m ./models/rank/dnn/config.yaml -b backend.yaml | 多任务 | [ESMM](models/multitask/esmm/model.py) | ✓ | ✓ | ✓ | | 多任务 | [MMOE](models/multitask/mmoe/model.py) | ✓ | ✓ | ✓ | | 多任务 | [ShareBottom](models/multitask/share-bottom/model.py) | ✓ | ✓ | ✓ | +| 重排序 | [Listwise](models/rerank/listwise/model.py) | ✓ | x | ✓ | diff --git a/core/model.py b/core/model.py index 82b41ebc4b7ea752e708b9d7246b6bf7d5025db4..fd0b22fe005a0d001f64687f412f3cc88a35ef72 100755 --- a/core/model.py +++ b/core/model.py @@ -37,6 +37,10 @@ class Model(object): self._fetch_interval = 20 self._namespace = "train.model" self._platform = envs.get_platform() + self._init_hyper_parameters() + + def _init_hyper_parameters(self): + pass def _init_slots(self): sparse_slots = envs.get_global_env("sparse_slots", None, @@ -129,12 +133,37 @@ class Model(object): print(">>>>>>>>>>>.learnig rate: %s" % learning_rate) return self._build_optimizer(optimizer, learning_rate) - @abc.abstractmethod + def input_data(self, is_infer=False): + return None + + def net(self, is_infer=False): + return None + + def _construct_reader(self, is_infer=False): + if is_infer: + self._infer_data_loader = fluid.io.DataLoader.from_generator( + feed_list=self._infer_data_var, + capacity=64, + use_double_buffer=False, + iterable=False) + else: + dataset_class = envs.get_global_env("dataset_class", None, + "train.reader") + if dataset_class == "DataLoader": + self._data_loader = fluid.io.DataLoader.from_generator( + feed_list=self._data_var, + capacity=64, + use_double_buffer=False, + iterable=False) + def train_net(self): - """R - """ - pass + input_data = self.input_data(is_infer=False) + self._data_var = input_data + self._construct_reader(is_infer=False) + self.net(input_data, is_infer=False) - @abc.abstractmethod def infer_net(self): - pass + input_data = self.input_data(is_infer=True) + self._infer_data_var = input_data + self._construct_reader(is_infer=True) + self.net(input_data, is_infer=True) diff --git a/doc/imgs/listwise.png b/doc/imgs/listwise.png new file mode 100644 index 0000000000000000000000000000000000000000..88e79fe4052273f349e707d14e2e0647c63caa03 Binary files /dev/null and b/doc/imgs/listwise.png differ diff --git a/models/rerank/__init__.py b/models/rerank/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..abf198b97e6e818e1fbe59006f98492640bcee54 --- /dev/null +++ b/models/rerank/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. diff --git a/models/rerank/listwise/__init__.py b/models/rerank/listwise/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..abf198b97e6e818e1fbe59006f98492640bcee54 --- /dev/null +++ b/models/rerank/listwise/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. diff --git a/models/rerank/listwise/config.yaml b/models/rerank/listwise/config.yaml new file mode 100644 index 0000000000000000000000000000000000000000..18b018026634e461257d167fa543f2d81a25436c --- /dev/null +++ b/models/rerank/listwise/config.yaml @@ -0,0 +1,55 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +evaluate: + reader: + batch_size: 1 + class: "{workspace}/random_infer_reader.py" + test_data_path: "{workspace}/data/train" + +train: + trainer: + # for cluster training + strategy: "async" + + epochs: 3 + workspace: "paddlerec.models.rerank.listwise" + device: cpu + + reader: + batch_size: 2 + class: "{workspace}/random_reader.py" + train_data_path: "{workspace}/data/train" + dataset_class: "DataLoader" + + model: + models: "{workspace}/model.py" + hyper_parameters: + hidden_size: 128 + user_vocab: 200 + item_vocab: 1000 + item_len: 5 + embed_size: 16 + learning_rate: 0.01 + optimizer: sgd + + save: + increment: + dirname: "increment" + epoch_interval: 2 + save_last: True + inference: + dirname: "inference" + epoch_interval: 4 + save_last: True diff --git a/models/rerank/listwise/data/test/small_data.txt b/models/rerank/listwise/data/test/small_data.txt new file mode 100644 index 0000000000000000000000000000000000000000..c3c4cf5f84f66594e76603cce1f18d211ebd05a7 --- /dev/null +++ b/models/rerank/listwise/data/test/small_data.txt @@ -0,0 +1,100 @@ +4764,174,1 +4764,2958,0 +4764,452,0 +4764,1946,0 +4764,3208,0 +2044,2237,1 +2044,1998,0 +2044,328,0 +2044,1542,0 +2044,1932,0 +4276,65,1 +4276,3247,0 +4276,942,0 +4276,3666,0 +4276,2222,0 +3933,682,1 +3933,2451,0 +3933,3695,0 +3933,1643,0 +3933,3568,0 +1151,1265,1 +1151,118,0 +1151,2532,0 +1151,2083,0 +1151,2350,0 +1757,876,1 +1757,201,0 +1757,3633,0 +1757,1068,0 +1757,2549,0 +3370,276,1 +3370,2435,0 +3370,606,0 +3370,910,0 +3370,2146,0 +5137,1018,1 +5137,2163,0 +5137,3167,0 +5137,2315,0 +5137,3595,0 +3933,2831,1 +3933,2881,0 +3933,2949,0 +3933,3660,0 +3933,417,0 +3102,999,1 +3102,1902,0 +3102,2161,0 +3102,3042,0 +3102,1113,0 +2022,336,1 +2022,1672,0 +2022,2656,0 +2022,3649,0 +2022,883,0 +2664,655,1 +2664,3660,0 +2664,1711,0 +2664,3386,0 +2664,1668,0 +25,701,1 +25,32,0 +25,2482,0 +25,3177,0 +25,2767,0 +1738,1643,1 +1738,2187,0 +1738,228,0 +1738,650,0 +1738,3101,0 +5411,1241,1 +5411,2546,0 +5411,3019,0 +5411,3618,0 +5411,1674,0 +638,579,1 +638,3512,0 +638,783,0 +638,2111,0 +638,1880,0 +3554,200,1 +3554,2893,0 +3554,2428,0 +3554,969,0 +3554,2741,0 +4283,1074,1 +4283,3056,0 +4283,2032,0 +4283,405,0 +4283,1505,0 +5111,200,1 +5111,3488,0 +5111,477,0 +5111,2790,0 +5111,40,0 +3964,515,1 +3964,1528,0 +3964,2173,0 +3964,1701,0 +3964,2832,0 diff --git a/models/rerank/listwise/data/train/small_data.txt b/models/rerank/listwise/data/train/small_data.txt new file mode 100644 index 0000000000000000000000000000000000000000..c3c4cf5f84f66594e76603cce1f18d211ebd05a7 --- /dev/null +++ b/models/rerank/listwise/data/train/small_data.txt @@ -0,0 +1,100 @@ +4764,174,1 +4764,2958,0 +4764,452,0 +4764,1946,0 +4764,3208,0 +2044,2237,1 +2044,1998,0 +2044,328,0 +2044,1542,0 +2044,1932,0 +4276,65,1 +4276,3247,0 +4276,942,0 +4276,3666,0 +4276,2222,0 +3933,682,1 +3933,2451,0 +3933,3695,0 +3933,1643,0 +3933,3568,0 +1151,1265,1 +1151,118,0 +1151,2532,0 +1151,2083,0 +1151,2350,0 +1757,876,1 +1757,201,0 +1757,3633,0 +1757,1068,0 +1757,2549,0 +3370,276,1 +3370,2435,0 +3370,606,0 +3370,910,0 +3370,2146,0 +5137,1018,1 +5137,2163,0 +5137,3167,0 +5137,2315,0 +5137,3595,0 +3933,2831,1 +3933,2881,0 +3933,2949,0 +3933,3660,0 +3933,417,0 +3102,999,1 +3102,1902,0 +3102,2161,0 +3102,3042,0 +3102,1113,0 +2022,336,1 +2022,1672,0 +2022,2656,0 +2022,3649,0 +2022,883,0 +2664,655,1 +2664,3660,0 +2664,1711,0 +2664,3386,0 +2664,1668,0 +25,701,1 +25,32,0 +25,2482,0 +25,3177,0 +25,2767,0 +1738,1643,1 +1738,2187,0 +1738,228,0 +1738,650,0 +1738,3101,0 +5411,1241,1 +5411,2546,0 +5411,3019,0 +5411,3618,0 +5411,1674,0 +638,579,1 +638,3512,0 +638,783,0 +638,2111,0 +638,1880,0 +3554,200,1 +3554,2893,0 +3554,2428,0 +3554,969,0 +3554,2741,0 +4283,1074,1 +4283,3056,0 +4283,2032,0 +4283,405,0 +4283,1505,0 +5111,200,1 +5111,3488,0 +5111,477,0 +5111,2790,0 +5111,40,0 +3964,515,1 +3964,1528,0 +3964,2173,0 +3964,1701,0 +3964,2832,0 diff --git a/models/rerank/listwise/model.py b/models/rerank/listwise/model.py new file mode 100644 index 0000000000000000000000000000000000000000..d4cf9d8ed1a669d6d1ff3339008605f1aa26f4cd --- /dev/null +++ b/models/rerank/listwise/model.py @@ -0,0 +1,223 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import numpy as np +import paddle.fluid as fluid + +from paddlerec.core.utils import envs +from paddlerec.core.model import Model as ModelBase + + +class Model(ModelBase): + def __init__(self, config): + ModelBase.