diff --git a/README.md b/README.md index 0c0dae459112d436e443dc14d1a9207a0b2638a5..fe2241c5312949febfce7005b1e885ad1665f0fc 100644 --- a/README.md +++ b/README.md @@ -177,6 +177,7 @@ python -m paddlerec.run -m ./models/rank/dnn/config.yaml -b backend.yaml | 多任务 | [ESMM](models/multitask/esmm/model.py) | ✓ | ✓ | ✓ | | 多任务 | [MMOE](models/multitask/mmoe/model.py) | ✓ | ✓ | ✓ | | 多任务 | [ShareBottom](models/multitask/share-bottom/model.py) | ✓ | ✓ | ✓ | +| 重排序 | [Listwise](models/rerank/listwise/model.py) | ✓ | x | ✓ | diff --git a/core/model.py b/core/model.py index 82b41ebc4b7ea752e708b9d7246b6bf7d5025db4..847a5d23362e4c3db8ef0cfa59fb83c4ed9a4c91 100755 --- a/core/model.py +++ b/core/model.py @@ -37,6 +37,10 @@ class Model(object): self._fetch_interval = 20 self._namespace = "train.model" self._platform = envs.get_platform() + self._init_hyper_parameters() + + def _init_hyper_parameters(self): + pass def _init_slots(self): sparse_slots = envs.get_global_env("sparse_slots", None, @@ -129,12 +133,65 @@ class Model(object): print(">>>>>>>>>>>.learnig rate: %s" % learning_rate) return self._build_optimizer(optimizer, learning_rate) - @abc.abstractmethod + def input_data(self, is_infer=False): + sparse_slots = envs.get_global_env("sparse_slots", None, + "train.reader") + dense_slots = envs.get_global_env("dense_slots", None, "train.reader") + if sparse_slots is not None or dense_slots is not None: + sparse_slots = sparse_slots.strip().split(" ") + dense_slots = dense_slots.strip().split(" ") + dense_slots_shape = [[ + int(j) for j in i.split(":")[1].strip("[]").split(",") + ] for i in dense_slots] + dense_slots = [i.split(":")[0] for i in dense_slots] + self._dense_data_var = [] + data_var_ = [] + for i in range(len(dense_slots)): + l = fluid.layers.data( + name=dense_slots[i], + shape=dense_slots_shape[i], + dtype="float32") + data_var_.append(l) + self._dense_data_var.append(l) + self._sparse_data_var = [] + for name in sparse_slots: + l = fluid.layers.data( + name=name, shape=[1], lod_level=1, dtype="int64") + data_var_.append(l) + self._sparse_data_var.append(l) + return data_var_ + + else: + return None + + def net(self, is_infer=False): + return None + + def _construct_reader(self, is_infer=False): + if is_infer: + self._infer_data_loader = fluid.io.DataLoader.from_generator( + feed_list=self._infer_data_var, + capacity=64, + use_double_buffer=False, + iterable=False) + else: + dataset_class = envs.get_global_env("dataset_class", None, + "train.reader") + if dataset_class == "DataLoader": + self._data_loader = fluid.io.DataLoader.from_generator( + feed_list=self._data_var, + capacity=64, + use_double_buffer=False, + iterable=False) + def train_net(self): - """R - """ - pass + input_data = self.input_data(is_infer=False) + self._data_var = input_data + self._construct_reader(is_infer=False) + self.net(input_data, is_infer=False) - @abc.abstractmethod def infer_net(self): - pass + input_data = self.input_data(is_infer=True) + self._infer_data_var = input_data + self._construct_reader(is_infer=True) + self.net(input_data, is_infer=True) diff --git a/doc/imgs/listwise.png b/doc/imgs/listwise.png new file mode 100644 index 0000000000000000000000000000000000000000..88e79fe4052273f349e707d14e2e0647c63caa03 Binary files /dev/null and b/doc/imgs/listwise.png differ diff --git a/models/rank/dcn/config.yaml b/models/rank/dcn/config.yaml index 6cd89d6aab9a1abba14d9fe7e3b737b76fb2221d..58c88f0cfed18e2dbbb19c9a097dbe9b6d61c814 100755 --- a/models/rank/dcn/config.yaml +++ b/models/rank/dcn/config.yaml @@ -22,7 +22,7 @@ train: reader: batch_size: 2 - train_data_path: "{workspace}/data/slot_train" + train_data_path: "{workspace}/data/sample_data/train" feat_dict_name: "{workspace}/data/vocab" sparse_slots: "label C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26" dense_slots: "I1:1 I2:1 I3:1 I4:1 I5:1 I6:1 I7:1 I8:1 I9:1 I10:1 I11:1 I12:1 I13:1" @@ -35,7 +35,7 @@ train: l2_reg_cross: 0.00005 dnn_use_bn: False clip_by_norm: 100.0 - cat_feat_num: "{workspace}/data/cat_feature_num.txt" + cat_feat_num: "{workspace}/data/sample_data/cat_feature_num.txt" is_sparse: False is_test: False num_field: 39 diff --git a/models/rank/dcn/data/sample_data/cat_feature_num.txt b/models/rank/dcn/data/sample_data/cat_feature_num.txt new file mode 100644 index 0000000000000000000000000000000000000000..0c75fc39b5890c323d1f94d6cc5c60fa151ef2e0 --- /dev/null +++ b/models/rank/dcn/data/sample_data/cat_feature_num.txt @@ -0,0 +1,26 @@ +C1 139 +C2 422 +C3 1548 +C4 1965 +C5 54 +C6 10 +C7 3213 +C8 81 +C9 3 +C10 2402 +C11 2246 +C12 1583 +C13 1911 +C14 24 +C15 2011 +C16 1731 +C17 9 +C18 1197 +C19 584 +C20 3 +C21 1652 +C22 8 +C23 14 +C24 1770 +C25 40 +C26 1349 diff --git a/models/rank/dcn/data/sample_data/train/sample_train.txt b/models/rank/dcn/data/sample_data/train/sample_train.txt new file mode 100644 index 0000000000000000000000000000000000000000..4aa6d249feecf542a5ce947f510bded60aa6414f --- /dev/null +++ b/models/rank/dcn/data/sample_data/train/sample_train.txt @@ -0,0 +1,10 @@ +label:0 I1:0.69314718056 I2:1.60943791243 I3:1.79175946923 I4:0.0 I5:7.23201033166 I6:1.60943791243 I7:2.77258872224 I8:1.09861228867 I9:5.20400668708 I10:0.69314718056 I11:1.09861228867 I12:0 I13:1.09861228867 C1:95 C2:398 C3:0 C4:0 C5:53 C6:1 C7:73 C8:71 C9:3 C10:1974 C11:832 C12:0 C13:875 C14:8 C15:1764 C16:0 C17:5 C18:390 C19:226 C20:1 C21:0 C22:0 C23:8 C24:1759 C25:1 C26:862 +label:0 I1:1.09861228867 I2:1.38629436112 I3:3.80666248977 I4:0.69314718056 I5:4.63472898823 I6:2.19722457734 I7:1.09861228867 I8:1.09861228867 I9:1.60943791243 I10:0.69314718056 I11:0.69314718056 I12:0 I13:1.60943791243 C1:95 C2:200 C3:1184 C4:1929 C5:53 C6:4 C7:1477 C8:2 C9:3 C10:1283 C11:1567 C12:1048 C13:271 C14:6 C15:1551 C16:899 C17:1 C18:162 C19:226 C20:2 C21:575 C22:0 C23:8 C24:1615 C25:1 C26:659 +label:0 I1:1.09861228867 I2:1.38629436112 I3:0.69314718056 I4:2.7080502011 I5:6.64378973315 I6:4.49980967033 I7:1.60943791243 I8:1.09861228867 I9:5.50533153593 I10:0.69314718056 I11:1.38629436112 I12:1.38629436112 I13:3.82864139649 C1:123 C2:378 C3:991 C4:197 C5:53 C6:1 C7:689 C8:2 C9:3 C10:245 C11:623 C12:1482 C13:887 C14:21 C15:106 C16:720 C17:3 C18:768 C19:0 C20:0 C21:1010 C22:1 C23:8 C24:720 C25:0 C26:0 +label:0 I1:0 I2:6.79905586206 I3:0 I4:0 I5:8.38776764398 I6:0 I7:0.0 I8:0.0 I9:0.0 I10:0 I11:0.0 I12:0 I13:0 C1:95 C2:227 C3:0 C4:219 C5:53 C6:4 C7:3174 C8:2 C9:3 C10:569 C11:1963 C12:0 C13:1150 C14:21 C15:1656 C16:0 C17:6 C18:584 C19:0 C20:0 C21:0 C22:0 C23:8 C24:954 C25:0 C26:0 +label:0 I1:1.38629436112 I2:1.09861228867 I3:0 I4:0.0 I5:1.09861228867 I6:0.0 I7:1.38629436112 I8:0.0 I9:0.0 I10:0.69314718056 I11:0.69314718056 I12:0 I13:0.0 C1:121 C2:147 C3:0 C4:1356 C5:53 C6:7 C7:2120 C8:2 C9:3 C10:703 C11:1678 C12:1210 C13:1455 C14:8 C15:538 C16:1276 C17:6 C18:346 C19:0 C20:0 C21:944 C22:0 C23:10 C24:355 C25:0 C26:0 +label:0 I1:0 I2:1.09861228867 I3:0 I4:0 I5:9.45915167004 I6:0 I7:0.0 I8:0.0 I9:1.94591014906 I10:0 I11:0.0 I12:0 I13:0 C1:14 C2:75 C3:993 C4:480 C5:50 C6:6 C7:1188 C8:2 C9:3 C10:245 C11:1037 C12:1365 C13:1421 C14:21 C15:786 C16:5 C17:2 C18:555 C19:0 C20:0 C21:1408 C22:6 C23:7 C24:753 C25:0 C26:0 +label:0 I1:0 I2:1.60943791243 I3:1.09861228867 I4:0 I5:8.06117135969 I6:0 I7:0.0 I8:0.69314718056 I9:1.09861228867 I10:0 I11:0.0 I12:0 I13:0 C1:139 C2:343 C3:553 C4:828 C5:50 C6:4 C7:0 C8:2 C9:3 C10:245 C11:2081 C12:260 C13:455 C14:21 C15:122 C16:1159 C17:2 C18:612 C19:0 C20:0 C21:1137 C22:0 C23:1 C24:1583 C25:0 C26:0 +label:1 I1:0.69314718056 I2:2.07944154168 I3:1.09861228867 I4:0.0 I5:0.0 I6:0.0 I7:0.69314718056 I8:0.0 I9:0.0 I10:0.69314718056 I11:0.69314718056 I12:0 I13:0.0 C1:95 C2:227 C3:0 C4:1567 C5:21 C6:7 C7:2496 C8:71 C9:3 C10:1913 C11:2212 C12:0 C13:673 C14:21 C15:1656 C16:0 C17:5 C18:584 C19:0 C20:0 C21:0 C22:0 C23:10 C24:954 C25:0 C26:0 +label:0 I1:0 I2:3.87120101091 I3:1.60943791243 I4:2.19722457734 I5:9.85277303799 I6:5.52146091786 I7:3.36729582999 I8:3.4657359028 I9:4.9558270576 I10:0 I11:0.69314718056 I12:0 I13:2.19722457734 C1:14 C2:14 C3:454 C4:197 C5:53 C6:1 C7:1386 C8:2 C9:3 C10:0 C11:1979 C12:205 C13:214 C14:6 C15:1837 C16:638 C17:5 C18:6 C19:0 C20:0 C21:70 C22:0 C23:10 C24:720 C25:0 C26:0 +label:0 I1:0 I2:3.66356164613 I3:0 I4:0.69314718056 I5:10.4263800775 I6:3.09104245336 I7:0.69314718056 I8:1.09861228867 I9:1.38629436112 I10:0 I11:0.69314718056 I12:0 I13:0.69314718056 C1:14 C2:179 C3:120 C4:746 C5:53 C6:0 C7:1312 C8:2 C9:3 C10:1337 C11:1963 C12:905 C13:1150 C14:21 C15:1820 C16:328 C17:9 C18:77 C19:0 C20:0 C21:311 C22:0 C23:10 C24:89 C25:0 C26:0 diff --git a/models/rank/dcn/data/sample_data/vocab/C1.txt b/models/rank/dcn/data/sample_data/vocab/C1.txt new file mode 100644 index 0000000000000000000000000000000000000000..4597891767100dcd85ac15caa833d119ba49bb05 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C1.txt @@ -0,0 +1,139 @@ +f434fac1 +e6051457 +7e5c2ff4 +abca0bad +3b509222 +340c148e +48f8c5b9 +3c9d8785 +585b6ccc +561bf9d4 +b474c2c2 +c1730738 +92fb1d87 +05db9164 +c35dc981 +ae82ea21 +824be517 +16a99cfb +e8ef605b +88abfaf6 +7ceef477 +17f69355 +1464facd +f0a33555 +80e4d755 +3ec5d916 +f5c9f18c +87552397 +5ebc3192 +426610d2 +eb6dcae0 +651f6a2d +7f9f4eb6 +bd4b6d14 +3560b08b +8068dc7e +9660b97b +9eb7531c +2d4ea12b +87773c45 +5a9ed9b0 +f473b8dc +b19f768d +70d60005 +89889f05 +c71ae391 +c6dce90e +64e77ae7 +0e78bd46 +75ac2fe6 +42a16b9a +19c5f803 +cbffbdad +bfb430af +127f4a6b +6ca3af46 +2b3bff44 +8a033483 +45cb84c9 +554adfdb +46300ee3 +a14cf13a +d0d66375 +da4eff0f +4265881a +9684fd4d +7382c353 +50d4de26 +60c68845 +e3493c7c +09ca0b81 +3b65d647 +98237733 +fc9c62bb +41edac3d +dbfc8345 +39af2607 +581e410c +55845e1c +28e55712 +6bcf7a5b +66651cdf +2b92c0d2 +24eda356 +dbe63c2b +9a89b36c +489d0f96 +dac91c28 +dc5ebbd9 +1a5f926e +885aeecb +f1548e14 +6062d843 +c2a5852e +68fd1e64 +be589b51 +b455c6d7 +cd3695ae +291b7ba2 +2998a458 +5e53cc38 +dbe15b41 +ff5f3ab9 +49f631b8 +3b1bc654 +36a5b3ff +fbc55dae +467085ca +06584483 +3f6e3c8b +3cc2325b +ff004ae3 +eb6ac63c +0a16e1d4 +34f74dfd +decf6fa6 +18988050 +c512b859 +a86f8721 +5bfa8ab5 +8cf07265 +dd14f377 +287e684f +49c4b7c4 +2ebc17d3 +8c6ba407 +fb174e6b +4615a3b6 +394fc830 +9e9d28f5 +241546e0 +4a4e85c4 +26428e51 +940683b1 +65aada8c +ba454362 +d4b08d58 +49807078 +439a44a4 diff --git a/models/rank/dcn/data/sample_data/vocab/C10.txt b/models/rank/dcn/data/sample_data/vocab/C10.txt new file mode 100644 index 0000000000000000000000000000000000000000..023078ebaaafbec5df4af3529a09e8b3fb8848f0 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C10.txt @@ -0,0 +1,2402 @@ +e44ef203 +210e5b53 +21fa915a +ff5a1549 +83a3b517 +e2549837 +f359604e +814f97f4 +82932781 +4effc25c +7f12aa11 +ceea4f75 +89794d42 +3de6dc67 +8dde7540 +fed0f64c +2f510755 +e5330e23 +ddf5d47c +16003d82 +4c783419 +a883869a +6feef489 +81e63d1a +9268adb2 +fba4e66d +63c7ada0 +5e4f1c70 +b8fa4771 +d0ed569a +e8957687 +c5fe5cb9 +b40a6cd7 +ef4fc845 +4edb5b9e +8a502a35 +b0488b24 +6d7bbe0b +ed8257bc +e2abbf7d +7c907dc3 +27b57225 +4f9a11fe +4debc04c +27f4bf82 +da337cc8 +5d61d71c +70962768 +6bde15a2 +eaca4085 +7ffe4676 +26ed657b +7934ffe6 +b1fe0e2e +63081b29 +a8ebcfec +fb2b96f1 +cfde4d9c +1a5ba63e +a5f77a53 +e1af44fa +acce978c +7e1aa72a +ff05c3fb +b8d25928 +ac9e0776 +a7b2c086 +74273dde +7d06a816 +19c1d716 +d0ff5b05 +c7453e87 +5139ddc4 +733b729f +4c1928d3 +a60210d9 +637a2733 +3df0c12e +972359d0 +d40d5d74 +e6003298 +8601d04a +edf1e23b +7e2377e8 +52a0b310 +61efb79c +6287b8a6 +fab83763 +467e9b7a +391969e7 +8df97100 +0ada1061 +50af9b31 +c18c8582 +9b56218a +3cb12840 +7d5e46eb +d091f686 +888c57de +bc6d6cf6 +32bd723b +328057da +6c9fd7d6 +267caf03 +bb851295 +72ce33ff +27fdd7aa +8c6b20b6 +dad22fce +caa87280 +76c29aa8 +222ae0ea +8e54038a +9044f0e3 +d1ebaddf +c9f77507 +c36f333e +98649ae7 +bbc5072e +6ab3d8b6 +823a2b16 +d38d058f +c4bffb57 +230aa7a0 +81875c3f +8f796047 +9dd065bd +cce8f055 +5f49e872 +edd99521 +aed682d5 +402c08ae +2e6e9bd1 +4c801c81 +cbd3f8f8 +a1680317 +79041558 +7e535333 +4fd5d54e +ec4e2ecb +3c149ae9 +32390b96 +a4b832ae +d430c780 +36f76e5b +35acd07e +d077d4d4 +b78f3a55 +568b2298 +8661d897 +bec43bb3 +6a5a3b69 +b47dfc84 +bd256365 +687c8b31 +991fc4a4 +3dc9bc0f +f9065d00 +b78b25b1 +955bb819 +bc5704d7 +d2d421de +f050c183 +7f091e3d +a866ff7f +1b7b3a1c +d9b71390 +b82dcdf9 +70726fe6 +f72dbcb1 +85a19788 +f24b3308 +7360544e +b0bfa96e +61283720 +fb1d3661 +97c795d2 +b883655e +4b8a7639 +9743bf1f +d3f2758d +3ea987b7 +33677623 +0cbab662 +d6ea61a9 +59b0bdac +087fd87e +89ff09ee +48294e1c +7c0a503a +4d9c06d9 +85f10390 +20d01e61 +8ac80ace +328c6dd0 +8a48eec7 +d289a4e8 +65089c81 +d72f452e +7f79890b +8a05e080 +1f8282c4 +b0c25211 +d471ce0d +b02a09a4 +2860ede1 +4a817a2d +0529dce1 +eccd1549 +36fe2e15 +ceb10289 +5cad6330 +63ddc9f1 +3658ac68 +4de83a51 +f5ec1909 +ad75e5d3 +0042ccac +17f2ac39 +1800d606 +7760f7bf +ca2f139a +534fc986 +d954cc10 +8f4737bc +6100a91c +0bd12a8c +e1a2ef0f +04dc09a2 +83ff688a +8d45c464 +60a54006 +d2487d17 +98bd7a24 +d78294fb +bc743bbf +e6556a21 +b0ee15ff +5db9389b +fa907ddd +e4fa8060 +f9f603ac +621d488a +05c0f465 +3b08e48b +dea56e7c +bde51b15 +9e6884ca +b48bb0bd +f8ae506d +26204092 +bfedff8f +2283dcdb +b681243c +63f14ce6 +94e68c1d +ff513e20 +c86fc87f +fc6ac8b3 +83e211e9 +90210e5a +1725b2db +6a5d2b37 +0affc0bc +41f909be +8886dc9c +074e7523 +ddebe327 +c2ebde4f +4dbf86ba +d2182a9f +0ddec944 +fffdffc3 +30e5979b +4549ea1f +837e840e +0af798a0 +18908d58 +ecd4bc60 +31990058 +f36ff6fe +041560b6 +2c0fb2f4 +7aa4e186 +34dd9626 +4681f55a +8d3ab9e3 +c61d3ee0 +acccca1c +21e99844 +a9f8d03b +0a347d7d +4ae9db84 +b7d3df60 +78243957 +2436c534 +9c48e3c3 +98fea455 +0611d5bb +ce338497 +091fd245 +f918493f +5c73d885 +21a95e8f +80254878 +48beebf8 +2d3d7f00 +993d4041 +78a42779 +3139c7ed +921af1f0 +1791bdb6 +5c0801f4 +0fbac2a4 +45a4f840 +5a2dbfb2 +85635bd0 +cd1a2f1a +383878dc +c484657f +d2cb8f4b +5162b19c +f0bda286 +6f506765 +e14a3053 +bd69f3a2 +6705fa4e +e643be1a +6b8edada +7318b5eb +9ce4c96c +30819844 +61a3f9a3 +d1c011c4 +be511b47 +18acc97b +a5270a71 +7cc27cd3 +23c4b9b1 +dd02e40b +a9157b48 +9ca0fba4 +39dc9e08 +0fa587cd +257c4f93 +90af6b7f +c6577552 +8e00c8ce +416adc26 +8b00bbbb +afb89f8f +7ab0132a +57eaa63f +dc6c5c76 +0f9a018e +1bd7be48 +9ab449df +5a76905d +03bf6378 +1c56cea6 +878f4678 +0b6ffaef +a5f22153 +7ef432eb +420eaf2c +ee2c9f64 +72c2d088 +148b68a6 +1b4e8e72 +18139a78 +78cab4c1 +25e9e422 +6de79a03 +0f1a2599 +146d694a +58380efe +27431e6a +def5e035 +2ce2764d +864f07fa +2209cb46 +e184588a +e7ba2569 +4876401c +ecdbd897 +cc291550 +b59aee26 +a77382a0 +ed2e4bcb +b50b81d2 +8e9c1bc2 +46a7deb3 +562c7c45 +fb37e544 +597a7b20 +d9dbe799 +3e278c1c +36c5cf0a +f4404e5d +11e1309c +9d39065e +9eaa24a1 +9dc8b302 +55299251 +9ad5d5af +ef8f7268 +897188be +687176eb +82df227a +551654b4 +c5374647 +d367b3d6 +266543bd +7ffdf000 +458166fb +e41fb5a0 +bd80ecee +c82e45aa +936b781e +b84009e5 +5f50c86b +e63ec6b1 +9b98a6fb +129b3e93 +e49e3c36 +c6465bed +84579e97 +a4205083 +2a1327e7 +811a2873 +408fa381 +966e9450 +461a7e93 +162688a8 +d4a82fb9 +a3dec2a4 +8b1d2aea +cf7470a6 +8f48ce11 +5ffc7b25 +72ea02d9 +f7529429 +c514dac9 +b4a4028c +7d41d504 +f4ea8681 +1b233b32 +adfc656f +0466803a +d18fd499 +593c3061 +71243c9d +66d456a0 +7670fab5 +9a2bbc4f +e851ff7b +40fd233d +0eac114d +2aa66c47 +a6a8aa2f +625caf4b +2fbe07b2 +18c3f9c0 +3e05a4f2 +b6900243 +c244b9d2 +60cfb358 +5a148c42 +56c80038 +bc45f217 +f5073ae4 +0c70a731 +082cafb0 +4b4670a5 +594fca00 +ea0ac2a3 +2f3d84f4 +4e592255 +251cb79f +2c443d6f +f828214f +db1b3edf +37db0a21 +91f11edd +077f4295 +d977db1c +0af77012 +ae8a8ee0 +4d7d371a +1a130480 +7d83f681 +d2886136 +0a2f1c99 +b57b827f +aa91245c +0e9ead52 +7effe9ee +4b50516d +65d27e99 +d6b11eb9 +aec22587 +05906beb +d7026747 +34ccc264 +5b444efd +38405c01 +6c3d14a4 +16a81a6c +a863ec71 +c56fc6bb +2d94a531 +2ed12647 +c4261527 +1f5d8474 +ab9e9acf +e4c9f6ec +c639d0e6 +1f6803dc +1acc9833 +80f90445 +5e607e7a +9ad4a825 +5ba575e7 +d35a37c2 +d5c9288e +983552b8 +f710483a +9491602e +faaa1061 +70723a0a +7a2f5e17 +a5b97a09 +ccb434c4 +f6837a23 +95bade81 +901bad3f +6c370c54 +a8821a26 +e05e1a3b +b5f7cd48 +7c421cbc +64145819 +23beb4b7 +5ae197ee +418c9c81 +305a0646 +59a08730 +86b46b2e +ab9456b4 +0a164266 +64bbfb54 +54ae60c8 +b118f931 +493b74f2 +283a1656 +9f9346bd +a8afcd13 +2decae57 +3325ba1f +6dcd997e +1f765f17 +498bf426 +01159052 +2324fd10 +8d34ddcd +f322117a +22a99f9d +782fd71f +efea433b +f72caf8d +4d0c7778 +7db4270f +361eec86 +d3587737 +62f096f9 +d0766390 +51d6cda8 +27bab03d +f6f942d1 +7f0f0e67 +960e3dcd +317baeff +205b0e16 +06012307 +85634890 +8a1a934c +80463bc7 +1f20471e +7baf2906 +845eb783 +dbfa89a7 +4f384fbf +dc9f749b +aa864043 +62e76cf6 +75542289 +6f55d865 +e7e608ce +d34aff56 +4072f40f +7950d1e1 +f83b2b33 +b8a94306 +c10eaf60 +ceff3ecd +ffa150e0 +e7de00de +11b0b64c +ee88845f +716e68e2 +5b0cd9c0 +901ad2a4 +9c0d33a0 +a30a7b4a +ae66e0b0 +03ed27e7 +c364190c +84fbca29 +293a5f98 +3db7e40d +2f0da49f +3f25d8e4 +24e4550a +ba3f97f1 +2bb4d590 +5014682d +27dc434a +9e8fae15 +0aefb005 +3fcc3170 +233e3a0c +5f3f6a5c +3598de88 +d57d77ae +f856eab2 +a5ad4326 +57cccf2c +1449a3bf +f77a4864 +87dcf8fc +1397fdf7 +b99cb647 +d4e84cf7 +42878a50 +ee2a256a +b594c154 +e9976153 +b3d657b8 +755e266a +cea90bbb +327c5dc6 +f273048c +390c8ae2 +08fda2ad +d4e7f371 +d273d652 +973598ed +60ae1daf +3dc1e140 +2155dcbf +25b724cf +0b16773a +42adcf15 +b173a655 +379c488f +466a312b +b16556f1 +9e36b8d8 +cb3963cc +e4058b6b +808e1dff +53a60f53 +c102eaa2 +38b63f8c +d108fc83 +9ba3a252 +73258318 +a1a6e0a6 +3757d3fa +43567237 +aeace694 +213889cd +584ac46d +36bdedca +3b5c4057 +53549019 +25103694 +3ff10fb2 +b72cdc0a +dcbc7c2b +f6e8fa66 +ffc5e9fa +885bbe5f +7c621383 +a0005c5e +ae769f5e +a4390d6e +c70e334d +2ed68727 +b2ebcf4d +50e2ba02 +741be51a +5282c137 +302b11c0 +7af74a77 +34d2db5f +f8a0d88b +8b72213c +e5ced7ab +61cc0eca +44ee1822 +58da7fdf +be289b53 +1ea58694 +e1537bee +38b51f5e +5407c73b +b916cb08 +ba06e67a +bf3b6158 +7b4fbefc +73c4af58 +f71087b9 +179c5e6e +42459662 +9b1a8d44 +0022e234 +d33e0b1d +16c80a87 +75d433aa +441dd290 +f2fffa3c +6dac4051 +cb8bd380 +edd13d14 +dfb81e79 +6a143158 +ae40a03b +e5043974 +12bb8262 +c5abe1ae +ced91602 +511b1945 +0d2f29be +d199ede7 +1faebe63 +b22ede5f +7fa80053 +643b1ea5 +c811e460 +6291463d +c7009b63 +213fd432 +1238e21c +9775be10 +8c444d53 +200e383b +995f172b +98728ad1 +5fd7dd92 +acc16d4c +abd614f9 +b1e27fa4 +6b1e4999 +9950f018 +b50bddc2 +850b7500 +711ec2bc +e6f40065 +420cf710 +671ae88f +4f6357b0 +157764b8 +da272362 +508cc9f1 +b14f7b5c +cf61ba90 +a5537d82 +10d616e4 +8d78680b +92b37564 +0adf0424 +19fe7c0c +31be9cd5 +4c9179ab +3cba23a4 +087159c3 +9dac6e27 +7077ce03 +12e12a31 +a2cb676b +0a9fb6a6 +376bbe93 +73218f57 +e37fd0e9 +6fd10037 +9dab6db6 +18f4eb3d +b22fc48e +a9177962 +f7d3cc4c +b1442b2a +6884de4c +69c989e7 +dd5238b4 +6f14652c +bd10c7fe +1a7ec8bc +c39b8790 +eee4532b +07cfebed +933960cf +f2bc30ec +e245e5ab +53ae19bf +51208b21 +4e1c8c97 +c97556d9 +78eaca07 +eba89aac +ac25feb9 +1d508893 +e8584d35 +ae090aed +88f474d4 +865b29d9 +76361f0d +8248dbe2 +b37ce137 +9b8e7680 +85128389 +80550809 +1e387ea9 +d5b0cca2 +f6e56ae2 +1722d4c8 +cd481139 +bbfc3aed +27d15133 +913264d0 +28c6ef79 +eb8c349b +cdb1e959 +7cd5620d +5e9d4e57 +fcd76f02 +7d3579e2 +e5cbd87c +ddad80e3 +324851f0 +2796f46e +69483786 +01281f02 +59e5ee8d +9bed549c +cd1ec860 +69c07ae0 +1cf80d48 +1665e5d5 +5543532b +b127c679 +ce191313 +29d1046a +474773a7 +8d3bf189 +2a339e36 +8627508e +4aead435 +2c4945ea +7239ba1f +5115abf9 +81f943ba +f26b2389 +d89121c6 +b10da5d1 +98d5faa2 +eab8822a +9d6b7db5 +66ff5fff +a023b042 +d888e259 +76ab342e +f531e651 +a267e6af +eea530d7 +07ae0d24 +de6c0d05 +494c8471 +f3b83678 +e3629c5f +3c7f8715 +7676d9c1 +90eb15ca +23176e12 +8bf500a5 +1c620c21 +91080ab6 +5ba3608f +2e8e8e87 +401e07cb +23f75311 +d13ff55c +23157da8 +c4223f4f +01e100dd +cbf93977 +19a77b1d +6cb0e696 +4ba9b410 +a87a9e02 +20fa8c86 +bcc8b4c6 +1f9b2c55 +244d313e +dc5f6020 +0c02dd76 +13007dd6 +c7fcae9a +ec308632 +9367457d +c1bba512 +4b80a904 +0b43e34c +0526eedb +ebcc4ac8 +fa5f7df0 +30040193 +bfd36fb3 +d40f8fc0 +e157f846 +5f5c3083 +a791cb47 +6ca469d2 +6bebf69d +5fcee6b1 +a9184f62 +e7a2a2d0 +c03541ea +4e2d1b78 +1e23bdea +3bc8bb1a +56d7acb9 +adf94434 +309fa0b9 +34b289dd +39d3ae3f +f717eda0 +a15782e2 +bc67eb65 +f0d90bb8 +98787e95 +8c8662e4 +d2461b80 +7623f223 +9c8738a1 +5592aa50 +0d538fca +aba09c45 +fa642b71 +73404786 +1e8c6c4d +49fb0a90 +076897bf +d6a4738e +751f5193 +cfa5dd13 +bac024c9 +a6cc5a0b +87b2167c +b58c39b4 +ad0a58c1 +01c73aa1 +4b8a28d0 +377df5e7 +f6540b40 +7688173f +472ef943 +cd5fd374 +48a94b2e +e80d9cf3 +0d0ca0e7 +a4fd5f7b +7eb572b4 +e8b9a804 +5141558f +74359727 +603ff749 +28986229 +000e2f4b +d7cb1343 +303a8aaf +911ee817 +073bd468 +ced51bd9 +b024d419 +ef8ef338 +ecb84f3b +7e3f556f +c31e5ea3 +61409cc8 +c1a29f8d +98b03c11 +620fe6e4 +e034d02e +6814706f +15b65bf5 +e63b8ef6 +772d6920 +151f69cc +d8a1c4f1 +bb5d4103 +fb999b75 +3513d986 +adf17e4d +d3cf8a36 +a98ba113 +028ddb7e +66581c5b +fbed4a4e +98e605cf +e058d4a3 +86cff510 +6434b75e +0741dc88 +a9271c40 +3150b962 +43d2248f +2181f1a9 +d2ae7518 +c1abb2bf +0706314e +700e5b5d +f9850f55 +79eb2fa0 +998b0039 +c18f37b1 +868eadfb +04238c7f +962f3844 +d4eae210 +6ad0eb30 +8287cc43 +c57cf046 +ce8ec97b +ce8e716d +9ed66789 +62936561 +ea6f67a2 +758bcead +f90ae47f +c387fa77 +230a3832 +e93ce9d6 +0ba8fed5 +36264492 +0f38c1ef +513d7738 +3044b0a2 +317a8bea +5ab952ab +447c5fc0 +1891e2f3 +9a1250bd +a4688402 +b9930e98 +80da5522 +886c48e9 +3d6b0efe +98bd362e +9e7cf32d +0969795c +60bbdab0 +8534f6ff +a83a1d81 +119ed2ef +7c3cada7 +a9966b7b +42103299 +0461dac0 +84bbf9c6 +851e1a96 +92ea8417 +81cb5a77 +fbbf2c95 +18e09007 +2f5d18f0 +94c7e002 +27700f23 +616ed314 +f17eed1c +86bf49b0 +2ba4033c +3823da6e +cf77f74f +d6133462 +82bcd67f +cfa407de +9af3cdd1 +bd841179 +854d88cd +bf957bfd +faa8cda2 +d38099bf +a0172017 +88bc1874 +8bdd3111 +15fa156b +de668ebd +080fa7b3 +8aef4905 +f991ddf2 +14514389 +cd34b466 +e7ef8a26 +a11476d8 +d9997676 +86439eb8 +29cfc193 +34ae4e8c +f8beff89 +099b68bd +49a6c4e8 +cd5ad306 +30c090d5 +c92976ed +ac82a793 +e7a687d9 +4f1c6ae7 +68c27a50 +29453ef9 +4d6d8af8 +cf9c4b61 +2cc3e168 +d9dc2828 +d71fbd3d +2e546b3f +5df036eb +1a69db9b +c51a7043 +c9373a92 +ac473633 +366090e9 +8924e76a +c024829a +4cc45dda +d32b23f6 +32887328 +b90dbc4e +99bf439d +8cf4ed5d +d8881c14 +40c7ccc3 +4ea0d483 +882d0608 +89a21b8d +ca70d133 +7ae50bfd +bd30f2d4 +7db8154d +63af0a0a +9a2a80f7 +6223753a +b399d729 +1ce1e29d +65aac74e +47e80ca7 +6f0d561c +23e7c11a +9bb3a560 +50f4e28a +558a2680 +adf4e701 +2244d16a +79d88089 +6a002f59 +337b2014 +4be9ce03 +b12b0205 +cde7d5a2 +96fa0723 +0749e649 +46b1f339 +1a9dbfe9 +8a99abc1 +a46ac80b +5e3553cc +45ab2c55 +3afc13ce +fbe2edba +86a562f6 +a8c69066 +7f56dad6 +3e0e22f0 +db5eb19d +393af595 +06ee81ba +a5375493 +ffc981e6 +5c7c893d +3753b9eb +56ef22e9 +d87d491f +e9b1b7e2 +e6cc2641 +c16dd063 +337f5af7 +f3678585 +f26b7f57 +b4a8738e +46a09953 +22b0870f +ce92c282 +90869172 +01047267 +08b8971d +53550bd8 +17a0cc50 +d10e3a7b +33a0531b +a4f81e90 +58da4dc4 +ae210a42 +c4ffcd11 +3c982956 +20511efd +2011f780 +aadb34d7 +58f611af +b4f213ad +3dab57ff +b6b62d7c +2a47dab8 +1585cd0d +35940a6d +7fdb06fe +155e735d +c21d422b +0a197c54 +d35e1d60 +3f07fd24 +d7c62471 +33fb6281 +0bf31079 +2729f67b +a1b65b52 +5612701e +dec405d0 +67e4e8f5 +2b85a3f6 +afa26c81 +99009ad9 +0aba5e07 +bac95df6 +ce938a7c +a8bdf9ae +907110ab +00f2b452 +ff4b22bb +3afb9285 +773e9b96 +3c14599e +f5b2855c +3d12126c +07134e2e +95043468 +d8972ad3 +b29862ed +1910742d +3e26b10b +359cb6b0 +28c9a1fe +8aea823e +8cc354a1 +814278fa +f4a6fba6 +060196aa +d31d362f +42302f1e +fa46949c +402b6ab6 +1000fc95 +24e322b0 +2b53e5fb +7b68cac5 +f1561b42 +0be656f9 +fe687d88 +b2eee74d +24ff6dd9 +b5a4a1b8 +1a88cf9b +ba85085b +416b5b64 +46c32c26 +02ee778d +cba9fce5 +28bd0575 +cde5d6cd +40cd4d57 +84bde65b +f027dfc0 +e70742b0 +c8e30f21 +e8454fac +9a14870f +6700e25a +bf1ddb5d +feb38f87 +56376c23 +37a40843 +1363daa1 +5dbaabb1 +d319dfed +62ad6cac +0fddc33f +91c3f75e +06965c3d +0eed8297 +906d2709 +9b83013e +a4602f88 +8d0f7d7d +4b415bb3 +691fab4c +16803b43 +5bd9a453 +bed00763 +3aadb51d +a93f9684 +3da4e300 +663b5c9d +d21c67cc +69dad686 +ec4d75ea +c77292d6 +29b00bcc +015ac893 +3b351828 +663eefea +1cd85054 +99afd380 +73f5c3b4 +4624c4e8 +94e616d0 +3a45da11 +ed3d3020 +d9318e91 +7bfe920f +7636f6c8 +8a8cd8fb +01a1468f +5fe250bc +9c86a61a +5c49c210 +38b45203 +b7003483 +8e3b57d6 +b198a040 +160c6060 +e4559b2e +eab78bab +74b211ca +75d852fc +8dc24aa0 +db46288b +b1d7a288 +2ed15862 +6698671f +661e6d51 +2341c5e8 +de544024 +d5d5c8cc +5d97f238 +3fbc8adf +e79a19af +dcc5ccee +3a714417 +b7efa269 +f385050d +943eca3a +a1078166 +ffbc684a +4e8d3607 +14781fa9 +f4878cd6 +26fa334d +a08eee5a +a3028b57 +7cf0f3d6 +e71f1259 +d0b8ef0e +a6717a4b +3723bd3a +7746263f +f66f7df7 +c116edf3 +fc3680e8 +3a523fc8 +da12b8e7 +6745ef4b +33b64f41 +ae935818 +a251a8ff +33a91747 +2b438e13 +ea1bdfa5 +afc4d756 +3fb38a44 +935a36f0 +2a8bc4d8 +b1ced7c4 +111557ff +c6373fa0 +374bc53b +edccdfed +468632ac +d6e13808 +3b9efc16 +0be3526a +4c6078fc +a3044e12 +4cd9b343 +da37bfee +be7d01b3 +499f32dd +b377cfd5 +89f9878d +54b51cb9 +377138d3 +4adf420c +d29027ae +724b49e9 +e207354c +b1e940ac +e90a0d2c +47e01053 +0113735c +8702e9da +4b343c04 +e0c337b4 +c8c4e285 +5a842825 +5d6f6fc3 +8bdf9bc6 +42429aab +2ec6a85f +7142ad68 +e76e53f5 +fa303997 +a9dd3a26 +0ed4b00d +2407a361 +c69c38d4 +49f10262 +1e2ab9fa +55f6ada0 +f62834dd +ee4444a2 +8ce94bed +b45daa5e +58f020bc +77fbe0ec +7e0d83d4 +e9ad77b6 +6b2a72ca +3d32f06a +5feb1c1d +01a07fd7 +f5edae7e +bff849fa +515ed6ca +6b5ebd2e +e625639c +94b43404 +451bd4e4 +b95a6ad3 +45a2d21a +7cadbe30 +5db9788f +8f5a431e +eff5602f +01ba7bcb +79913867 +950ef4aa +21b9b0e3 +4f0c5ea9 +fea175a5 +1b8e7647 +9598fde8 +a4ce2b8b +399a051b +4fcd52f7 +2aeb54f9 +cfd60b98 +2a607812 +3af15bb9 +692d4004 +4d96c0fb +8527e4b3 +76aa8efa +7cfcb35e +57a0d09e +6024c84a +dd55fb56 +8958d049 +50e29c88 +2fbe7353 +f476fbe3 +95871de0 +a9919676 +255f3655 +326fdf87 +5a01afad +8df2b7d2 +a1618deb +7eeb6445 +28daff0d +4f2c396f +cd8881c7 +8e97febe +76534d58 +77f8290d +0e14b5d4 +985ac50f +1212582a +86e94423 +f88af86a +c7434eea +ecf2a440 +c1c39cbf +d37a911d +456ee48e +67af0a24 +23f11485 +706a704b +13e9fdad +d229fbfe +d48065a4 +8944bc68 +3eecfbe4 +8d9d3025 +05f0143b +6d30c0ba +baf239e9 +1e2e737f +eae262b7 +cd44503d +6c4b6023 +5761d03c +bb0bd08f +8e123f97 +b0d6a2ae +81dd15c2 +5e1cc39e +6cc17fda +cc7a7a5c +8b437ed5 +cac43882 +48317e70 +870c83ec +2134f605 +ef9084e1 +cd43cb3f +3b76bfa9 +80512db7 +c67d0dd2 +ddf89415 +527e7d0c +6976d08b +eb30547e +3905b732 +44a82060 +c9d23c54 +334397be +69bfae5c +7643ecbb +82ab7978 +e0e9eeb8 +2618e2c5 +feb6db0b +d62b39ca +0822dd5e +d24eeac1 +3ccfe0c0 +824c70df +567ba666 +6bdb944c +3ca00bf5 +54e4f35b +cf2fe68a +5fd9cdb3 +1d0ae71a +09ff33b3 +c90ae1ba +e3d58036 +7d2c334f +72593448 +4458bd2f +e502ac14 +e202b934 +ae07e31d +c6cdbfae +f665b5a4 +c8f646ea +ab480cda +43a46434 +72899ea3 +e037b52d +f1317066 +832ea201 +9d7e4fe0 +e303eb3a +6aa9a5b6 +8fcc403c +0f086324 +d88b2b52 +cc912768 +6a69ea7f +b9677080 +42635bfd +b595d9a3 +6d3070fb +d1374258 +a8fee414 +ca53fc84 +8e321faf +938c8515 +15d48d19 +71c30a63 +c510044d +fabfe70a +38c8e16e +31757b75 +5080de78 +165431e3 +b020056e +9b2a83c5 +b95c890d +ed6c3785 +24c14a4a +3dd5f464 +e8438e24 +7a2cdcab +d7304dc6 +3994a81b +5c88b319 +6b97edd2 +7b7e43a5 +e48f8bf2 +f7276337 +2ec4dbbb +5cd48b96 +c77f7d2f +6c087261 +5208991a +4ed88d64 +d7ae8050 +f1189ac6 +3d8bc3c8 +128d9bd0 +c0948268 +ecaf7c72 +e5edcbd4 +ca1bb880 +d12db685 +a88972b8 +ccbfe296 +baa1d4df +78ed0c4d +d393fb81 +42dfc7f7 +6c89307e +55d80497 +c1e1b6f2 +2f45a7d3 +0446ed7f +4182e17e +d5e9553c +4661c871 +015dced7 +4262b839 +8c98d8c4 +631ddef6 +492044d0 +9c8b2ced +5be0d285 +853f0ce5 +3275d09a +89907d9b +a2dfcd9f +a9043efc +4c7842d5 +22d25595 +8bfda13d +83d5c7e8 +72820433 +97786649 +fe8c0c37 +f7c01119 +a1060a95 +0a959b50 +dab57562 +70d3f60a +2451587f +02b3a27d +a78c9a05 +bda4e331 +147a12f7 +d6104949 +bac719b6 +b3bfacba +4684ca03 +14955006 +7bd64769 +887d9642 +60112853 +28d50dc5 +a2ffc7fa +80b18b16 +9e5006cd +c6c8dd7c +1badc2d2 +0f91e8cc +55c1d42a +745ce906 +cfe44c97 +83fc275c +739e6d7e +20bb74cf +54c4bae4 +8b7bc54c +73a53e2f +6d7007cb +ec79b2d8 +72ea60f7 +dcaa1dd3 +5168789b +f6c6d9f8 +bf13525e +4f517438 +9bc1a7c1 +65993851 +82bb4986 +7259dc52 +1fc41e60 +f693249e +686e97b9 +038785ca +1a86275d +9ef16dec +a5188390 +f2376412 +6acfc6a6 +f8d69a87 +131267ca +434f9ed9 +dc367c5f +b2bb7085 +48bedfe7 +57f7d8b1 +5097d18e +19b9435e +33ecf57b +73af8251 +e938fc82 +d04aae7d +7ad4ea2c +bc4c21ef +a85e0b9b +f605ef77 +03e48276 +13e7f44e +739ff196 +669b0ac5 +d7cfb8e2 +599db241 +30fdb872 +69af56b9 +004b452f +980d90f4 +89201d31 +cf368215 +1b74d531 +c0d5d38a +8228dde1 +bbbd7e2b +0506bfd4 +b64775cc +e113fc4b +f4233f25 +61a7526e +0ea7c76e +358f48c7 +c6c8271d +8fda7cf8 +726f00fd +5932d31f +794fedab +d2e3dec0 +294e4d47 +3a2c2ea8 +5ff2e290 +7b233b75 +d6c63567 +f6b9bbd2 +bfc44ba9 +f5e90c82 +304fa5ee +54634f71 +5e1b1d0e +6997b535 +34c6dc22 +cfa6c3bf +da87807c +cb3c0ba3 +beb8cbb0 +b5ce065f +7f57646a +6a39d150 +8d2bba78 +732b4cb5 +9f7517e0 +5c83c2dd +ed086ca2 +d39b9463 +83544135 +f3e003c4 +c40f2e3f +b2aeffc0 +f6888a32 +597ee6dc +c4c151ed +46087f7a +15b532b1 +a567fd47 +4c89c3af +88a43e6d +afe4ade4 +0a263d38 +391ec177 +cc4b09df +cd122c7e +ee59a960 +8c827f7f +98d8d031 +3107b950 +5769e63a +8446dc39 +0a3a2cb6 +c5f36ac2 +2fb5429d +35f2cb4c +a21d9eab +f1b45aab +2b98ae01 +66c281d9 +d3d7a5ca +e050cd8b +3cd0db39 +9333e74c +aca41307 +53f5f0ed +649ab4dc +a1613c35 +22ff76b7 +23de5a4a +ee325ae9 +54d94652 +9de7c14e +852273ac +67eea4ef +ad208ee6 +7f02edac +f0c8b1be +24ee718f +e53bceb4 +fe28e8a8 +e13d8f54 +4c2180da +0e63575c +a799ed45 +3a7915a0 +e029047e +2bf72324 +c54560e0 +3df44b8a +33f67854 +92f83f4e +7d48ae56 +372f26e1 +610f6d4c +0cad5278 +dfeed14a +74db6d7d +9a09a6bb +b1ed2e73 +a4074cba +695b51dc +eb4b8edb +08658f3b +229ba619 +df7b8074 +b3badaa9 +6f3d6efc +0eca1729 +230405f5 +9c4dd39e +4600bc29 +eefb9756 +a1f25462 +0d6c9034 +9a05ee56 +547c0ffe +0945b3f6 +61fa6541 +8c4d4775 +479d08d5 +799b1690 +07704244 +f1311559 +ccf705a3 +e71a3721 +e4f51aba +6c47047a +2a55d52e +2c318def +f0fa18d0 +ff4776d6 +903f1f14 +6e7947ce +a5bb26cf +b320e88d +aa4b3ff6 +d520251d +392463fc +622fc8eb +abcafd02 +7e930516 +830ac546 +bd07a556 +ec98e31a +d86da906 +29132dbe +724beea1 +b9fe941e +a53e3202 +af94b16c +16a6e853 +401ced54 +422a3712 +8b7e0638 +6aea41c7 +b1b6c11f +f51aaa12 +9996c0a6 +942bdf7d +6cf2533c +beee742f +896ef94e +392644bf +e7766a34 +f902af47 +22eb9f3d +45bf62cc +57c97e3d +63c8d3d5 +36c6971d +9685e7f5 +bdad3f20 +cb90a903 +60290797 +de717989 +a3d4e5bf +a8cd5504 +8902507b +069be97c +37aeaad2 +04a6cddd +8a7eec4a +55ecc706 +5a11102b +14e49183 +7f518378 +2b24d61e +67cebf16 +3fae39c5 +49d1ad89 +c45f801d +13516e01 +5bee1ad7 +39046df2 +a6b6043a +8332a54f +7edea927 +9ec876ba +398fb903 +b94d9d6d +4bd70b9b +456523e2 +3e8d379b +8b8cd228 +2f829c7a +fa7d0797 +ea23b002 +eaf136b6 +cf05f704 +97cd93b6 +5a460471 +d3787b55 +57b09f76 +189460b0 +c731d31c +2c9992e3 +316007da +aae04188 +9a5e0260 +40df519b +2ce114bc +4e4ecb8e +465779f0 +85e276f4 +4e0a7911 +12f7fc9e +122c7980 +8b4f0fad +97d3ddaa +10011256 +bbd117b4 +1704ec8f +3562e97a +02088995 +6bbfd4f3 +25517785 +762081fd +81271509 +df361421 +cb89a731 +c477c997 +aed3d80e +b71e883a +1866b7d4 +cfc21884 +62e331b2 +891a72b6 +944ea55d +b1f3f2b4 +106f7cda +ef7bced1 +1ac6b94c +637e5734 +09ead1d3 +a0d48449 +4ce8f99f +7cda6c86 +752c830e +ba12b984 +c557768a +79556672 +dec9ee0b +dac59909 +96fc0b70 +87237511 +8a176218 +d3d8086d +f4b83f99 +f1cc6fa4 +79f15f43 +175d6c71 +2c58ad9b +86aaf467 +02bf81ed +22f136d5 +083944ee +1b46e71c +da950aa8 +89977be6 +88c5e4c8 +42a7764a +1d56e466 +d8babd50 +ede207dc +ab029c73 +9ea38862 +2e834f9a +f7ab55a0 +514cac09 +487e84a5 +66ae8393 +2bf8bed1 +8b0b85e5 +89aa5c1d +39cda501 +bd4827d9 +2188411d +2262dd8a +a02952bf +bc082914 +6107a156 +dc790dda +6739124c +4d0f5c58 +1650c2ec +bcecd637 +5772038b +cd5f2acf +272e7ece +041aef9c +1fcfcb5a +c3af7909 +188b9fe1 +757f1081 +d092f850 +3ff5f6c9 +dfa3d0ad +a7c6996e +ecac5559 +0b64fe05 +b72eaafe +54dee4bc +d61cc293 +3611435b +00925bbb +0870f385 +c08e58a1 +b393caa5 +e8c6d5af +8fa0b8fc +33800760 +012bac1e +b6168da6 +9206713a +e9995d97 +c7af51a6 +30517549 +c3e69838 +9d109687 +84462a5b +e623e09f +eaa3a97b +00ad84d8 +92135ede +ce9fc368 +79d97513 +12fa2938 +299aecf1 +e38cbfac +612f8227 +65a3f12e +55384a15 +076295ce +a3e2e7a5 +04078da6 +8b00e866 +4cd49990 +13af20e5 +b755fe49 +748e1ebc +a3a12501 +343ac6ed +e034d733 +d341fee5 +ff7d71b8 +d9bde05f +5bb8abcb +7e435bf1 +0a2e6d2e +de89c3d2 +550727c0 +325780fb +aa9347e0 +410a0a99 +2462946f +7cb8561e +f679a9ac +02516dfc +a0bf6af3 +e89812b3 +9343fa06 +a32a6c9e +2bfbb2fc +c4c22604 +91b5a423 +e4802c36 +083998ce +1dda5fa3 +245361b7 +ceee5d18 +88a133e0 +fe01516c +4e979b5e +a115aaee +85258115 +8567b763 +6f0b6a04 +4ec65f86 +df2138cf +7fc0c2b2 +c295a1ce +d5972498 +418b1fb1 +74ff6ea4 +814f28f7 +5717f8f7 +cc41a65c +1dc67798 +0f2ec50d +dbd3ed6d +b5489539 +a8793b14 +b2d2f56a +ae37a48e +39f59c08 +753998f6 +51eac460 +62669db8 +1768414e +343ca46a +bdfd8a02 +bbab92de +cec295e1 +5c309cee +4f11d1f4 +2a1dd548 +cbae81ee +23f3797c +e5fc4a2b +438a806d +02705efe +dfaaa501 +0bc4c053 +b941752a +5c217e41 +e8f7c7e8 +0bcbbcd0 +084bb20d +d93ced0c +bc2b8616 +d023b3d2 +b7f7d54f +e9f37f7e +af4c380a +eac68878 +30596e6f +6a8de37e +a37c8b45 +97acbbc2 +de551d2f +72314724 +a1ee64a6 +fdf60c9c +80fca57d +bd08de2f +60dca7a3 +b824973f +79f7c195 +d55c6c33 +bbd5dea0 +45f00e25 +caff9963 +4459517c +033c8168 +a7aea1ba +2124a520 +b8b81ee6 +296f0d15 +7c3ba41b +07c7b3f7 +4e56c58e +37706054 +8ffa5d97 +37eb4c99 +a17fd261 +ba630905 +69b8df56 +3155f559 +6ffb4550 +d2f1c80c +1a428761 +933c819b +94adfbe7 +e8c8c3a9 +da609e27 +d422ad04 +18dacb0e +7f314591 +4fc6fe06 +9f335e83 +7471f41c +335254db +3005cb05 +7c79c8f6 +dc650390 +d668848a +13623384 +3c1e7151 +79793ca8 +e5c1c957 +b28c67ba +c9e11adf +d4f05169 +b05b0018 +58172e5a +e51df783 +88b0ca3c +92e70d0f +99810933 +e2432229 +1e2bd8f8 +a384f95f +afbc3455 +121038f7 +a8d1ae09 +aedbd1e7 +a27d7b04 +bd45ab0c +7dab1649 +010e2c68 +89be0406 +3e07d661 +83b0b6d1 +f434c77a +fd591517 +595e392d +9e2d5050 +d31c4758 +ce544aa1 +7ca23b4a +2af3fe82 +87f5c49d +015dc527 +d56146bc +54e99be5 +8975cf25 +ebb8102f +63d165f3 +d649a368 +c195d620 +cbc7bc74 +6f07d986 +e949720a +fe8687bd +f3b0a575 +62cfc6bd +a75928f0 +95b6ef60 +f206942a +bbaa2887 +e3432089 +5b9d1e4d +e29743a0 +e3a43a6f +79a57263 +44535dd9 +22e03083 +e801aed0 +1853a68d +3013a9ec +0429de61 +5aecc062 +f71a9de3 +50636bef +f956319a +0ca624bc +2b3a2e72 +36ea002f +e328a4b5 +c9556546 +a17186da +cc3d7a75 +793cb1f2 +de7c4f1b +8ec317ae +e5cadd10 +b50c2223 +1964d309 +a0eb88e1 +25ddaad7 +df6ef679 +645464f7 +5bd53d40 +b486d165 +df41254d +8b7e21f6 +afa0822d +6d7e8644 +5783071a +38d73ba3 +cd8f34fb +b0aed267 +37843f80 +c5566d9f +f8fc9154 +74942bb0 +50c56209 +3440d43b +ae30c15e +8a8307e8 +bc283a64 +93aa528a +48923fe5 +5a64c137 +ad1afe78 diff --git a/models/rank/dcn/data/sample_data/vocab/C11.txt b/models/rank/dcn/data/sample_data/vocab/C11.txt new file mode 100644 index 0000000000000000000000000000000000000000..311221d155de8558a93f2f3f2f2ba652616f12fc --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C11.txt @@ -0,0 +1,2246 @@ +fa6526a0 +0a76236e +07128696 +facf05cc +a739bbee +a847377d +61593534 +804df57f +f72fff3d +45e3ea2a +f89fe102 +aa5e0431 +7970068e +838d6a6a +98bf6715 +b205dccf +ef8b8995 +668d693c +0524c7b4 +35d24a2f +d08bad2a +9ad3b3ec +2de821fc +dab547a5 +37428807 +f2537412 +9ca5c0f6 +8e05d0d5 +1a036e26 +3bcfd189 +e9cea188 +fd7856c1 +80cc1e76 +5f9d9fd9 +ef65befe +15cd287d +6743b177 +394e4e3f +1e41b6a4 +4e8abdaa +2566311a +75a64bb4 +276be673 +68115e0b +f29b9ed2 +6e067112 +c7435d5a +6263d404 +ac416c77 +434d6c13 +0e2e5e48 +2b4132f2 +84eb4210 +d9244025 +7e2c5c15 +dcdf9753 +ee9e620f +ce3dfeb8 +9f0003f4 +95fb4c31 +e81438fc +2bfe015c +67aa8b13 +1bde707f +d20ffd8f +f2a5d7d2 +034539cd +60a1c175 +7845abb2 +5de52301 +86ca7dc8 +415f416d +dcc84468 +05af0aa0 +ae15df0c +2161e3dd +5447972d +d0727572 +93f5ebb7 +fbb27036 +f1b78ab4 +54649d62 +0601c4d9 +b4e53c60 +5db56e1f +e973bfd7 +e92f89be +4be2b24f +474b4dbf +e0c3f6d9 +5ef0d562 +dd0c7036 +1a0a36bd +58c2a175 +52105669 +ff360943 +a1288914 +a33816cf +a0a5e9d7 +bffe9c30 +512b93d4 +3bf272bf +8d75f3f0 +868a9e47 +70caa7c8 +06d58ceb +bf09be0e +43d9f976 +843d8639 +fe951f20 +b73648e6 +087dfcfd +f0d7528c +ba1ff80a +60d2afd7 +7373475d +497f72ca +407e9439 +2df02cf1 +46a894f7 +a8e564a4 +1313f20a +ddf72fe8 +11fbf407 +7bc4afbf +cd40d7db +d70e2491 +793356a6 +62adf0d3 +9c50f4f2 +4a31f431 +bd56ba93 +dd542e6d +5420373c +f4aee513 +f499652b +d5a66f22 +f293f2e6 +d79bad49 +9e12e146 +b925bab7 +be28d080 +2cc0193e +65819b7a +bf2008fa +a47c5009 +9ffb3655 +248679bb +0e4ebdac +26e56083 +089d43ff +e3baf8d4 +ac52bf19 +69628afd +8924112e +ad757a5a +77212bd7 +fccfdad3 +2b9c7071 +df93ff85 +c959e5b8 +34c909fe +12cf60ea +043725ae +a21d2994 +1d125cbb +08b5d3b2 +c6dfa670 +62042a07 +0a6a17de +7397d690 +1cba690a +ba0f9e8a +8a7e2934 +e3ee9d2e +a95a8954 +d91d8560 +ff48b5b4 +12f01a32 +a1e02e8a +9e1e00cf +c026aaca +a7645fc3 +723eb72b +deb288a9 +c8e9dff6 +4c14b9bc +4fa8c39d +6e647667 +78d9666b +b49d37b3 +ecb2338a +88cbaede +ef1bfbab +86720f44 +31fbbd11 +3a3c960c +9a024337 +f61e81dd +e4fbabb4 +73be5cc3 +8b94178b +e6f56a1b +d556b556 +2996a71e +eeb15007 +8bc6ab4e +ac846092 +6cd6a35b +87dc9425 +258020a4 +d4e10454 +5ef59ae3 +dceff55c +f11e784f +9166ec18 +5fa0c6ac +4b602e6b +e163daf6 +873a0039 +5e183c58 +5f0f014d +d83caed6 +39f870ad +be281e8c +1a2065ce +01df04b2 +761e668d +b1a5e8a6 +dbfab1aa +d39dfd5d +d850f8dd +35fea499 +7defe259 +745416a3 +6624dcd4 +4427adce +c0edaa76 +315b651b +4fcc6c51 +963a782f +3af49b08 +a10c0fc9 +b06ac93b +a2c1d2d9 +71265574 +85d57109 +c0e757b7 +4950c85b +8f2a5d32 +9215e3c6 +c5bbf6a9 +28404bee +75a786d9 +ec88dd34 +89f2ad37 +07c67b85 +f958dd70 +3f8283fe +540c97b9 +e7c049c2 +0f736a0c +27258c97 +54ca8d16 +dbdb7970 +6b0d4f04 +54e3c2f7 +e7c8dd10 +ad3de7df +750c33d8 +c3ce49fb +69926409 +83dba508 +b071da68 +8b851381 +c255f829 +41516dc9 +ae6dcfce +26472930 +9925d6d3 +19ea7894 +1de95640 +10e6a64f +1f14947f +cfcea1c3 +ff694829 +d0ca2b2f +c6377b31 +2b72fa0c +d4c2039b +7b61aa9b +51eb4c2d +43f6a84f +8b92652b +a631eb8f +8a26f2e1 +a60de4e5 +38aca7c7 +69753b72 +d2b7c44b +c5d99561 +731cd88c +63b4ceea +b38835a9 +b5939c49 +8c997030 +76120d9d +86c05043 +2a7d9fca +d66168dc +c4a3755f +69d26514 +e24ff9e7 +105496a0 +8888be74 +b176603f +9a47e077 +4d99801f +494bd436 +60adb56e +4462494b +36706e24 +1d351a39 +59b7f136 +5bee5497 +f2313205 +c9168a8c +63c88067 +e16bba2e +a3411756 +503d9588 +284551d1 +6df3cb7a +7e40f08a +97365bba +e98d0c6a +fef0266d +61cb7f22 +acac17a6 +89073265 +19d27eca +df80c9eb +d912cbc4 +b750092e +d83c9bd0 +8fa5dd63 +76dd75bd +e09c447b +56cb5b8a +0044e5ec +37e1e439 +6cac6e94 +89d1fc33 +6685ea28 +ab06ce90 +ef379d27 +8a79d845 +8f7b26d4 +e04f77e2 +c389b738 +cf690be6 +b1db274c +925f62dd +28b2a54d +1c1abc64 +a4ea009a +e6c92dd9 +55506080 +2b31063f +e6c365aa +d9466be4 +d433166d +19de763a +c24bcce6 +cacf7f71 +7c7199cb +81cef21c +caecb243 +04fa5bf2 +8ce8df41 +27a6c0d1 +d6ea7935 +e9cae52f +be099a80 +f497a54f +60e58dde +348ca00b +02ab188b +64d5ed07 +24adbadc +d87a8147 +4ebb5e92 +d74f7351 +391d1efe +f629f438 +298f4138 +75b1673e +0fd651a2 +d5df6cd3 +4aa47037 +ebd30041 +bef6a013 +e25a89f7 +63ab36be +3e128095 +01a25c9a +ce13c273 +29d227bd +2397f9e6 +b4105d5a +981a1f4f +e07b8196 +3e794ff5 +94d2aad8 +e52152c0 +ee8f8975 +520c3688 +680bf6cb +d24aec2b +d34b988b +149238ed +93aed850 +c9ddcfd0 +7865b9ab +88731e13 +f03a9de3 +1b723d3c +1c4009ed +a284f9c4 +38317f6d +4e0b2bc3 +9ffc0b1a +f00ad1d7 +86fae75f +eb3851c7 +88030678 +6ebaee32 +f180b699 +709d0c1d +785a24cb +562ab4a7 +e469acef +1c3fae87 +9fa1dee2 +9fc5181f +7fb8555d +defdb18a +b4eb1891 +c05dff4b +7beb451a +e90cbbe1 +c82f1813 +fdd3a1fa +17586bd8 +49aeb6a9 +3f6af40a +193ecef0 +8bb35684 +d8d7567b +319687c9 +c4bd1c72 +b0de0b18 +8fca7b8d +d47df190 +33765c29 +b5565b1c +3d566bf6 +5587bbc1 +7f21b03d +42d37e0a +9ba53fcc +cb755bc4 +bc8d1448 +51ef0313 +0b048c07 +eacae3ce +bfacd3e5 +0b9f69c5 +2ec0a569 +ef91e49c +5ed6ddb4 +488e8c8d +9ad95d23 +1c3f82f9 +6ed062c6 +17d8db0e +9bcaeafe +4ca1899c +10b3128b +064b8acf +7622c80f +5cab60cb +ea602e11 +1d4f52a9 +4f1210cf +68adf3f2 +98096bae +431f1b36 +ba34ed14 +208d9dd6 +d3e650fb +f697a983 +b7301ecc +86f426fa +cef3fa21 +48540920 +81a23494 +1a1d177e +9e4e8906 +340c0959 +6d91e005 +efb18b6a +6872a82d +2db82d51 +1f36d28a +cfdc314b +c3c3306c +70948dc7 +4827f801 +9a995116 +ff78732c +50578e76 +7eda4554 +44482217 +c19406bc +cb55be22 +3ac87d37 +69593bb9 +67360210 +fb5156e6 +45ea640a +bb3750e8 +d1a4bd60 +4b0929e2 +c7164dd7 +1c850e0f +7d87ae83 +f53ac662 +e6959f26 +b813ea6b +4e258239 +1bb4f435 +3dfa865d +8f68a279 +ff3e74e6 +9f7c4fc1 +a3d2f3d0 +1f84ae2e +0014be64 +48876b80 +4ba74619 +13f669ec +09ccd2da +de035f75 +5b225578 +4352b29b +acfbbebf +e0c3cae0 +727af3e2 +1791efef +780660db +a15790a3 +364e8b48 +6fc9d950 +1ac15ae5 +5b20ba06 +a2460a9f +39e1365f +30a76a50 +d407af40 +f339b72e +f2a195a2 +1294fec1 +d87ff710 +2dc2a28b +82efeb82 +422750b7 +2b336a73 +0a8f4121 +911b463c +7940fc2a +8139d33e +3179c622 +54bfa8d0 +ba2f8f9c +b2914f93 +c3752eb8 +8d3d2b01 +e8da7aef +a9b84bd5 +30b2881b +36bccca0 +6c8d25d9 +5f3eb205 +2e1a735b +6fc1ac4c +98291270 +2ec02461 +1333e775 +45ca0a69 +46759dcb +3722e006 +179de637 +eb94162a +13429d76 +4eddcd83 +3db1963c +b14be692 +740f5b4f +ab60c4de +a9f02987 +5fff2f45 +cd8f9ff6 +db1106ce +3bb8e704 +e8f11449 +5298a972 +43327221 +b5bb9d63 +c7cf63e9 +8aa7f20a +cdeb6d98 +5f5e6091 +6348db7c +9d7e66c3 +88ac36d5 +f677069d +5a539822 +873e6871 +a950f02e +39ddd652 +9c4ff10d +ac5b959b +16faa766 +6ea0f130 +62750746 +6e76c47f +6361f816 +23feec22 +d14484c6 +8ae133d8 +cdb97ac0 +2a0b79f8 +b28889f8 +3ad41aaa +1ce24b7d +ab9a95af +60b755e3 +757868ef +541383bd +c08aeb9d +cc4e770a +d778c774 +8f410860 +50a20b02 +9e271da4 +4899e211 +94952d35 +76030d37 +703083f2 +7c53dc69 +6fd96e76 +8ca164ab +4b31c286 +acc758fc +ae19a197 +6fadc5f9 +afdd3fca +0b60ef54 +07a46575 +e349711d +7671c62f +69c3827e +e0811b9f +e303df6d +209ac897 +ee26f284 +00e16cd3 +e3205ff0 +02ab57a9 +bd46133b +d4619bed +ebcb3ba3 +cd797342 +3d7fac52 +5d1b7285 +659434fe +f40d1e68 +fbeb00ee +0cb221d0 +ea4adb47 +bda62d37 +779a5106 +3dcc32d2 +e5cd3d61 +9ddfe8c7 +562311c7 +2131198e +2b5aa2bf +4ebe7951 +9f73d324 +633b9489 +50349a3f +4e218488 +c92f4124 +9a993c35 +f1b649a3 +d3246de4 +4160baab +ef121faa +c1700682 +a5a03018 +05286645 +a6cb287e +74475d27 +9c9c7308 +c8b904a3 +6394ad05 +7b760927 +a396c8d9 +7158b034 +febe567a +30f71c07 +ef817d57 +d2830bad +ac2c5371 +6c9a3693 +ab855bcc +034f08f3 +b67e50d8 +08bbd6df +081c279a +d4a6e08f +e07776f0 +4cd7127a +904aa145 +28929846 +47db1bd7 +595cd8f9 +6ee38365 +aa1ed092 +f3d551b3 +cfd9d2a6 +9d9b97f6 +bbd76afe +c4525253 +7fd08581 +26dd1ee5 +feb49a68 +636405ac +25f4f871 +a3fd26e0 +5d7dd95e +bb40a095 +bc61decf +4ce044d9 +1495215c +6944f67f +03eac08a +cba091a3 +2700f421 +ba2ce7a2 +5330ca74 +6fcaf9ee +df29f7bb +6a5e1ce5 +33fa033a +5738b0bf +9839fbc5 +0e0ed736 +d75847b4 +93163196 +00ccd0c5 +161c0138 +d0c3ead8 +37deccff +0a8fd877 +c3e44774 +c1a1a022 +2cae895d +e7553038 +f295b28a +19f5f5dd +4b8a85bd +07678d3e +10c54501 +1eb61c99 +ad4f09de +f5c42ad7 +a0085b3e +8d689bd2 +adac42e2 +2271d551 +3e38ef40 +4829f487 +d13e1160 +83f1ad4a +c19f03c7 +6e1654c5 +43bc35a8 +ad2bc6f4 +392b18ed +44ccb891 +9a3e4210 +78664cf9 +79c3312f +83baed7f +75c39076 +defc0075 +6c0215d6 +38718806 +01e8b761 +72a65bcc +1c9ad75d +3547565f +2ec2c272 +094d98ad +b3410e99 +3d5fb018 +8f8d1f20 +02efa108 +61839c39 +98579192 +859b343f +61422b9a +6c429741 +773c8555 +4153544b +c3516644 +9a42c09c +4a77ddca +b2cb9c98 +d0fb938a +ed04080f +a83e53ab +7331bbf1 +1fc14089 +8f4f8f83 +f161ec47 +b902a565 +4be981e7 +1dd0d4a0 +746cc630 +a4e68497 +7975199d +c813da1a +21ebeddc +26df63c3 +418037d7 +d52cdd9b +9fc87b07 +753571c7 +70b31aec +25647a7f +1808565a +e931c5cd +cc0d592a +620c8561 +860c302b +38c9f469 +1acca553 +6ad82a5d +7760d878 +8aabdae8 +507605d4 +fee58969 +a7b6a17e +09263bd9 +d21494f8 +f5a125f1 +e93fcc6d +44fa9a7f +df9d9c50 +c6cb726f +b7681f11 +e66005d3 +0b8d6fd9 +0dd82f01 +19a2ded8 +46febd4d +f57856be +11948fab +57f01cf7 +59cd5ae7 +27446250 +13d4586f +f1911847 +1739932b +90b648e0 +d19fc8c6 +5ab334eb +b785d136 +daeb791d +530b0b2d +89103b4b +b007257e +01196eee +bbf0e61b +8eb2eac5 +fea375b9 +7579b566 +d30a51a7 +b77c4857 +cec6a8ca +8956b1d3 +2c44514d +ec2b795a +1ed3ae25 +3bfee234 +03458ded +d962f011 +6cfd6e77 +e192b186 +f4c5992d +00f107e8 +612c40c1 +65695d1f +f7433a43 +60a1720f +d02264a7 +4a1677bb +70dcd184 +ea857ad7 +d206c325 +aef30e3e +6803595d +278636c9 +37fba4a7 +2140aa09 +608452cc +dd244141 +7cb56051 +024eda9a +864d33c2 +6a447eb3 +6033ad73 +b44883b5 +83cad30f +553ebda3 +89f1b83e +b7bb7a17 +9bc67cd3 +ae7000db +bb1cf240 +720446f5 +f2f4d27c +57784783 +3d1fed94 +41b3f655 +bc786d15 +222919a2 +7696b047 +ac60dfda +20beca9a +8cfaeec1 +d2676d80 +f3c8cee9 +c27c1197 +9841e6d9 +742b7c22 +cc665c85 +ea86da03 +371dae82 +ae84264a +529e8447 +72719926 +84b20221 +24f22538 +2872a4bd +b0f4c8f5 +8bd4b780 +a08945ca +0ad34f2b +0f1fa8b8 +9e28e80a +96a54d80 +585a8b28 +16ef27ce +32b2a883 +7f9d1b4e +ada36e89 +555eeba5 +0741a7f1 +c3c8550f +9c0e6cbb +ed3ff64c +afa98192 +6514ea2d +6643a666 +70d4d706 +0d5c2942 +af48e415 +53dc99b0 +2d5077d8 +06474f17 +a0be29b1 +611103d4 +031ba22d +d697c57a +eb9eb939 +7ca01a9d +2869bd0a +88196a93 +3de09421 +2b2bf391 +a7b606c4 +547c304b +5ba8124d +a12fca95 +640d8b63 +da89cb9b +cd581ca6 +606866a9 +a7b7cb1b +5358eb25 +2e8b75e2 +d9085127 +b85b416c +6aff7e87 +95cad465 +8147447e +c1b6abff +0205988f +fa1b06e6 +41656eae +cb70bc55 +eb07d8ec +c4adf918 +68357db6 +0d24afc6 +6c19f56d +222b3777 +b2b8c49c +c30e7b00 +c5dfd786 +d2467c8e +91e8fc27 +43113bd0 +81b9f538 +199045c0 +159499d1 +a277f761 +39dd23e7 +f60614cc +cdca587b +38a367ae +0ad37b4b +065c8439 +cf0467b4 +7f90c133 +eb9e7931 +6e9fe9a5 +7bff66d4 +2671d3af +2591ca7a +1a887928 +9ed2f758 +04910a35 +b63edf55 +90bf7fef +42a4fc1b +1fec5e61 +74e6b5a6 +910afbbb +82f3fe17 +0be27447 +5ee4697e +6c27619d +873f4a8c +81d42f77 +4a00b569 +550d5889 +5fdca18e +0fa9165a +4de0e5ca +7a3651f5 +b5c67594 +7fb7db93 +26f221d3 +f47e21eb +3ec9c616 +0ea2f0e7 +f4d0627d +2aa56c5c +2a6cc1e3 +ef271697 +661c2800 +2c9174a6 +c315d3e9 +979e94d6 +e4034ebf +ecad1737 +307c692a +a523f48a +26800aa4 +18d1c966 +0d04ec40 +d59f04ab +615eab37 +d68fa39d +c1bfba9c +0983d89c +c8e7f509 +a72ac67d +7ef210b7 +ce997386 +c17b047a +48e4d52e +d3bf1cde +873e9732 +e71d6444 +730987d3 +35dc8759 +dcd28acb +980e6880 +20aef7a0 +15eced00 +2e9d5aa6 +31b286c0 +de95524b +2de24be4 +532530d1 +5368b8e5 +63903663 +0893f6c5 +c1ee56d0 +6d61e4a1 +5c2caadf +23f20700 +4d8549da +f7143717 +2a55306d +5f2b6964 +6b5f6a88 +d08d4ff1 +d650f1bd +7c934a0b +d059cd92 +f7756ac1 +bc862fb6 +7cf13f16 +7bbe6c06 +21f0dfc7 +d01b247d +f272f98e +29df6324 +4ad5ddce +4a3262ff +21c80bff +3db09674 +b0fdd070 +3f335b6c +33e57ef5 +ea77d5e7 +9c2588ba +92ee270c +c81aba6a +75ae185c +41d056e9 +12e19cc5 +e08d8d9c +731f1c84 +95eaf7a0 +6241e24a +138856a5 +39bff5e5 +2cda6e6e +365017bd +fdc97314 +9790e63b +7056d78a +9e19e80d +e048fc7a +75a867b0 +7d7cbd2f +586674c8 +09e4ffde +30d2a079 +26fd9541 +e2a3d92c +e015e3d6 +efd075d5 +14f42fa7 +8d5ad79c +b8215e06 +6cc7718d +07d372ee +c9208cfe +b846a6c8 +040c1843 +ba515693 +fd318026 +ab147b82 +41e42cbd +6301d50c +a35ba7a0 +7a4536bb +3f3009e8 +effca8b9 +531d1ebe +f1f039ef +af411eaa +700a0da7 +77e7d573 +3290a168 +a015981d +85384859 +7aaef595 +332a8783 +f669ffb1 +3c9ac292 +9e511730 +002aed7e +cb95800c +20c37f5c +b388c135 +fdc83259 +477c3e2b +9ee336c5 +6b286918 +d58d68bb +f53090e9 +50594cdc +138b2402 +f3580cf0 +9ebaacb7 +32eed026 +73529f4e +0fc6ec45 +643327e3 +f7188a67 +30b2a438 +27465d16 +96a52b15 +afedbaa0 +1c80d81c +dc886240 +09b20c8a +b4bb4248 +7315b319 +273b889f +0d989d65 +ada5494c +0f5b971d +38914a66 +4c074d2a +e8d690e8 +c649e270 +ab066900 +c6b5ff1d +f52829dc +00adbfbb +64bbd6b2 +447a6784 +760b1970 +8715580b +ac2ebe45 +7bc78da9 +7883ee47 +1d7bf26b +3168dd4c +b7a129a6 +511ec7f5 +9f423ce8 +477ac334 +245da965 +c851b930 +9091de16 +e819cafc +3a403d8c +3c264af5 +faede055 +7466b255 +6ae20392 +b865c9ad +213da3f4 +9163f8f1 +8fe2ef61 +f82e5dd9 +b1d36dc3 +ba29baf1 +3289d3e1 +1cf3e7d2 +f5387bbc +e0e79bd6 +60d383c1 +080b546b +0bc63bd0 +2922698c +bc0819f7 +eac2829e +04589a14 +6823ba31 +7495273d +5c81e974 +fcf1ea92 +3617b5f5 +671196e3 +9d15fbc8 +a39a3a3e +3decbee2 +dd6fc8cb +13754a9c +67841877 +dff85499 +98ac1c4a +8e46b8f3 +a45c6436 +69c8c8e5 +7fee217f +f1f0b97e +e73bed86 +b9ec9192 +a28aaafe +ee53454a +07806dbd +9afc591f +29de8560 +71fd20d9 +30b240f3 +c0f836a7 +0a524be1 +7e449acb +31f2fafe +68f54e9d +6e8f1bd5 +2e676adb +e6e0c2dc +5aca3f1e +5fb649d8 +6f0e70b7 +b6759853 +9625b211 +5874c9c9 +f8bed1fb +c1face1a +72db3cb0 +faf36938 +9c9d4957 +dcea998f +bb202789 +4f9ddad6 +be8a7bc2 +d6004b54 +3ac1b508 +7b6cf84a +16dc029b +bbf9c1a0 +4c4ecb2b +b87ef7f7 +922bbb91 +358a1187 +1c67f554 +682b9278 +2181d913 +a6f5e788 +609032c1 +19e80277 +4d38a97d +a8d08fd9 +f0e08020 +251b26ad +cff871dc +2bbe08a0 +86428265 +25076b65 +5a0a81aa +1c541241 +0b28362c +2386466b +f9d0f35e +c2bb68d8 +f741cd0d +9cd33fcf +5d8204e3 +1314bfd8 +4ca43e84 +b900501a +c05bd0b8 +aa209877 +20ec800a +297e8e76 +8aa1c159 +165c12cf +bbbf282d +a17df47c +36456e9f +2d8db3aa +7c430b79 +0eb7632e +e40ee698 +6a3de4e2 +f173d5e6 +bfeac7fd +9526c084 +bfd9d6e5 +75d349ab +726a2eb8 +7c928cc9 +757a1e4d +5097afa1 +af6a4ffc +c22febf3 +50df38c2 +41a49f7a +9906c8f3 +e3603bff +c6c91669 +fe1bd1df +b9d19939 +2666eb13 +20008692 +23eb0c3b +d96a7426 +55065437 +248065ad +72788f31 +7f8ffe57 +683e14e9 +f25fe7e9 +036d21f8 +de372071 +2d9eed4d +6dc69f41 +6ef8c86f +010265ac +58676f28 +cb9c5260 +701c2666 +c21c44c8 +9076a36b +1aa6cf31 +680d0797 +6fc6ad29 +c6240b97 +da28c392 +7fd9753a +f2796a9d +b5a9f90e +b25d5c21 +2064200e +8106fb8f +a07dad6b +5610b0e6 +5e4d7944 +620f5b56 +163b50ea +63566efd +82af9502 +ed062f7d +ad0ca57b +62f0bb34 +0f8baa15 +2714650d +23cd7a8a +dae7ef8b +f7862358 +1054ae5c +683a8b32 +06e24bf7 +df7e8e0b +d4180b92 +b64edd04 +e216a695 +a4d2f869 +98a38529 +d700703a +755e4a50 +28479331 +8b6b3f43 +24d10da7 +c3a20c8d +22e2fd54 +3a372697 +5cce7078 +e4783e44 +9642755d +a602cdb0 +544abd9b +15a9c688 +a7b56d70 +c804061c +71eceb0b +68f8bdd3 +c04ef036 +9a422971 +66024b53 +4cf05f10 +1d132b5d +b6923fc6 +aaa08406 +d027c970 +58d8ca47 +29473fc8 +20824485 +4a6661ff +22a0f9a5 +ce0191f2 +ae7d5498 +22bec8ee +21f4c305 +0edeb46b +340a88d1 +af56fc8e +a05a0d99 +5bd8a4ae +6c78773b +3898d718 +cfd02f48 +94e499b0 +fb7a7aa9 +560f6a86 +742e9bd6 +59256bd8 +a353f58d +c2cea603 +5b906b78 +56919fc5 +b857291e +5ae9bd3a +90e43499 +b3a61313 +cd50497e +e2217f93 +93bc0a6a +9b340c14 +af0b7ceb +607db0ed +a5f8b24c +2839b07a +13b11a79 +004929ef +3475a27a +d54a5851 +c6efad65 +76c50a94 +df994e88 +070f2ece +9700edac +9bd51b96 +5491e76f +66d5ea09 +c44f7d31 +65a8f40d +87fe3e10 +2115d03b +5f8383cb +a0060bca +2c5278c9 +2efe2214 +5d247f7d +6153cf57 +4be3b87a +37bb0bfe +e7ce7f20 +f5f5efa3 +52497132 +1ca0a31b +fd0dad89 +a74169ca +9b86870a +d5cf9352 +49a95fa1 +ee991e99 +d2c92194 +bc414ecc +4f1b46f3 +bafae19c +ecf21575 +f47c33aa +fba7e52b +0c94bc57 +cd496470 +2a80208f +664b7e81 +94a1f0fa +0746c3ee +a4e98865 +cd2897e9 +9595e278 +f9c3d82c +da148aea +9a660f03 +46c74967 +e59c07c6 +fde1be1f +05588f53 +0bd0c3b3 +b7bb9e4d +ed632a6b +058c0a32 +aa61920c +02e43b2c +a61f1fd6 +749e230e +42e01668 +b6a644d6 +ccecf8bb +42c897f4 +7cd75ed0 +1736789a +bf4de37f +4d1f7d97 +dcc0e16b +e0be7968 +669a9e7b +2dbe1596 +44e1a73d +f36fc282 +2aa8b840 +1be1371e +77aa7207 +38f692a7 +d7ee0177 +dd0eb023 +4ab39743 +eb8867e1 +f66047e5 +84203386 +687bc173 +689e4c36 +b6ac69d0 +7b4b217a +3407cf7b +29e4ad33 +7670a456 +85078508 +66eaddb8 +149170d2 +19fa30eb +0a857eec +383e77c6 +41475a84 +ad39ba86 +db9587fe +d9634d7d +f37efd0f +b4dc63bf +ccfdca2f +087c5f3d +7f09a3d1 +488b44e3 +6be5122d +b04847d6 +78143a4a +0ced815c +efc5e2cf +cf1ad8cf +e0e98842 +1e409ab1 +d63b996a +d79cc967 +46ed1e66 +873bfd46 +af763b4c +b8deab54 +5307d8e2 +9a225f8d +d42c213c +412f3604 +2ee49d19 +4859ffe3 +0d8e34fa +bd706b7f +19aaafd4 +d6194705 +b99e9d9c +f426f5c8 +cd3a0eb4 +a50ef3e5 +4402c53f +1b895d3c +0bb50cb2 +b3bbdaaa +158e4baf +0b14a45a +5f0bd2ad +e5d8af57 +4deff5cf +132f13a7 +e8b75b63 +94fb1def +73787f82 +00164ba4 +2fff84cb +75ebee06 +c2089e3c +f3cf617b +97039a90 +7b973d22 +ac9c2e8f +47ac6011 +21428b74 +eace49d7 +543dd239 +95f54440 +d1f0b2fd +b642fddf +ac5b9c54 +dd7956ab +105d4c59 +5e43c7c4 +cd1b7031 +310e932c +4088eea3 +d99a1a67 +05cb7a59 +14dfde81 +63248e0c +bbd0e773 +f6e05074 +44997d97 +cd18416f +78da5469 +9a086339 +a88c9743 +01a88896 +6859602e +65db2d27 +753f8c08 +c58af4d9 +7905be9a +89e133cd +a0633758 +20da8513 +c2e51649 +2a031a88 +f4333fa1 +098f2b17 +bca79aeb +a89c45cb +7f0f9bb9 +35401f6c +6a7453d3 +229db8f5 +35cda973 +b83708c2 +81cae03e +c1519473 +1b783b86 +f536b86c +9ddd72e9 +e4fb4d13 +3240ea7b +79c57b7a +64eb41f8 +aa566c09 +7a18edce +3a5bf2d6 +577ff050 +c11709dc +3b856384 +3a9c7259 +0fe5c671 +12eedc36 +e79fe85e +568ff992 +99a8aa81 +8b1803e6 +e8977c13 +68b98396 +dbf405cd +adfcc52a +46d4b56a +737d31ff +7592da6b +2b9f131d +c8aad345 +46adcd72 +7934c105 +f09c4eef +d7ee407e +4f39b3c0 +c7a9f205 +1c844518 +192461f2 +2cad6d17 +19ecdf2c +62aedd5c +883c1eb7 +6b631d5d +99bbf84a +9099c04e +ff2333c8 +91875c79 +59ced183 +868744ab +c97b1b56 +8e1e7f74 +4a1b9088 +2c3edb8b +e13a7974 +0bc0e6ed +0ec1e215 +19ff9be1 +826459d0 +6f71ad27 +959236e9 +42474081 +55b266e1 +d520c3c7 +96736975 +c00f746e +8f8cf05a +7d4bba07 +99ab642b +6bb90e1e +1867a48c +71ff2367 +aa8e09e8 +68471789 +1f2a2f8c +fc867505 +43be6ab6 +bc256141 +e8120b24 +4e5bdb62 +43fa125b +a04db730 +786751d8 +4ca0f167 +31267608 +ca4aa270 +c022d279 +0372bd68 +69efa7ec +3f31bb3e +8f999c5c +d2e78b72 +8dd0a090 +83dc9956 +fc27ecc0 +05c4eeb4 +d74aabe6 +15e10f9c +137fc00a +03181d47 +aaaad9da +2b0240af +12d18ab5 +eaf88d59 +95c18539 +92e73eff +cb1e4c6c +248c347e +53be0d4b +7c4f062c +4c60be6f +974aaa98 +7e46d496 +07976b6d +d3c977f5 +e649e0c1 +bce0c45c +9ef3b60b +ea796a4b +bc346946 +1c315a80 +ceb943bc +998b9bc2 +6fe71be1 +8f736c02 +d9b1e3ff +e51bf5bd +258875ea +a9619aeb +9d31f567 +3e97bb96 +5b83be43 +c5734ebc +758732d3 +59da2976 +e6787c76 +26fc476a +aadb87b9 +9d12ce9b +40862c01 +0f565918 +ef969cb2 +73413f68 +ea26a3ee +c708d1a1 +ec967dd8 +2a82c17f +1d53f0ca +a18c1138 +53bfd177 +9cf09d42 +1b75cb24 +13ef80fb +62cdafdf +88b7f981 +bd80a7ef +4f5088d5 +1e79255f +4c9e8313 +6407d951 +69cf5f6b +d64f4ee5 +05766aa3 +913ce140 +abe793d5 +97977aae +edd21768 +ba395776 +499e9dcb +0f5eb504 +58d7f05a +be9b0935 +9fd640ca +fd14fb53 +b4192d04 +b7094596 +2202ebba +fd0ccae7 +ac48f34e +e3f1653b +4e1f7b94 +db5d89ed +b362cd99 +2010b191 +624048db +4438e7f4 +5b97686e +c012107d +93cf7728 +71a572f0 +f51ceed5 +ae4c531b +61115049 +fa365cf9 +bb168f01 +49bed3c6 +7ce809fb +15cb968e +5ba8ac16 +058b2e38 +f4a4fded +6e390a8b +d8448b98 +88206ea4 +1cf4bf0e +283e5982 +3f3796ef +6892d4c7 +0911832d +c9c964c1 +e243c625 +ce8aed4f +eb0d54ff +577aa337 +a2482a8c +0e438766 +b3930e07 +25c007f9 +2deff9ca +2e420cd8 +15d51e52 +7f5de427 +90b202b5 +66a7c2c1 +419d31d4 +e51ddf94 +29377998 +e470ff63 +61af8052 +fdd5d8c2 +92b77f2e +7d756b25 +20b05825 +daafdea3 +7833fda9 +8935467a +6bb0db5c +02965f5f +c5638068 +c814511f +4df7bf88 +086ac2d2 +82e4f226 +46031dab +d7129972 +33f520c3 +32f3823e +744161b3 +1564a011 +4f7de891 +db8bb103 +b26d847d +1aeb3f3e +f59c87f6 +80fba0d2 +ac31fe3c +4955b0c0 +e180938c +2e15139e +4f2f828c +bfd56fac +3bf8298e +2774fad3 +ee6845d2 +496d5192 +ee80ae70 +bfd3f296 +6a2ec4ec +fe10053c +d83c39bc +7b5deffb +52eb7ca7 +274c9977 +a42ebacb +f117ca64 +7333d7a2 +b29110e2 +6929fdac +5a859ab2 +48ca1b74 +7c482ac1 +fa256020 +c1ca0a1b +e584c47c +42880796 +08c4aa80 +5accb57d +3b0a3499 +ed625ce6 +927d4649 +38df5213 +9d0e6c68 +f22957ba +c33bcaba +f6a9db63 +b6939878 +c3ef34ee +d908d529 +0ee43fee +3522bc6a +bcb04c37 +2d3c9c71 +8e8b2ae0 +d257849e +dc823071 +26c99d74 +0b5280b7 +d93e6010 +18783374 +ac043af0 +4cf337ff +d93d5dc0 +2df79247 +995ff8f1 +efbc225d +6c07e306 +7ca25fd2 +cbf66924 +90dfb174 +2ef45c3b +208fb1a4 +2d6f299a +a765ad4b +4cdf6fb6 +34823d1c +47791ba3 +d73ebc38 +2d1abcd4 +962f47a7 +d4587bb9 +83ef8061 +f87e56ab +238057a8 +cebf7e5e +4b41a8e8 +192b5981 +02718d7a +78f92234 +1e0ad8ae +1fc34e82 +15131181 +bf47c6ee +aade0a7f +a4609aab +788bd9f4 +0d64b668 +95922fe2 +1ad9245a +96777576 +07a94afb +c0a94690 +7252cfd2 +9090b697 +7ce882d2 +d9a0967f +940833f7 +2c7ca449 +39b4a686 +1bdc0607 +699034a0 +8838c381 +18a94864 +482eeb5e +e9561d8b +2c7b458c +f560f2af +a2a217b9 +2c841c8e +176711a3 +5a750b25 +817ab7da +8e932b67 +d481e8e2 +fa6608a5 +52fd9280 +eb4a9b83 +f971a7d6 +e1fb71c4 +f440d1c0 +d70d69ef +b61df50f +4552f2f6 +4dee99ee +703dfdea +0dc374d1 +58ab8266 +fd89d13f +b6358cf2 +1c9f823c +c69447fb +3c3acf35 +25adbd2d +53e86199 +48e01e3c +938fe91f +18bd2b95 +2bcfb78f +144d9b96 +26a64614 +94b3084b +78328c52 +c94a3c07 +85c5f849 +d1e26c69 +c658b52c +719fe631 +f9e7c1e3 +a04e019f +4f304956 +f045731b +75e0d71b +cb041195 +c01c1eb7 +b8f1b1b5 +7ff6230e +d0069af4 +cc84adb3 +b0878dc1 +47296f4a +90ccf098 +c31ac3e7 +3fc3e565 +6939835e +566a7713 +c042f1df +c83f81dd +2f917555 +b3761bf6 +7a435b68 +06bd5e27 +f37be5c0 +f68c5128 +57b9523f +10ddc5e2 +f72b4bd1 +825607b7 +dbafcd7e +2770cb50 +a1c20e27 +015b13f0 +d84f0165 +14515151 +dbfc0eae +65a22dc3 +620bf19a +2974cc2d +8cffe207 +68c9e006 +ef11661d +10465598 +84bc66d0 +69afd526 +4fc18a28 +ab29ed12 +f064833f +2dad6ba2 +2d3f0cc3 +52d28861 +e051f06f +7cd4c2a5 +e671204e +348e21cb +e4eb05d4 +377633d6 +7467deef +55795b33 +adf5875b +3fddcd94 +0283b01a +a35dd4d8 +8efb83f0 +92955a26 +96572ad0 +1f77092b +bc8c9f21 +2c1a318d +43b7cf5e +adc21200 +175d5d07 +8e3de34d +45922c00 +80da9312 +bd3d9389 +9002e6b7 +4618e030 +2a0683ab +acf4a5f2 +3bfe9bf5 +8d68f0f6 +26879515 +f5204b1e +4ef08845 +8c18d8d0 +a803a2ad +bdb4b621 +b91c2548 +fe0b7755 +e2274ca7 +1c36a2e9 +ef9a7a47 +9b972b2e +86068b3f +ab6a04a6 +5adcba72 +342a96ca +e9c32980 +c9819e4d +040ce78a +99177493 diff --git a/models/rank/dcn/data/sample_data/vocab/C12.txt b/models/rank/dcn/data/sample_data/vocab/C12.txt new file mode 100644 index 0000000000000000000000000000000000000000..4553a544414464def71c643b5988b71614d6d338 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C12.txt @@ -0,0 +1,1583 @@ +c1aef73d +2d81ed2c +a3bdcb7c +9248a1e8 +a788321c +66b1e155 +b5b8de53 +fdab8598 +4d9c9fa0 +f1ce2ed4 +fbbc41c2 +c65541d1 +a5de6c17 +94f5aaee +c5d0e605 +84d2c673 +ee3501f0 +4f3b0399 +1606ff92 +424ba327 +192ffbec +640cd77c +9d0d5312 +f9138878 +fd461458 +6499063c +5d65f22e +ed204454 +dadde5ca +42c3797e +d4439b3f +7f508e0d +0aa6de84 +6b9c3fee +7f658abc +b3c6e177 +f88ba033 +49e68fcc +140e9e27 +d89e699e +826cb6b1 +f1efc5f6 +e22add65 +13f2b8f1 +06cf9db9 +f38b9685 +79b87c55 +be9ad4e7 +40d991f0 +131e5de2 +c198b273 +d7c5e6ba +0a6fd594 +90dfb495 +5b97bb07 +b96752b6 +5b355b50 +cf7e278f +84d46930 +76ad996b +77fb35ab +feee3a16 +957d6ee7 +ea14b165 +8c02ead9 +f65b69a3 +da27298a +cf724373 +0d2a2c95 +5662d3e8 +b2fd56ef +d72a8b65 +d8a69a76 +61104d70 +d674a6c9 +4310190f +78a79932 +3aac3e1b +35e0892f +7239dd00 +9bf4fa6a +c995314a +e1756869 +28b4e105 +c385faef +31668efd +7eee8b4a +0273523d +061e59ac +5d00ecad +893f9e14 +ce875433 +087ef0e7 +591e3c11 +9aac7976 +0734e0df +acb44480 +a27f34ff +5989a764 +9f32b866 +3b90ab93 +58a787a7 +5595f556 +cadcc5cd +9065c400 +b7a2276b +827a0467 +c71493ed +14d7c42b +3af94af0 +867038d3 +07f02922 +3186644d +b866cd75 +c534c129 +863e573f +78d9706e +90c76b3c +ddd50acc +0af1d7f7 +e145958a +b99ddbc8 +f9de2371 +d79b39c1 +3df9cdd9 +5ba57bfa +b9b911b1 +8fbe0072 +57c08194 +c7883ba5 +982104df +c111ef8c +28b79840 +e678a74d +13bc7e19 +5a594cea +adc24c45 +cd2085cf +e2163351 +2bd984a5 +c5011072 +e37f4bc1 +a3e0d914 +94ee7692 +db60caf1 +055ab34c +85a68f0f +db21b797 +52b7a181 +7ca611fd +ea734b1a +c06d6429 +6532318c +d6b4fe71 +b908eace +72f158e9 +aa03db5c +7ea9a2f4 +6dd83bc2 +fa34f1cb +5bfa7585 +7a9b3053 +904e7ef6 +d6c5488b +af0c1645 +3af38a9c +6376dd6b +549524c2 +e993816b +d0624fed +be29f7d4 +f72523f1 +877e0ebf +0942bb43 +4e040fd9 +df0f4ef2 +cdd4f388 +d6cbb5fb +5dac6850 +08903b9d +a8ab776a +6119e0d4 +d8399834 +6c83c219 +e539ae19 +8933ce59 +cbf608bb +ae9cdcd4 +7a8f087d +bd13437e +90813faa +b4e60c78 +e20558b3 +183261ff +bafda429 +af3d699c +317bfd7d +69f7e502 +bb669e25 +3b3e6ba1 +e2c08cd9 +6ebafa83 +66372059 +94a1cc80 +dfbb09fb +f898f1b8 +48bc5b52 +98c0e953 +6fd08f98 +f3ad49a9 +c66e830e +8a098a5d +a012b59f +b79346d7 +7f78e6c7 +68944c23 +ba5aae2e +a705b156 +a1364ca0 +a0cf5647 +a825c99b +2c4d9c4c +8125573a +1a69f1c0 +e5b09bf6 +c8c1e8a4 +e2700d86 +5172ee67 +a389d767 +2e61058e +6fb8f39a +021c82e5 +6e76119f +ad972965 +bef78a22 +8a925a1b +4df84614 +1da0c261 +09200219 +879f4082 +f0be4a30 +2397259a +b58812c1 +33b83378 +79d19519 +1b0c8aa3 +4d2af459 +4cce3f75 +0da1837b +662d25fe +3c7ba2bb +870771b1 +673768e2 +1a30ae06 +362d4000 +9d254525 +b03f0955 +1f6b8745 +44f6116a +14d63538 +49eb8265 +03dce2a4 +b1b76758 +a8d07d00 +2d2e6c55 +cac79b4d +a0015d5d +87e248e6 +cdd76771 +aa910cce +e8c9d3fa +271f5122 +5424fda7 +5c935f2a +2598d8eb +78458b47 +41d764b1 +4afe6861 +f25a8037 +02472b09 +803696a1 +5c28d6c6 +3a32a012 +9c95a0df +79b98d3d +96e99a54 +3c2d0e05 +bdd0bd34 +399cdaea +93de0c8e +76615e67 +b7fb9997 +7dcc3969 +424d315c +7c09503b +58eb8589 +2ad06856 +d6e3ab87 +c74f92a8 +6eade2cc +e6deec50 +e977ae2f +76951817 +a90d7d9f +8b5867f2 +5ea2e48b +6706ce51 +604f499b +b9898409 +b0f12191 +982418bf +eebf94aa +ea50fcc9 +672a3bf9 +179a11e3 +4d69e263 +262ae33d +3743d561 +0f80cdc7 +7ddda62f +a3ca726d +504f5db4 +84e5ac4e +f8ce562a +b67ac327 +1d698bc2 +1c77d5f1 +800b8573 +15d97f2a +18922c00 +d000d519 +b87a052d +d99fa921 +05ec3803 +7979221d +ba9a9658 +2e1b4595 +9c5a3598 +6c7591c2 +67cb474c +60e03064 +fb8fab62 +7b538f4b +b51dc799 +5306e9ea +b787d76f +2eba67ae +a6bfd75c +77f29381 +b12396c8 +0706d4cc +7ea94441 +b7f1d23a +449c20d0 +ac612432 +a0f41a51 +bc1a3f28 +2ed7ed80 +39f1263d +69ae4278 +5864de82 +d365a3e3 +f94df932 +b992a469 +bc69cf0b +1ee870da +cf7894f9 +a85f443c +19fc0b79 +88abab80 +94368077 +784088f0 +cf30aac4 +c28f349d +c8534259 +6d065bbd +1b4ce856 +eacd174d +1f54546e +f10c9cfd +5a92ccc8 +17c0e328 +17b9e35b +36407983 +03afd96d +153ff04a +8229bc5b +ff35e49e +ca71e406 +ecf3c050 +05994a27 +18407a62 +d0275c5e +f0261606 +560557e5 +f9507afe +5cf1acf3 +2e364a21 +21a23bfe +3e302d42 +863480c7 +59fcba41 +875b735e +1a1f723b +a6edc56f +15782fd0 +553e02c3 +184d6c51 +e165d24e +5292f047 +44776637 +b661e386 +5fc62500 +04621bb1 +58874c6c +434c4893 +197dcb0e +67f771ae +a8fbe2f4 +f2ea9889 +7becd6e7 +af908315 +8ebd48c3 +bd1662fd +e90a010f +c9cc4cf0 +2a137d77 +34e567a8 +252162ec +ef0c2022 +f7d97d7a +1ac36d08 +2d878564 +1bad82f2 +9e2c7b68 +2defaf33 +af7fa246 +bc0eb380 +53becffa +2a93094b +9dedcb09 +7161e106 +a924e126 +dc5b89d3 +b293ab33 +f89eb8f6 +a1a65be6 +74ba00cb +4a3850b0 +ec8dca4c +13563125 +e221fdc6 +8a3b9b24 +c504cddb +769e4c52 +a0ca5294 +bac9dcdb +ba8679a2 +d54ff067 +8882c6cd +5505dfb7 +d326786e +2120ed69 +2055fa1e +902ac8b1 +375d8bbd +6647ec34 +636dcdf5 +251bc4a5 +ef151f20 +5b0180c6 +9fa694f3 +1205ef20 +82ee7fd9 +79cbc7f7 +5e5ca0f9 +c23bca28 +6c28a86e +77602344 +cd31013f +5594286f +5a4db0a2 +b8f1a8df +ab22eb88 +72e65cea +47d2b89c +467f06b7 +7f91056a +76517c94 +4d934f18 +d3809c46 +f23432d5 +ee6c19b5 +bd8165fc +e29f816a +34765ee9 +8d33fe00 +1dae3163 +40edbbe8 +8cc98d00 +05c3b29a +894896ed +15ca9c06 +e0a57f94 +c8ace354 +56bf7f9e +90edbc51 +c665cd2b +c297ece7 +422ad4cf +6ed1e4e2 +0f8779c5 +c12603f4 +2daad6f3 +2fe438ed +0ee90fc2 +3ea9c523 +c05ae48e +b191dfce +82bfc352 +704ed80d +8a48eb95 +f0f6a9c1 +f217c8b4 +8ace78d0 +f3adf8be +6324e4bd +0105634a +0e3cae7e +062350df +9338777d +eb675c3b +fdc8950b +1d17ca13 +6937c791 +5c45a578 +befd9d25 +34b25eee +42778bea +bf2f0a8c +9548807f +7937deba +c79de9f7 +10536ff9 +3e72da54 +43e3a426 +63470841 +68a6d325 +893b7ae1 +1c04d4f5 +80becfff +9f457abd +865ad808 +8a78a25e +3563ab62 +ac5ccef6 +50ed27ca +3c5900b5 +96e389b3 +cd749c9b +0dd7417d +d2278cf5 +af5ce1ed +63d3fb31 +709576ed +2d72ffd1 +f4ec1778 +69a5083d +34a2ebf1 +8b103cf2 +9ed3d0b9 +2c1e69b6 +ac6820fe +45bbb0ec +368c358b +4f230359 +c703e271 +0bc49df7 +dc85594f +c0e6ed5c +257fcc4d +104fabc4 +156f99ef +8f4497cb +ddc05636 +19728a2f +45e9a7fa +a312e1e2 +9ccb63a9 +d9b23502 +6663c4b0 +179183e1 +57676afe +9fd03f62 +efa67886 +06b297d9 +41dd8d09 +34645d5b +2dad7b23 +961e6d6b +cc239583 +d319cb43 +b8ee36fc +0e26b386 +c15e7f3e +a5571b9f +19ca8e3c +f9cd9fa8 +e3c15540 +e2c291a5 +2a98cb06 +7364e701 +6a9dde60 +9158b5a5 +77348965 +9ed8d6bc +39c0b4ea +8481d649 +24d58844 +5f27a931 +b35573cd +28f7eeac +dcc9fc37 +f0d5cc59 +5aca94e6 +792e199e +6169f967 +1a4ffe88 +fca38b4c +8b7c2178 +c658f48e +6453e163 +857a49b0 +df8a4f07 +47e8c514 +01d4b4db +8c03a09b +ebf6ae0a +18b86fc6 +f6e5b9ef +480bde65 +8c5ece2a +1ce23264 +2949c943 +de898612 +4bc80e2a +bca7e012 +6536f6f8 +d4fbf673 +230267f3 +aa03d2ee +d1fb0874 +eb5ff98b +f4afbdcb +e31997ae +7d8db404 +71345146 +3565df81 +ef6f097c +e9715419 +adb4a533 +8ae5e221 +bb93f61b +1ca7a526 +fa1eee27 +590dfbb8 +4fd67e13 +c886a342 +680d7261 +855210f5 +22cad86a +0f89aec9 +fe9d0c5b +9aff23d7 +8546f1ef +0a1485c1 +4d360c97 +d75edbf5 +041d9426 +9be71e89 +f8ad4a41 +a5f9a198 +68a5e351 +95812a33 +4a67f833 +a93a2643 +0869abd6 +253c11a9 +fc75a704 +d754a848 +165dc2ce +82c3b58f +0da36732 +f2d5da00 +eff214f1 +cb635ae2 +67b31aac +641593be +33f5356f +89f7067a +38588c6b +e97cae00 +45b12a68 +3bef6c32 +56e1a6c9 +d5d86dcf +0a665a51 +29dfcef7 +80441957 +dfc096e9 +a3a9a46f +8396e6c0 +50a702fb +d9714c1b +bf1f4a02 +9a6d5824 +a2a80116 +2211576e +b94e4985 +536a6954 +bbe97cb9 +7d7c6076 +fa8e4000 +ba2755e8 +3493a15d +d9372f55 +42bee2f2 +a1cca232 +bfd22f6f +719229e3 +ff80ecd5 +9b37f3c5 +21161865 +af97a54d +a6f57f5c +2098d925 +fb885aa5 +edd5a0ae +8e15c24e +c12fdf81 +a719b8eb +38fe7ce8 +bf474c97 +b770657b +41b57a7c +304cec1b +6cae5a9d +1a5d089b +9f32d017 +3bcac28d +e1f3056f +eb83af8a +2fd26f96 +4eb9c398 +a779839d +342476eb +a0a1b9a9 +389eb0dc +5c55d0e0 +4b715f92 +e09a8161 +92a663ff +16c8ad7b +da7b77d1 +b411cbc7 +f47c2c6a +7441161f +eeb07caf +1d27e688 +1fa058ba +d60edc65 +935327e3 +c6e66003 +bf2e5f33 +6f2d0b37 +4248353d +904fba4d +dde73338 +3e86dc36 +90db28fc +bee3806d +f42f28fd +5808459b +6aaba33c +1ea443ff +e2848a9a +72ca6191 +8c92f967 +fd352d95 +32b1d348 +276f3fdd +e5c1db3f +1e5bcb5d +f2bf9229 +b7c15dd5 +23977c44 +cfc86806 +5a1f6612 +3ae289b3 +71c32035 +cead3a62 +0a48382f +a3c23ad1 +62ed9a91 +ea83607f +942e2302 +129cc160 +2df201af +f5d84254 +2f6a7c52 +d8b234f6 +4f4316df +c7a69a3b +7a27d4e1 +cfe25cb7 +83202629 +34289160 +21895686 +24da5932 +24d54eae +a0202926 +81f69a8f +9132d455 +424e28fe +3beaf220 +2a6bd999 +11fcf7fa +75587697 +703226ec +bae6c746 +8827de87 +5b119c47 +fec0c6ef +94235c77 +20622e06 +254ca0d7 +e4e111a1 +ed397d6b +5c4009e6 +d083c277 +23bc90a1 +4efceca3 +50165667 +43c46d83 +e4734e87 +450f33a6 +12711fa0 +61ab0c4f +18b125c6 +0826f297 +76c72828 +1731f3db +0e43ec3b +2630b570 +977d7916 +d7028959 +ed9ffce7 +ebb533c7 +8cdc4941 +4b625655 +0ff31973 +30111d93 +11f44afd +f8b55668 +1d6bfcff +e0cc99f3 +ed5b84d4 +eafd7f0c +4c31606a +fdb247ed +516c3bad +2a6d37f8 +174d825f +69d2de5e +176858ad +2014c1b3 +5332e3fb +10e9872f +afafa62a +5c84927d +9f2dff26 +995e4a74 +e0b0d930 +3b917db0 +54cb84ab +2f671908 +0301901e +8249520b +6d4472d8 +2c5e6524 +7127a7d6 +18e40a04 +92d569ba +a0c32c81 +27987cb9 +376a4f52 +95b585f9 +8527be14 +82665b78 +07bdbe6b +2c7c4bba +25ca9201 +7a97a313 +aaef34d6 +951fe4a9 +0e528718 +22608499 +b015ed6c +22142f68 +e657c595 +e9562baf +d19c068c +f68514e9 +539c5644 +4757d03e +d69079e6 +8a4d8e46 +8066b103 +ac639f12 +b0fc60da +a63d1ffa +07f030ae +514fccea +39fff66b +4f25198d +99c1c8d3 +574a31af +848b4d84 +75c79158 +167ba71f +71d55d49 +d3f30591 +55ffe9ca +255699b9 +234f825d +18b9928d +64c7b338 +0f4f2db4 +8065cc64 +76a79c33 +f39ad7ae +b5d8545c +e9521d94 +c9272d17 +a5b4b78b +1c9ce10b +260ef2b6 +ff838771 +a6554629 +4f879f5d +49fee879 +8a11f111 +aadcb74e +15b28eec +fe18e0cf +0096db77 +ff8c6fd9 +f6fe1d50 +eb2a7aad +0f660539 +8e838324 +838b6876 +4750aa00 +6340457b +5ca5ea59 +43183389 +d010a692 +1d29cbf8 +97ad9659 +7023b7d2 +78022e82 +e7b4ee44 +a7d3279d +5f6ade89 +0d261508 +548118bd +88a8f5f6 +23ae741f +44a0cf7f +940b6e42 +ce197608 +b4928074 +98eb92dc +dd8781ec +26ffc51b +74906f90 +676b1292 +25644e7d +4ea4e9d5 +83d7d5c2 +834b5edc +32e1a215 +06bd1916 +a648ca66 +f5d19c1c +aa787f00 +5e78a000 +28283f53 +6953b65a +dbc14f56 +154f316b +11d928f6 +4d144b7d +34a77493 +7c74405f +02d20151 +52e91b9e +2c5269ac +a3391ca5 +f6d35a1e +30e909b6 +3ad1f48d +2eaa6a44 +611d855e +e7378c05 +cbc58cbc +0705b078 +c889eb07 +e333d643 +511e6df7 +5deda06e +72df8b8b +5091db5f +4866f28f +af487b63 +b70bfe13 +77145fc1 +ada7568a +7452a48c +7b9e9937 +d8bf293a +266666ac +13859eb7 +7307c19e +cc99b33c +b938df15 +f7cbe917 +a6ae1271 +7414723a +c47972c1 +8d6a9f16 +ce7ec713 +9e7aafc2 +397675e9 +d712779e +afdf9a65 +fd685f34 +623049e6 +5f4d1c67 +fe2ae07d +3f66c36e +e25bdedd +fa6b2a51 +b2526fea +54b7a508 +98d78b2b +e2e599a7 +479cc2e1 +16191617 +f2c35aba +9a103204 +0bcd01e8 +59f3245b +dc31f3dc +c228f276 +8c5ebb31 +3b9ae062 +688190f3 +ce2957ad +fde18531 +b3e118e3 +fcaae253 +870620e6 +ee4cd37c +7af65151 +15b7ec34 +ca193645 +d7f5cb55 +0e431092 +4c6ddb1a +0afc6bf4 +23121637 +7eaa8ae0 +8287dc29 +7b570c07 +87e6874d +c5825e99 +a1dbab30 +381dd9fd +476973dd +6ee4e8a3 +7ec456cd +ec90808e +80fff3f2 +f3a55aa0 +4d72208f +1f27c37d +12a4b15a +6f92f1c3 +55f78a0c +9eae5dcd +f3be137d +3b7201ca +e4c074db +374b2880 +2a411f2a +6074c21f +4c000893 +e0d76380 +8eb3f772 +c198896f +f96cc0b9 +21a0ef88 +7b79c094 +d28c687a +c697eb6d +299582d9 +c35a10e3 +f36c0ae8 +a8700c60 +a53ad6d6 +2e4c88c2 +b853b799 +14776f23 +2479f13d +6a767367 +23f7905b +4f47c10e +661c7493 +2bf06664 +62f43136 +eec0e5f1 +619f887c +7e01f09a +f919769c +d8c29807 +20ea8abf +fc95c453 +c1054c52 +8e1de7db +183aee3b +a2722ce4 +75ed459e +17ebf5d3 +b9736368 +4802d2e5 +bf5cf2ca +4132f6f1 +cf681365 +eb865f73 +ea803b7e +7aaa871c +ce298f58 +e8934d81 +87408e45 +23253c33 +171c9373 +4dd1cabd +343da6e2 +513555c7 +2a064dba +f5d83e6f +cd9f20fa +ea260e89 +1edfa625 +8b82c64b +1d00cbc4 +d2a980cd +80c43ab4 +d73d5e92 +c2bc8f73 +98922d75 +d898dd7f +3ee41b39 +93bab460 +39852814 +241692b0 +4f31b8af +4f7b022c +7e1106ce +7a09282f +496d0124 +b8b41318 +34a238e0 +d07f4262 +9e7f897d +7078d5bd +97bcec27 +f91fd7b0 +0a3254f1 +422e8212 +58d90787 +5a962bf4 +18fe96f5 +33ad9b8a +993f2992 +9b665b9c +ed5cfa27 +91bc2f51 +19199681 +7e6c78cd +b438fc5b +325a69ed +e58930d5 +eee3943b +4f1124f1 +69d0b693 +1fd56e82 +336bb1d7 +66a76a26 +a9580b00 +7b8c2a24 +8376bb1e +8ff467ea +a70fb4d6 +985464e6 +cad8f137 +349450bc +981eb85d +dcfd94f4 +93c5771e +50ec33a6 +4c8de1d7 +e2cc7c06 +3953854a +c78e8461 +e23a52b4 +1a3c8178 +b456a550 +d9455394 +c07fefdc +bb0b487b +6fbed051 +ae31f81d +05ccc530 +9da25024 +716265a1 +961d324d +2edf6ee5 +80111036 +21551ee3 +43fa7203 +25b02fad +795646b5 +50b7166d +2a4ef823 +ec985270 +7951b860 +91f646f3 +1cbc1420 +cb0b50a9 +4fb6247b +a9d84aa8 +67995a64 +d9a2039a +e1b40567 +ac0e3f62 +de1e5036 +d818f210 +c6cd927c +c857bb2b +c5244b96 +47a0e9ff +e23891db +ebfb225c +6c6c6fff +3d40540f +ca4409a4 +2828a546 +276c03a1 +8fa23f87 +8e9d3e55 +659daacd +d0c76b17 +548cd6f7 +9a841f69 +bf413137 +1d36bbc0 +64e10296 +657e3250 +bd7db808 +8e5c8813 +6a3d6e52 +58418528 +fd6e6bcb +87c5daf8 +df423e6d +0956dfee +488af1d3 +27d47540 +cdac3d6f +659ed597 +5debd38d +e4df8c0b +7ac21686 +fb9aaa0b +df78683f +2b0a63d7 +38562f67 +7e2167d5 +92969770 +0648c174 +5b24eb53 +be170224 +a4d0248c +176cf3e5 +729ecc4c +5f15d820 +b519c595 +8cd04d30 +06a5d61b +720361aa +ae1bb660 +ede54a1f +1d4d1a02 +a48e62ea +46591921 +96e4de4d +a4425bd8 +f34e8f6a +8747d4c8 +6741a372 +46e4b83f +9f8dbf10 +2215dddc +f3b2e496 +4fc9d001 +adf02f65 +a7217873 +79560450 +ca9f3db8 +f1760b27 +bd7eec69 +e3ea3d05 +ac7833d4 +c64bd5c0 +875e8b1c +47fa5313 +3d19618a +92f519ec +2d15871c +9699b949 +218cd107 +ed357f1d +936a332f +e2a965be +ba233d4f +d19e10db +dd727b99 +3bec5d45 +414d3dc9 +bdd6affd +50391d84 +38176faa +06ec1805 +a9842147 +e0b2c12a +e1a883d2 +d9fc673a +37c28e63 +defeb71b +d24c389e +18b3794f +07cecd0e +be45b877 +732c8db2 +a9ecf335 +3bc47171 +6803e296 +d6f4cc32 +5a276398 +06fa8096 +a0d2c974 +ab5549ec +eb8ded57 +c1dfa649 +34db1f06 +24c21652 +ee11f1eb +1938e765 +2a5bad22 +66da8e94 +83a0714b +63b34abd +43de72f6 +d26682f5 +e29f2fcf +06862b4a +e32bae69 +33bea160 +8a8a06bb +a325f22b +b9bee1c2 +ad1492b0 +534b9be3 +f87e889e +f7e43e31 +a2f4e8b5 +ca0011c3 +277cb5a2 +b9f28c33 +931a220d +3f9cbb6d +4d9cca5a +bf28da20 +bde06ba1 +14a72480 +9cc98ead +160e1be5 +d17f38c6 +507ba343 +2f06501b +7fc6984c +6f115481 +e5e1ca92 +0917c88e +74563ec1 +9efba788 +fa6037b9 +28c51437 +4454ea3a +f30da081 +9378c2f0 +2a73af0a +8ea37200 +4919711a +7c5bf905 +c2a85cd2 +a2418cb1 +e3af97ba +e7edcdba +22b8ec76 +f1313990 +ad365bb8 +8529d3b4 +1e087995 +69873012 +2436ff75 +53bfa6f5 +c47979b9 +49507531 +48f165b8 +3dcc2635 +a08bb4d7 +6328e826 +f161c883 +f1ffcff0 +31dad9c2 +21084397 +4cacc5df +dea90c39 +8a582d5b +92ac7e35 +4c6ad4f5 +6bca71b1 +ef8ef09d +3263408b +fe7ca040 +28156fd4 +3de41f4f +aa6b7700 +c30bbcd1 +22d6a7d8 +5565c8ef +1bdd5433 +f5b1b647 +5f1d379c +90d80d1a +c3cdaf85 +fb991bf5 +70a58a12 +e8a073ad +75c17e23 +28540af6 +8c30321c +520c7935 +ea374c10 +7d9b89ef +8b8cacf5 +77120ffb +71fcc39d +8fe001f4 +18979573 +3512d101 +9712b4e7 +ace843df +610be298 +47a3aa35 +1c940221 +4e67d4fa +3f8aec46 +5c942915 +048d525a +ffcecf14 +cae2b00f +d08dd3b6 +44f0eaa2 +612905e5 +1b2022a0 +a5ee56ac +3096136c +3da52313 +cb7fa42d +ed5c5acb +654bb16a +bb8c28a0 +7609a1e0 +15ce4793 +b4339699 +7ce3c66f +d8988024 +63e498fc +394b6320 +75529ad8 +aef7b37a +d89a0026 +ca4a4da9 +24e81557 +e8107cf4 +83be0de2 +d4dbce44 +f9d5effa +f3dbd9b0 +f24b551c +e599f97e +0cdb9a18 +3020b608 +d05bb1f7 +7d5a4791 +0ac9dec6 +97cd01be +10ae0788 +55b4ed2d +a7069b57 +c3962347 +e7750f14 +526f00c4 +a7ee0769 +73c7614d +c260f168 +138527f4 +867f94c0 +f56cc84a +f3d25ecf +b1121caf +b77b9c57 +04047220 +c9669737 +dc906891 +3f90e6f7 +32528850 +91f87a19 +3a09994f +9441b6e1 +291a0d2a +c60752a9 +1241e747 +136babe3 +9556ca08 +5f27bc59 +3d6857f7 +d267d56c +78a16776 +11c577b0 +ae70dc88 +3fe585ab +3cc6c8de +17bcc684 +7aeafd62 +416d6970 +05e13793 +8d42130e +9311a066 +b79a0855 +1bb74bfa +7f0bbac3 +fd2387f8 +612652a9 +a165a27c +be0e156a +b3a93317 +02c27dec +8bb91717 diff --git a/models/rank/dcn/data/sample_data/vocab/C13.txt b/models/rank/dcn/data/sample_data/vocab/C13.txt new file mode 100644 index 0000000000000000000000000000000000000000..204761319cc5f7a33fed867a375c6c512247cf53 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C13.txt @@ -0,0 +1,1911 @@ +8f94bdef +59be1107 +3b03d76e +ebf437b6 +20819d96 +74c6dd28 +615fcd3b +02c899e1 +93624a8e +a85a252e +fab2664b +f6292965 +474aef6e +0d8d4492 +60d783cc +dbe5226f +85fd1cb8 +b17372a1 +c56bd951 +5d75dfcf +d30547aa +3eb9539d +2b30823d +8cde53cf +9e1f2dd1 +a5975b1d +fc5c7b5d +ca051874 +6212bf27 +83d6c557 +1d36488f +b2db9c22 +cece4673 +613b2c28 +63f28c33 +769a1844 +30735474 +12d7c50f +a1354fa8 +43881ace +0159bf9f +8a6ad3da +f7177056 +d3cef96f +9196db4a +4fd5719b +768f6658 +878084bf +1d0f2da8 +7f3c5570 +a39c6d4f +6b5d07b4 +13708b2b +3bd6c21d +b081141b +917e9bf3 +3a129657 +d7c5b499 +7ffad306 +b2e5689c +a4b04123 +47727147 +0464ad73 +00783c5a +60d87974 +a3fda569 +f5b0cee8 +e1fb2a68 +61f6145a +3c69efcc +da8bc9a8 +077640f4 +3a15d952 +6c24bc52 +706a14b0 +0463405f +5f43eed6 +18a329a1 +b59ccc82 +8828a59c +9af2727b +2ea53cd2 +bc1e82c6 +186ee908 +01305c64 +6df6ef3a +30efa172 +d7339e81 +0ed79272 +d2420e4c +86c79eb0 +f61e5576 +8978af5c +cd13043e +9325eab4 +592afbbb +5166abc7 +84550f35 +d66aea7c +ea4ec703 +bb7a2c12 +52358aab +85fcb68e +9be66b48 +7773290c +a5d233a8 +3600cc6b +e3543236 +b6c4d6d8 +859523d3 +d06e4993 +3301b467 +f05a093b +45cbedc7 +8159a24c +79128231 +383a5973 +888b8320 +e9332a03 +2c6b3cbd +8b6e2cdb +010656c3 +4f1b6347 +c42f523d +f405e2e8 +4e997c84 +247dab93 +0092602c +10114fb4 +a4fafa5b +40f3111a +ba5dfacf +a2d0d3c2 +18fc2b1e +252ee845 +62a53816 +4f8e2224 +5c7593a3 +7700c0a3 +7ca7ae3b +d54f0ddc +7150d0d7 +cc6beff1 +cededcbb +61e43922 +ce5114a2 +934b2395 +d7ce3abd +b3ee1907 +20c03ad2 +07fdb6cc +4799f4bd +14da3023 +e21429e2 +c6ce90af +3f17c1d7 +ab30ccf7 +e6d6213e +ff3ffc9f +42a6d751 +8ef1b3d5 +a22b1944 +ef6a4d03 +ed738fad +605bbc24 +bf568607 +2bf15304 +576d0fbd +581ec7a9 +edcf17ce +8846a878 +7301027a +369e2611 +0e02bbfa +991fb45f +0c66bf77 +5bed21b5 +65977207 +bd21b34a +dbffa30d +ba781108 +f2f583e0 +a4fb9828 +44b2ca79 +6e1e209e +722a41c8 +a15f7072 +eead0438 +a4b5da60 +7f58d895 +ab71b9e2 +a97efc05 +7f9db67d +553803cb +14e6fd48 +098e937e +3b1c934a +c5403e45 +7f3c0396 +07e4bbfd +799a3beb +58c02306 +78ef55d4 +174e4cac +e581365b +bd91360a +b7f43038 +519a3843 +7fdb534a +d6d04484 +4c968cf7 +3691e3e3 +0ee45b82 +41a6ae00 +02e4b2e5 +6b4b1a1d +7fca81e5 +739ec2d6 +6abad6bd +ee568de7 +6e2d6a15 +a4c5d6dd +456bfa31 +115d29f4 +1ffceffc +e97e78ef +950971dd +075ffbfa +0a8a3875 +f7af2412 +0e3b5f2a +e0230d57 +7d1f1fa0 +7bbf93ce +0c7dd611 +cc19e17a +a3704113 +1a7b6bdf +c23c531f +fea69ce3 +a0874a81 +7b903000 +e332aa6e +f0e0f335 +2d0ad352 +0b29a94e +9a02f9bb +cbbfff55 +df5886ca +fe8714f8 +8145d857 +f562c5da +c8c687ed +e67cdf97 +a60a20e4 +c5ee4e0e +a536f2e1 +4f270104 +1211c647 +d1e37101 +5c97559f +9259d03d +034e5f3b +aa52b3b1 +849a0a56 +8407d8f7 +41ac5c91 +1bfa372b +3bcc4b70 +7203f04e +d7020589 +b998fb9d +0f565535 +079c7d25 +7ed1487f +67414029 +036dfdef +881b53f8 +4a83d7b3 +b118c64a +954f731f +bcc725fc +8b216f7b +d332dc5c +4940d667 +f65030f6 +d48de876 +0a9ac04c +9b656adc +ce418dc9 +a3b89afc +470effde +ae73a7bb +17560ca3 +c2e887fc +d15a5853 +cef1cfbd +566e88c0 +e99759ed +07828d4a +24e01e63 +5e1dbb3c +7aa2166f +fe3942e2 +dd2ba37e +2f6d429e +fb22a91a +ea519e47 +1e9339bc +a0b8a352 +4fce4e51 +7380f035 +78b1bfe4 +9da67560 +aa6a9855 +95059b3e +ad5bcc65 +9f53c224 +e8d73025 +1498fbcf +951771f8 +654099a3 +596a2dcd +f745e01e +afd04e3a +7db6a946 +1577a179 +f59fd52b +269889be +9de14311 +18041128 +ad7be027 +f6cf7834 +b331dd8e +e9b9711d +b6ce287d +1d92c5d0 +cbd38716 +80467802 +4422e246 +49183eee +8d02a2e3 +1b63c4d8 +68a51fd9 +d5e6f555 +e1d6ecb6 +01c73616 +9bbdb8bd +1503f844 +1fdfd0bf +1e8bfb9a +cb87a1bf +6077fd1f +7410a24c +cbe5db28 +2a2faae1 +71b17693 +03232503 +90cf8234 +6f2df0d6 +c95c9034 +f61c8891 +18a5133f +e1b62f8f +38087489 +4ac491a9 +706d0b7b +969475b3 +03d0ba0e +7a7b8db5 +131341f8 +96fa211f +51351dd6 +be029482 +99b38f98 +d66dc019 +bd45bc75 +ef800ef3 +c0bff1ae +0ccfefd1 +42ef23bb +43de99de +37ad9ef4 +35bacbaa +aa1eb12e +19fe98bf +3f9a68d9 +f82c43c2 +0d5dd3ea +45820f61 +4dc59597 +163b0c2d +2180053c +2839ca0f +6e8ef725 +278e48a9 +d55eeb0a +7f5bf282 +7777d16b +e8e7aace +d2bd7bb7 +d9b4659c +533bbf82 +0110dc36 +0b968df6 +47cb697a +971b4ca9 +9a88e2e2 +09cd9f24 +4bca2fbb +412be499 +eae197fd +1d27b635 +30ce0b45 +78644930 +983037a4 +36b96ed0 +905d1cca +d70433ea +dc1d72e4 +f1c59e29 +80dcea18 +679fcee8 +814907b3 +b2e0e821 +bd727667 +882005a9 +5f3a0c1b +18e04ccf +e1448645 +fe528cd1 +2b590d5f +345cf499 +8e7ad399 +f3437620 +e630cd5b +5e419718 +9c7a975e +05325702 +e2bab9cb +822b54e1 +a36387e6 +9ec97065 +c1b2cf01 +ec644921 +7351d888 +7928af93 +94bdca27 +df2c6750 +d69427e9 +5b30510f +a2f2ba1d +d1f9e505 +52ec5ece +772a00d7 +7eb73375 +b017b046 +a2484c90 +81621307 +31078fbf +3f5498ce +cb2e33ed +42148b26 +31e0d702 +5fffcbe5 +11fa2c12 +d7ccab4e +7fc3134f +9106f5bd +01f32ac8 +39a06276 +c3871809 +ce8b8587 +094e10ad +df957573 +d1be539d +f8525b14 +05fc8d90 +0b1e410e +d06bbcfe +cfbfce5c +fdd4a668 +0067ac1b +47d6a934 +b71128bf +3a59b47b +f59826bf +07a271be +d5d2b430 +158b69db +31319767 +bb97f4d0 +4d4c02d1 +d100e0ca +60d930f7 +86a3034d +27dc8af3 +031ce614 +4632bcdc +c9154658 +34e72b37 +9faf125a +9085af3c +6969cd35 +2d0b0698 +2fe66320 +9291ca36 +ebc0bf67 +fc371461 +e5086096 +3796b047 +1ddad6aa +5fcd3498 +b558cfc7 +e6fc496d +3a9dafb8 +2bcf8620 +2648f8ef +6879d1cf +f04d3c1f +d86616b0 +0e5bc979 +aca10c14 +4ceb7e09 +0afbe2b3 +aa581d26 +b7165d79 +e7c6a03d +78864591 +33a45f17 +5667b6ce +d13ca58c +943ed02c +b61fbc43 +fc5dea81 +65addca8 +07ee0156 +93b18cb5 +8d02f360 +c4d1c70a +3f813a5c +eb11180c +f849e1ee +ad2b09a0 +c576c612 +d6b339c9 +c4bf1f3a +daee1f01 +67dfb6b2 +a341d3ba +b96c41d3 +527cd8b9 +e5643e9a +b0bfed6d +519f294e +37a1d9ea +552f61a7 +32569bcf +eba35887 +619a03e9 +92f01d0c +9999f835 +1c1cf101 +2d451cad +427c3888 +df708737 +bd251a95 +72a5be57 +c0bc5873 +96077837 +b484ff1f +e0a5ea97 +87483b16 +c8cde1ed +dee21837 +bae8a0ab +a4b00bfe +7bfc137a +ad650332 +97fd470f +9ded12ab +4c628bcc +6ed5acef +afc0f047 +ab8c2919 +9233128b +18a32ed4 +51caee91 +ac44a253 +e506d458 +406194ca +d6b5c454 +dd2f45db +bf8a142f +5978055e +d999ee7c +40736183 +245827de +2ecea536 +3dffcbec +1750e95b +74838342 +8da63ccd +17c1f5eb +9971fe3a +35323fda +ab04d8fe +715b22a3 +6af44dc9 +8f176d1a +58e74fa3 +b079c917 +df69ace5 +ea1f21b7 +1e06fca2 +a7ccf9b4 +0d60a93e +af8f7f71 +1c448f8a +bcf6a386 +f47f13e4 +2ec4b007 +11aa1375 +ec2c5cdc +4fd35e8f +a107e633 +90a568bc +8752b356 +422ba909 +5774a041 +7e7395ca +253f7c47 +5c069cee +a4c7bffd +140595a0 +8abf8160 +4fd925c1 +49fe3d4e +bcc112ba +8dab0422 +373ce97c +522119d6 +6580b282 +55f96f80 +93d61944 +57960a15 +510f15b3 +f0b9fae0 +f9cef5cc +e40e52ae +ddef3914 +e5cf62b4 +5579ddc3 +aec8a59d +af495ff9 +31a4e9cd +5b56b1f0 +9ccdbd12 +f61cb57e +9619e9ff +d4098941 +03cd10d0 +18a5e4b8 +8885f5a6 +d52bc10f +a4456f70 +4e492ec5 +b9465c69 +9de8c1aa +6205d58a +627b2207 +2cbd8bbc +46f42a63 +ed469c28 +c08ec9d3 +c1dacb89 +c42f98df +d8c94760 +f0ba98ce +41a35133 +2a922a5b +e7a57442 +493fa4dc +395ab872 +103a86a6 +129be74a +538fab05 +0721132d +b6b1bbdb +c278016c +a4586960 +740c210d +3a6d18b1 +5b6ee19d +5e50db79 +4d482f76 +1c63bbf4 +86684160 +cb5e9ff4 +5a2964f9 +3cfb0207 +2985dfa2 +2e83bdac +a0abbb5b +569507a4 +04490a65 +1444038b +208257bb +65b6dc96 +4eb5dabc +d52d8fc4 +3a09834b +772fda73 +d14c9212 +da9ee8bd +bcb2e77c +f0f0e3cf +09ee4b41 +f81d2620 +5707d7ee +1f88b095 +98e78e7a +633b9be7 +f88bdc06 +b6eb5d96 +057e2dd3 +e7cb1184 +a03da696 +5a012d1a +4e6891fc +b8065f15 +a984ac48 +d90d259c +05287a9b +72b6061f +b8eec0b1 +79f7177d +9347b4a3 +5029598e +ec43a8f7 +751c7a99 +e411c4db +30cbe961 +4d8e7d98 +2dfcb44a +ee79db7b +b95f83fa +a8374791 +2f8b3560 +4956d4e5 +b59b744b +6bdee646 +685b846d +64533206 +0495019f +3af886ff +c3f71b59 +bcb03896 +56b1ebb5 +bccbbffe +34fc0029 +e7d6ff27 +1bf19848 +aaa80b97 +89dfa9ff +8c1a3ad8 +9f24464b +1d1029fe +4c288eb0 +329fa3ab +9d8dd43d +095af3d6 +e987b058 +274f4e12 +aa46e155 +c0e6befc +8e6dec32 +09fe0564 +fa17cc68 +7846e329 +72364a9d +dd183b4c +ea089f5d +fde1645d +609cd654 +22591fcf +a553219e +27d6e0dd +3955da49 +ab6afcff +5366bced +53b60829 +74f5ab05 +d83ca122 +7dae0941 +65e5e5e5 +779f824b +0fb78b80 +28499975 +24d85889 +9a9c8717 +f66b043c +9669f51a +f6aeec90 +81b27955 +7eb57a21 +f7ad89e1 +d0967f41 +f27ed3ab +af545dd9 +870796cf +7f0d7407 +02254f5f +9cab1003 +21e58fe4 +84def884 +ee341e2f +d87c8d9c +61c65daf +18f84563 +19e8bfd1 +6b1f1538 +38016f21 +839d50cb +f30f7842 +e8f6ccfe +4a2b4a54 +5b2b6068 +814c91f1 +4e4dd817 +6671dc76 +5ba7dfaa +5bfca2aa +5d235d7a +16aa5daa +5eaab985 +a6116275 +a22449ca +5d111255 +a8840224 +153f0382 +2891c67c +63db155e +4db253a1 +5a2f4542 +cde3ec68 +a09402a6 +19e253e4 +bad22647 +e65ecb20 +c9dbd0bf +ac5efd91 +f3a2b604 +fe546f75 +78d8f465 +978940b9 +90c7f9d1 +ec8fc416 +12880350 +8f7e5dc7 +3cf672d1 +2c6a1e9a +9b66fd14 +328d63f5 +73012b1a +a638f0a0 +c9971f88 +4af5f8c2 +bc2d81a8 +a57cffd3 +cbb8fa8b +1e18519e +c0d12152 +4ad8a654 +2824a5f6 +c8e0a818 +2afe74a2 +1f9d2c38 +c0c5f46b +aeff95e3 +54377e0b +11b529d9 +0d86025d +2b54e95d +7df3a6c1 +9c5fcfd8 +aa655a2f +33c5a752 +c8c105ca +0fd466ce +dde839bf +0de3b27a +e55dbe27 +f9074aef +4c8b03dc +23cab7d3 +bd664eee +8f33b365 +addc3db7 +055c40a7 +76dfc898 +dc2ea919 +58fe6044 +4004a1be +953707c2 +e0614341 +976896e2 +70728bf9 +5d00fa56 +b132c838 +d53bbf5c +2e551bbe +cd2e6eaf +95793ef0 +66e6836c +6f1ddc34 +952c94a3 +31b42deb +cb655a00 +f7be54b0 +852588b4 +13b025c3 +2e21cea2 +f695651f +2fad1153 +468f0632 +b1c8c31e +e19a92ae +9416a599 +bb567ffd +dd52a028 +9b706dc0 +2fc3058f +9e571700 +9f2f9c89 +b808e73f +db4c1ae9 +30f114f1 +9b73c1ea +5a197d48 +e1e391fd +63f0b970 +d38ebad8 +17bb51e8 +4350b107 +679527fa +2d9819ce +e392d05d +79101aa3 +837d93f2 +096b841f +9d722607 +4ff47081 +ad978c4a +649c08d2 +51cb7f1b +916be09b +4cc724bd +9e70b72b +6665daff +b0afc252 +23a62dd5 +86ac5919 +879fa878 +a98bc52f +437a58d6 +c0ccec72 +446235be +1930cae2 +4b7c8d43 +34098dd6 +b0c30eeb +70e0d2b1 +9ff6dbed +86c2fa69 +ee6824f6 +dbf42252 +59d8869e +7ce5cdf0 +3b5e3853 +d2b8af4a +1f72447b +92f2a33b +c058c33f +c66b30f8 +949ea585 +0b5f5e58 +bdbbf16c +176d07bc +7b027a2b +ac6687f6 +469f32d5 +61c8d479 +2dd1e24a +ef007ecc +df7a1f21 +fd24f170 +eb9ed7ff +e8d4ea40 +79ae8b9a +d7ccce7c +2cefc7b0 +a8df3bc6 +fc0d867d +d76cea6e +42156eb4 +0b7c691d +11939cba +e62d6c68 +0a26070a +79e86662 +cf4e333b +37bfaf8b +8c8f2bfd +f303d0ba +5e350f6e +435355ef +4818d449 +3966c8cd +b1451e1a +04422054 +3fe840eb +95bc260c +f6224065 +ddd66ce1 +abd69a9d +f19108a9 +61d6d816 +86462f28 +c8e4b0c1 +f36daf65 +0db4a766 +b47bdc8c +060905ec +202a3015 +f8362c26 +0d2cad4c +a59ea816 +94172618 +2e9a2599 +9b7d472e +b0c3b696 +b87a829f +0a76735e +55be071f +a05d649e +5a504385 +1966ae4f +bcd59fe5 +decd9980 +6a430a5b +570a3ead +c28e8ff8 +d3b3cfc1 +bcfc54a9 +46452df6 +58ff512b +934f826a +5e400308 +2506f746 +2cb77ec6 +f948ca5d +fde2c9d7 +34786fb9 +41c8b580 +5dbbf8e4 +c69937ef +c0885ca2 +b66e751a +4fa1154e +4f487d87 +a9171cc5 +07f4cb4c +507b0e32 +1c717231 +54503c4c +02fc7724 +390e6e02 +ea474a6b +c612254f +1e750733 +82f36f18 +3eb2f9dc +00e20e7b +ba6e0657 +c28589ee +e853b835 +f90394cd +0c639b84 +742493ed +467fb8b0 +7be1c5df +403e1842 +b7b2c5fe +4809d853 +25512dff +4b328e0a +0ba7fd89 +1743148e +38b5339a +1ac91ec9 +52f64c84 +aef750b7 +4c80e3a6 +ea63400b +89071a69 +abb448e9 +66110d1b +34cbb1bc +857a4197 +cfe11615 +580817cd +69632b63 +0209b664 +611c569b +be2bcc0e +03f77fd2 +2da55e7d +9af2cb2e +1ec8e563 +f4c487c1 +c281c227 +97084f23 +781f4d92 +d628f6f4 +c3808654 +3b1d1322 +1fa0660e +f9f84038 +d62903ca +62036f49 +5a0aacc5 +ec44c97a +09a25a13 +c888b255 +84c24bbd +569b7369 +948f6009 +9a5d52f1 +5dd86246 +2e072c0d +1528191d +decaa31b +4f3f2bb1 +dfce06f9 +696c3b11 +aca22cf9 +f98d9f6e +ef2542c1 +3516f6e6 +fd36b258 +1cc1a03a +ba344b31 +ee8fe4bf +a85c4213 +0eca41f0 +05e73957 +8f265ae5 +38e7245c +fc3dc255 +48a932f6 +0e2ac643 +f0a72e95 +6619af2b +db8113cc +b7a9e83c +e39bd393 +c988094b +c1d8cef1 +3b256bf8 +2723b688 +66815d59 +140b1e5d +8e7af09c +80acfd1a +67b031b4 +6423bcac +6d41cadf +b0ff1de2 +ad61640d +3e052f22 +873349e8 +bdafcab4 +e5186205 +5afd9e51 +73e186f6 +5b7186cf +347e4e86 +4c19025b +49e7b7d7 +86f63759 +f61f4d16 +a7caa7ae +50447cd3 +c22de786 +6287329c +156d3d40 +dabbd479 +648c9a0e +e28fed1d +798e96a3 +a70d1580 +f6fdda26 +07a906b4 +f8842eb7 +ef7e2c01 +85cbc79f +2c26da42 +a5cf8381 +ab15c16e +b94e5df6 +a8bd2ec0 +d22c7c9a +34bc3a7e +5552fe29 +5a777c73 +343367de +9156816c +a48ae04c +0f39538f +49cc0ddb +37d97d89 +7eaf6f1a +39ccb769 +a0edec24 +86dc4b63 +31d2ac00 +5d8f6443 +2e9930bc +84620f02 +b57fa159 +304a5c96 +88fc4928 +39276314 +dfb2a8fa +54be6cea +ea9c146e +39e0ed50 +e7c4888d +0bbb5cbb +df132e22 +b5b29c1f +5c473d32 +025225f2 +6c2acc46 +8916f815 +97c509df +2342c398 +e651250d +708ad459 +04c73167 +5b01a374 +90f1367d +08169c19 +72978071 +b657eb7f +5cd1b6c0 +eaa11718 +552e5180 +8803181f +c91ba988 +d7f1cc4d +546a84fe +b8fee572 +87762256 +5cc21877 +fa8359e2 +253a4ca5 +f3747bf1 +1bcf2acd +bbf65b42 +be60a2af +eb6f2560 +31c26a78 +c8dca410 +83827cf4 +8b266858 +16659efe +eb4b1bfd +9c1b4b40 +e11070c6 +89747540 +0932f78d +aa902020 +08740150 +178ba87d +bf596cfe +3a96d406 +f589a6b4 +041d3f9f +99b4a17d +45c28793 +538ef950 +bb9f3872 +618a08a4 +132a0b80 +2e5a9f20 +c390fa9f +3df169e6 +44cccd4b +cd73097f +4af686a3 +d4384424 +91a1b611 +d7679784 +dccbd94b +dc154463 +f2edb1f7 +e920b070 +c4b75451 +8019075f +7ff056a9 +0c53c0cc +e2824235 +ef1c6319 +95e55a52 +ba3ed4e6 +ee3486ce +26babcd1 +478ebe53 +d70487f2 +da3aa72d +f9d99d81 +29142596 +1aa94af3 +1d7c612c +0ac9d919 +91f9489d +51aaa971 +004dc387 +593e603e +0b7f85d0 +08775c1b +1cc9ac51 +4a6575c1 +2d5fa3e9 +c4271032 +59f566f6 +66c4d623 +7eda22c5 +8a2b6e98 +ebfa42b2 +3f70c42f +6cb5243a +9d91960c +d2f63f6d +c6904240 +52542824 +a3970ae6 +e8400e63 +a7de95c2 +253e8774 +aa9cd64a +2f3c8347 +d413ef3e +b724aaae +2324ef79 +1cf9c8dd +221012f5 +d7034fe2 +cc241569 +6b7b3066 +e4fa2059 +ef9686d6 +d534e77a +307352ac +3a3bb406 +7aab7990 +d299b0dc +3f48c30b +083755dd +40dfba03 +34ebd8fc +9a86130f +13615098 +6b8887cc +38a4e3dc +5747a0b1 +c95e66fd +d2a6d800 +954d6797 +e1ba527d +5b3fc509 +ca8dd3c6 +db381caa +cdc2ccda +377af8aa +ab8a1a53 +3f158c90 +05781932 +8ac214dd +b6a6a31e +302977df +9a7d4900 +dd6a9565 +69f2068b +efbb2435 +f1a8396c +4e73e6f9 +5f4de855 +2b9fb512 +00b2c8b2 +c247ca08 +c2d489b5 +a566e4af +ec3484a7 +fca56425 +262ac3d4 +f5df7ab9 +a2691d6e +433f9499 +17531d4f +6f833c7a +1a347339 +8b11c4b8 +e3ee2035 +611283ab +c1618056 +0a291705 +9b9e44d2 +9ff13f22 +cc7759fc +f55365b2 +c7176043 +7a3043c0 +d5aaf8c3 +5aae435a +672d927b +91fafaee +dea83554 +9f2e7291 +95aa5a9d +1d76104b +8c9867f0 +8fa83e23 +04de9d96 +0c43934f +90dca23e +6e5da64f +60ac57eb +d3802338 +ff5626de +b18f5a8c +fec93d55 +cdc4ba5e +2a1579a2 +2b9f0754 +5e5e993e +5ba9ebe2 +61263ddd +8c13f0bc +82eca395 +97894d02 +009f5dd8 +f06c53ac +d2999b77 +ae5ac833 +37e99bb7 +aebdb575 +c42aeabc +bd9310c2 +9bbf3ee9 +be753812 +b0562e4a +23d7f461 +2f3ee7fb +39795005 +a197fb38 +0710c0b5 +5d4198ed +43b30a24 +7889204d +001fc921 +9621d71c +83b2c411 +d8ac70b5 +1e152deb +01c2bbc7 +855758bf +921cb1a9 +138498c6 +08ba5c35 +04e4a7e0 +c5bc951e +84c02464 +0a110528 +0defc36f +fb0d3002 +fc885e3f +dcc8f90a +133353b8 +b55434a9 +e40f343d +11f52a04 +d814ccda +34f2dfec +8c923da0 +165642be +a62b6eb1 +3c31c135 +ac249cd4 +7a36be10 +ccfd4002 +434b8eb7 +00613319 +4e9bebb4 +669cb7a8 +7165d9e8 +00b0a3ec +d8e8499b +61537f27 +67e1f5b8 +09e3bbd5 +98401720 +36ab5831 +4e8bba73 +2ef8dcdd +2f83c4ea +94b87a00 +9f4437a4 +76b6f478 +0ff4db6a +45db6793 +85dbe138 +306e7a68 +f9073f46 +370eceb9 +4aca365e +f8320f48 +22d23aac +b757ad4a +5fe42e80 +6994d528 +022a36e3 +5c0c091d +50fd89c3 +692883b5 +871eb035 +6d601735 +4f8670dc +5317f239 +ec4b1d39 +ccb9cc75 +bf7d7467 +6b315457 +51cc5d51 +975bedc4 +5595948f +93a059ae +4ac844f1 +2e7b87f1 +dc90535b +3e7d76a0 +08c3f986 +bbf281ce +41c193e5 +3c4e22f2 +f171ba63 +66f2d604 +2c7bd6f7 +cce745f5 +9237b653 +d1b5e8c1 +b093e98d +4e215042 +dcad2706 +31bdb569 +dec94acf +c2e2250e +6239dde3 +83e6ca2e +8368e64b +7f75d712 +073bd88e +0ae1463b +5434103d +781c8327 +12c11b9c +a7193268 +5c63c3ea +a8af8c1d +66e756a2 +739f373b +4d8657a2 +2ac84021 +a4d84fb9 +3a06fb3d +b6433e34 +b7f1ef1d +79db54f6 +54c30969 +de1618b9 +de7b14a2 +b688506c +3c6e7a7d +64f8e14f +c6378246 +0c78dd7a +e11162e6 +7fe85270 +44c96b6d +9f125fdd +6de37a8f +1399de53 +9f792ab2 +fa305cd0 +c3e9876f +e45d0295 +4d7749d6 +272d6290 +66e1cb62 +27aba7ec +4abc6315 +6cc03d02 +e325e0dd +cfbf9eaa +ec3df57f +48a23704 +e051ab3c +b952cc38 +7edc047a +2a0e88c8 +1d8cfec6 +58b27a4b +5ef5257f +f9a980ae +0eb69562 +da3c8447 +b0484887 +c6881550 +9b537a5e +e93e5897 +028f45bf +24b0ac45 +a615211e +ace88beb +cb72c230 +c7a109eb +b029ebab +e17b3043 +d67a8fd5 +16563886 +37880c21 +18539b7f +07f1a7eb +4ca13ee8 +8e2ee35f +7d5ee5b6 +9dfda2b9 +31045073 +c2ba94b6 +4ab361e1 +d84743cc +75b05ddf +439cd4cc +31493a18 +39e37558 +8b5b6b7a +32d38cb5 +fb0920f2 +b5f7ce2d +cd98af01 +c63ea0b4 +6726c9f7 +56568181 +32720067 +5a378215 +d77a196a +45ad6166 +f830b131 +d596a58a +c3dacdef +4f2491fe +e6855cac +19c0a3be +09cf6853 +ca9ed493 +510ad963 +e65a5fc3 +26739be1 +1907e19c +a7fa7627 +747bcd4a +ea18ebd8 +2b2a1789 +08961fd0 +d0d71a10 +3c7dc0d9 +13c89cc4 +61fca60c +da693158 +265ea3d8 +6179f7b7 +fc6c221e +a7474f62 +c467e219 +1eb0f8f0 +beaa48ab +98ffd96f +ae9d290a +70452055 +4dfac58e +5085b39c +df941d33 +ca9b769f +cc0946cf +5106540c +64d8d024 +751fbd5f +5218d824 +4c9ff09f +969e14fd +32d3f313 +bd031e78 +881eaccc +10cccf24 +c9059ff0 +1a1cefef +43fc2d8c +a4857795 +96e0fe79 +232ffde2 +b2d8bbb5 +8205703d +0f3d4e02 +dd40f08c +386226ef +a2158803 +428332cf +7d30c3f0 +fac4c83d +bf4cebb4 +9a62ee76 +5deef092 +1761eac4 +1cd94349 +572bcfdf +82863df1 +aa3f2e5b +155ff7d9 +94ebed39 +7f9f5628 +863f8f8a +954029f8 +59dd51b4 +208f4a9c +628738d3 +4a647359 +af22fb96 +bf50c711 +c679a49f +50a56f08 +ab2497dc +f8b2e505 +568aa0f3 +d3442f6b +48b975db +fa9f89ca +61ddcfc1 +d53ac30e +18e5bb32 +97d749c9 +82e0647d +62555ac3 +7462682f +3787a7a6 +9f16a973 +a950a59f +0de6e038 +0c9cc756 +06384f84 +e4e9ce3a +c905df7d +4738a95a +919200e1 +d2243160 +00eb1d81 +2b763576 +e63f43cb +fd8358ed +bb4fe764 +7ca53f33 +4840c1ab +24f97fa1 +b72482f5 +e1f044a7 +311e4f94 +6e2907f1 +3562872b +3608dc17 +81fcad9c +81f76635 +51a8c80d +bdd4dc4e +34d253f7 +2c8d8e3e +2f4fe83b +b8a76289 +d4b0fcb7 +08c03dfd +12ae6811 +68637c0d +fb4bc60c +7253ac71 +0369d47b +9f60c586 +780bcb50 +f561018e +36078a65 +4727e381 +b50e2ed0 +b22a5f52 +ea31804b +97c8f8e5 +e206ac9b +44af41ef +fe04b02f +b5ab7347 +0087e728 +7e728009 +8aa132a6 +6a13bc13 +eb1944fd +8e648136 +5aceb3b4 +41eb38a4 +f5ff33d9 +0b7ab2cf +baf9aeb5 +58fede9b +1f96eb41 +b722e1f5 +1668f3c7 +89affafc +51b97b8f +75b85a30 +d7f84e3c +4730fb52 +e86c4329 +2e4547f5 +f4dc288e +8c2b39b2 +70df6b3b +d4b85d8d +7e16ced2 +cb606c19 +86c652c6 +1956fbbd +f23a3825 +d3379e7a +90a941f6 +7591f682 +499d401f +ab160bba +9e911356 +5bdcb1fa +c0ed8bfc +01a64571 +2429d596 +6a70a42a +3d3449d7 +41777878 +6821d031 +94881fc3 +2a268e4e +4c8986a3 +cf2c2521 +062065a8 +92988254 +33f7d746 +5bfcd826 +e06150a9 +21894a89 +215c69d5 +bff89401 +f522015f +370914c1 +ebd756bd +88a225ed +2e94d3f7 +0b9e06f0 +216d45ac +b91cf382 +8a430f81 +b3f7fb1d +7c30251b +733247ac +57d7b6a5 +9bacc95c +5edd0633 +41071de5 +f0fe287d +ff4d50db +77f6ab2f +565a196f +0cf56582 +e3e04aed +d96d7793 +784618a5 +3a4e700b +3950253e +167b0a48 +88d07896 +86e074fe +665d1a83 +e8df3343 +89334965 +15bba33a +3c12244d +c9ae71af +86f2e6a7 diff --git a/models/rank/dcn/data/sample_data/vocab/C14.txt b/models/rank/dcn/data/sample_data/vocab/C14.txt new file mode 100644 index 0000000000000000000000000000000000000000..a4a5a781ba6b052deb66e0dc44bdf98bfb1bbe24 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C14.txt @@ -0,0 +1,24 @@ +26ac7cf4 +cf1fc48d +ad1cc976 +e8dce07a +5aebfb83 +b28479f6 +64c94865 +1adce6ef +32813e21 +dcd762ee +051219e6 +243a4e68 +687dfaf4 +f862f261 +ab7390e9 +f7c1b33f +d2dfe871 +91233270 +ec19f520 +8ceecbc8 +07d13a8f +0601d3b5 +cfef1c29 +0bc7c8c2 diff --git a/models/rank/dcn/data/sample_data/vocab/C15.txt b/models/rank/dcn/data/sample_data/vocab/C15.txt new file mode 100644 index 0000000000000000000000000000000000000000..93dfd19da6bf50714d87348bfd97b59857a281c4 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C15.txt @@ -0,0 +1,2011 @@ +19da88a6 +2f71ef4e +dd244129 +ad47695e +72d05a1c +c8beaa0f +14d05219 +98c93ca1 +09d98d76 +f27e752d +6ec20f2e +413cc8c6 +1df0792c +4c6befe4 +46218630 +844c9d15 +402ce7c7 +8cd0367d +f455b8e3 +f5e3cff6 +ab3d548b +311b40f3 +a4508665 +53b51623 +4ce39685 +fd888b80 +dbbde166 +c357ecb7 +73438c3b +6ea6312e +d44f0339 +210dd677 +f44ef062 +2d751612 +f3002fbd +29a18ba0 +73b98472 +df3426f3 +4595ddb7 +040981c2 +3d58d8c8 +d268f1ff +6b3737ff +11b901c4 +bf020cef +2cd997f8 +e8ffeeb4 +32330105 +c99f9716 +62eca3c0 +f2d9bf39 +867d99df +0f7acee9 +06809048 +343e5724 +d420da19 +007ac9f6 +0ad47a49 +65f5fb36 +24c5daaf +5c2e109b +4882e4b3 +e23edeb4 +21da7395 +76835fdf +b62843be +e28388cc +0d146d27 +dd42a670 +fa321567 +dcd06253 +7fb65da3 +81d3f724 +6951674a +adc5d179 +40a510d5 +5534a300 +d345cbde +0b49e24d +b812f9f2 +8cf98699 +c6ceab4d +1ca2ec64 +b6eceb93 +6d9472f9 +bda24cf5 +0d054fb9 +f767920c +4a7ca0f5 +60fa10e5 +2223bcd1 +11da3cff +88a47777 +db586845 +c2b7aaa6 +24e96cd2 +c83563ad +054ebda1 +2f2dc9ba +f846ffbe +0eb906ef +eb0f6b30 +fdb8cdb7 +bfb03e99 +3e704e66 +6dc710ed +9d0aa133 +17a3bcd8 +b73b928d +3438297f +a56a115e +d3ac08f7 +37a9f717 +55dc357b +102e49b8 +11b2ae92 +50e1ee80 +df2f73e9 +554c4a03 +0bf0feff +091737ad +f9d1382e +30dbdead +3e5b3f6e +fe54d1df +815790d1 +30be2b36 +52d2c108 +86f221f7 +bc5419d4 +84eb9934 +5535e22f +73e2709e +b8acb23c +081a721d +24ff9452 +59e11c14 +eab6c8bd +520cb89e +4b8e3335 +7801874e +d959e25d +ada14dd8 +0efe0a20 +798a3785 +8d016df5 +281363b2 +ee203128 +19f03519 +3908325d +84203dfc +716ac5c0 +300cab0d +993ec99d +a89936e1 +d5adea3d +0169c5a1 +fa9ea4ca +0739b998 +61a7397e +6fab2bd0 +162f3329 +ae3a9888 +f188ba83 +708e7409 +d120f347 +316da2ff +a509c337 +1addf65e +330bda5b +6d74487d +59a58e86 +46df822a +3dbfb847 +8921eade +a45dafc6 +33d2c881 +2e85e7c0 +5ab7247d +5489614d +993a7719 +fdec7f51 +a9bfbf99 +dd94570a +6c34b86f +972b922a +91126f30 +0ac64405 +7c54ccb7 +c9ad4d07 +39a6addf +bc01d9a4 +739f0723 +9e1f851e +55d28d38 +df2ad21b +89407d7d +68b71149 +4a610ec9 +950307af +35f69a8e +03db9d8a +78e3b025 +b4512bcd +f8f73c49 +d37d4a5e +007fa274 +467f93ff +9cc57c4d +42ac678d +a80707b4 +fbdfc6b5 +c869a687 +dbc04c15 +549f5d5d +188301e5 +59fb5783 +da8cbfac +123b2f29 +e68feea8 +5fda82c8 +afbdbcfc +33f4c205 +be562b57 +7ac43a46 +4ac81a35 +0f9c4124 +b775a16c +af75c9b2 +d1320b47 +b1502433 +a7769648 +4feed03c +de3c58c9 +b760dcb7 +376a23f2 +f775a6d5 +18e53827 +e3ea55fa +fdf07338 +91246cad +4f3b3616 +a46bf7c6 +f9d8f165 +10935a85 +23bf2849 +bcdb9b50 +bd352426 +003cf364 +4165c23c +e4d19743 +693190ee +9c55db9a +2ed5bdad +30915654 +e046903d +0ee9165e +85fd7306 +5be89da3 +98995c3b +3967be37 +5182f694 +aa5bc3c9 +089dd1eb +94812b8a +d355626a +9fa7b46b +70eb0ad8 +bbd6edf5 +3a6fb6d1 +79a98024 +c6ca3eaf +4fda094b +6813f031 +72fdc13c +50cb82bf +51d40f16 +e3dc98de +62ecc9ff +a299ce75 +31a2c464 +111db041 +4499b524 +72fbc65c +b927d122 +d27eed0e +205c1982 +222f4227 +83d46128 +9606b30f +3581cad7 +05a584e4 +dd21eb00 +5ace6c00 +2683ec1f +95c6c51f +91f600b3 +457839f9 +b62ec7c9 +c1ddc990 +55ef2202 +10dcd6ab +194c42a4 +5f2d5a3a +9917ad07 +9fedb890 +40fcbacb +1302f720 +d83cf239 +7de4908b +16d478e7 +4dad26dd +c80d508c +31a82566 +2d3e18d9 +2277633a +fc42663d +cd8fe2de +bdca2d56 +cea0ad99 +e3fd574c +d5690a93 +e289fdf3 +899da9d5 +31c3734b +e0a2f482 +f2756ea2 +4d5e718e +fb2e22de +89e43c50 +64748fbe +6177250c +521b9165 +c68ba31d +7cd8225b +9da6bb5f +4587d8cc +3dc3c930 +aa05a951 +f08ed40b +8154d418 +719e4e9b +d345b1a0 +bfa6d08a +9c382f7a +8b945211 +8cbe05fd +602e38b0 +7f1c4567 +b19775cf +9a0b7e16 +b6dcf31f +d4dc65dd +27252522 +d816fd68 +18c35602 +62092ade +f8526149 +be5a5ec6 +b685835f +e5d3c510 +5d922427 +571f6c76 +05728e3f +bb91e6f3 +32ec6582 +a5118040 +c417161a +57bbde4b +98fca9df +484cbf06 +1718dff1 +11dade36 +90453bc2 +ede0309e +753d0ff5 +1d778de3 +729eed5d +c06af98c +53ea480e +1715a999 +17194aa4 +042c782a +c0f21d30 +4db058fe +d054d062 +4fe21ad9 +de57fa3f +13f8263b +f81cb17b +23cf85dc +4f7854df +0e8eba3b +b30b312f +bb0bf84d +4a0b6d3a +1d0f5921 +d30dcf14 +4e47e13c +7c