__init__(self, config) + + def _init_hyper_parameters(self): + self.item_len = envs.get_global_env("hyper_parameters.self.item_len", + None, self._namespace) + self.hidden_size = envs.get_global_env("hyper_parameters.hidden_size", + None, self._namespace) + self.user_vocab = envs.get_global_env("hyper_parameters.user_vocab", + None, self._namespace) + self.item_vocab = envs.get_global_env("hyper_parameters.item_vocab", + None, self._namespace) + self.embed_size = envs.get_global_env("hyper_parameters.embed_size", + None, self._namespace) + + def input_data(self, is_infer=False): + user_slot_names = fluid.data( + name='user_slot_names', + shape=[None, 1], + dtype='int64', + lod_level=1) + item_slot_names = fluid.data( + name='item_slot_names', + shape=[None, self.item_len], + dtype='int64', + lod_level=1) + lens = fluid.data(name='lens', shape=[None], dtype='int64') + labels = fluid.data( + name='labels', + shape=[None, self.item_len], + dtype='int64', + lod_level=1) + + inputs = [user_slot_names] + [item_slot_names] + [lens] + [labels] + + # demo: hot to use is_infer: + if is_infer: + return inputs + else: + return inputs + + def net(self, inputs, is_infer=False): + # user encode + user_embedding = fluid.embedding( + input=inputs[0], + size=[self.user_vocab, self.embed_size], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Xavier(), + regularizer=fluid.regularizer.L2Decay(1e-5)), + is_sparse=True) + + user_feature = fluid.layers.fc( + input=user_embedding, + size=self.hidden_size, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.TruncatedNormal( + loc=0.0, scale=np.sqrt(1.0 / self.hidden_size))), + bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( + value=0.0)), + act='relu', + name='user_feature_fc') + # item encode + item_embedding = fluid.embedding( + input=inputs[1], + size=[self.item_vocab, self.embed_size], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Xavier(), + regularizer=fluid.regularizer.L2Decay(1e-5)), + is_sparse=True) + + item_embedding = fluid.layers.sequence_unpad( + x=item_embedding, length=inputs[2]) + + item_fc = fluid.layers.fc( + input=item_embedding, + size=self.hidden_size, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.TruncatedNormal( + loc=0.0, scale=np.sqrt(1.0 / self.hidden_size))), + bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( + value=0.0)), + act='relu', + name='item_fc') + + pos = self._fluid_sequence_get_pos(item_fc) + pos_embed = fluid.embedding( + input=pos, + size=[self.user_vocab, self.embed_size], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Xavier(), + regularizer=fluid.regularizer.L2Decay(1e-5)), + is_sparse=True) + + pos_embed = fluid.layers.squeeze(pos_embed, [1]) + + # item gru + gru_input = fluid.layers.fc( + input=fluid.layers.concat([item_fc, pos_embed], 1), + size=self.hidden_size * 3, + name='item_gru_fc') + + # forward gru + item_gru_forward = fluid.layers.dynamic_gru( + input=gru_input, + size=self.hidden_size, + is_reverse=False, + h_0=user_feature) + # backward gru + item_gru_backward = fluid.layers.dynamic_gru( + input=gru_input, + size=self.hidden_size, + is_reverse=True, + h_0=user_feature) + + item_gru = fluid.layers.concat( + [item_gru_forward, item_gru_backward], axis=1) + + out_click_fc1 = fluid.layers.fc( + input=item_gru, + size=self.hidden_size, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.TruncatedNormal( + loc=0.0, scale=np.sqrt(1.0 / self.hidden_size))), + bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( + value=0.0)), + act='relu', + name='out_click_fc1') + + click_prob = fluid.layers.fc(input=out_click_fc1, + size=2, + act='softmax', + name='out_click_fc2') + + labels = fluid.layers.sequence_unpad(x=inputs[3], length=inputs[2]) + + auc_val, batch_auc, auc_states = fluid.layers.auc(input=click_prob, + label=labels) + + if is_infer: + self._infer_results["AUC"] = auc_val + return + + loss = fluid.layers.reduce_mean( + fluid.layers.cross_entropy( + input=click_prob, label=labels)) + self._cost = loss + self._metrics['auc'] = auc_val + + def _fluid_sequence_pad(self, input, pad_value, maxlen=None): + """ + args: + input: (batch*seq_len, dim) + returns: + (batch, max_seq_len, dim) + """ + pad_value = fluid.layers.cast( + fluid.layers.assign(input=np.array([pad_value], 'float32')), + input.dtype) + input_padded, _ = fluid.layers.sequence_pad( + input, pad_value, + maxlen=maxlen) # (batch, max_seq_len, 1), (batch, 1) + # TODO, maxlen=300, used to solve issues: https://github.com/PaddlePaddle/Paddle/issues/14164 + return input_padded + + def _fluid_sequence_get_pos(self, lodtensor): + """ + args: + lodtensor: lod = [[0,4,7]] + return: + pos: lod = [[0,4,7]] + data = [0,1,2,3,0,1,3] + shape = [-1, 1] + """ + lodtensor = fluid.layers.reduce_sum(lodtensor, dim=1, keep_dim=True) + assert lodtensor.shape == (-1, 1), (lodtensor.shape()) + ones = fluid.layers.cast(lodtensor * 0 + 1, + 'float32') # (batch*seq_len, 1) + ones_padded = self._fluid_sequence_pad(ones, + 0) # (batch, max_seq_len, 1) + ones_padded = fluid.layers.squeeze(ones_padded, + [2]) # (batch, max_seq_len) + seq_len = fluid.layers.cast( + fluid.layers.reduce_sum( + ones_padded, 1, keep_dim=True), 'int64') # (batch, 1) + seq_len = fluid.layers.squeeze(seq_len, [1]) + + pos = fluid.layers.cast( + fluid.layers.cumsum( + ones_padded, 1, exclusive=True), 'int64') + pos = fluid.layers.sequence_unpad(pos, seq_len) # (batch*seq_len, 1) + pos.stop_gradient = True + return pos + + #def train_net(self): + # input_data = self.input_data() + # self.net(input_data) + + #def infer_net(self): + # input_data = self.input_data(is_infer=True) + # self.net(input_data, is_infer=True) diff --git a/models/rerank/listwise/random_infer_reader.py b/models/rerank/listwise/random_infer_reader.py new file mode 100644 index 0000000000000000000000000000000000000000..4f93688e59dd2dc142a0ab79201278b25e18b468 --- /dev/null +++ b/models/rerank/listwise/random_infer_reader.py @@ -0,0 +1,68 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import print_function + +import numpy as np +import paddle.fluid as fluid + +from paddlerec.core.reader import Reader +from paddlerec.core.utils import envs +from collections import defaultdict + + +class EvaluateReader(Reader): + def init(self): + self.user_vocab = envs.get_global_env("hyper_parameters.user_vocab", + None, "train.model") + self.item_vocab = envs.get_global_env("hyper_parameters.item_vocab", + None, "train.model") + self.item_len = envs.get_global_env("hyper_parameters.item_len", None, + "train.model") + self.batch_size = envs.get_global_env("batch_size", None, + "train.reader") + + def reader_creator(self): + def reader(): + user_slot_name = [] + for j in range(self.batch_size): + user_slot_name.append( + [int(np.random.randint(self.user_vocab))]) + item_slot_name = np.random.randint( + self.item_vocab, size=(self.batch_size, + self.item_len)).tolist() + length = [self.item_len] * self.batch_size + label = np.random.randint( + 2, size=(self.batch_size, self.item_len)).tolist() + output = [user_slot_name, item_slot_name, length, label] + + yield output + + return reader + + def generate_batch_from_trainfiles(self, files): + return fluid.io.batch( + self.reader_creator(), batch_size=self.batch_size) + + def generate_sample(self, line): + """ + the file is not used + """ + + def reader(): + """ + This function needs to be implemented by the user, based on data format + """ + pass + + return reader diff --git a/models/rerank/listwise/random_reader.py b/models/rerank/listwise/random_reader.py new file mode 100644 index 0000000000000000000000000000000000000000..41cf14b79285efe8f2d80e01bba74da3501cc504 --- /dev/null +++ b/models/rerank/listwise/random_reader.py @@ -0,0 +1,68 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import print_function + +import numpy as np +import paddle.fluid as fluid + +from paddlerec.core.reader import Reader +from paddlerec.core.utils import envs +from collections import defaultdict + + +class TrainReader(Reader): + def init(self): + self.user_vocab = envs.get_global_env("hyper_parameters.user_vocab", + None, "train.model") + self.item_vocab = envs.get_global_env("hyper_parameters.item_vocab", + None, "train.model") + self.item_len = envs.get_global_env("hyper_parameters.item_len", None, + "train.model") + self.batch_size = envs.get_global_env("batch_size", None, + "train.reader") + + def reader_creator(self): + def reader(): + user_slot_name = [] + for j in range(self.batch_size): + user_slot_name.append( + [int(np.random.randint(self.user_vocab))]) + item_slot_name = np.random.randint( + self.item_vocab, size=(self.batch_size, + self.item_len)).tolist() + length = [self.item_len] * self.batch_size + label = np.random.randint( + 2, size=(self.batch_size, self.item_len)).tolist() + output = [user_slot_name, item_slot_name, length, label] + + yield output + + return reader + + def generate_batch_from_trainfiles(self, files): + return fluid.io.batch( + self.reader_creator(), batch_size=self.batch_size) + + def generate_sample(self, line): + """ + the file is not used + """ + + def reader(): + """ + This function needs to be implemented by the user, based on data format + """ + pass + + return reader diff --git a/models/rerank/readme.md b/models/rerank/readme.md new file mode 100755 index 0000000000000000000000000000000000000000..e7552c377dd03ab93af5c233ef8be31edc529de4 --- /dev/null +++ b/models/rerank/readme.md @@ -0,0 +1,43 @@ +# 重排序模型库 + +## 简介 +我们提供了常见的重排序使用的模型算法的PaddleRec实现, 单机训练&预测效果指标以及分布式训练&预测性能指标等。目前实现的模型是 [Listwise](listwise)。 + +模型算法库在持续添加中,欢迎关注。 + +## 目录 +* [整体介绍](#整体介绍) + * [重排序模型列表](#重排序模型列表) +* [使用教程](#使用教程) + * [训练 预测](#训练 预测) +* [效果对比](#效果对比) + * [模型效果列表](#模型效果列表) + +## 整体介绍 +### 融合模型列表 + +| 模型 | 简介 | 论文 | +| :------------------: | :--------------------: | :---------: | +| Listwise | Listwise | [Sequential Evaluation and Generation Framework for Combinatorial Recommender System](https://arxiv.org/pdf/1902.00245.pdf)(2019) | + +下面是每个模型的简介(注:图片引用自链接中的论文) + + +[Listwise](https://arxiv.org/pdf/1902.00245.pdf): +

+ +

+ + +## 使用教程 +### 训练 预测 +```shell +python -m paddlerec.run -m paddlerec.models.rerank.listwise # listwise +``` + +## 效果对比 +### 模型效果列表 + +| 数据集 | 模型 | loss | auc | +| :------------------: | :--------------------: | :---------: |:---------: | +| -- | Listwise | -- | -- |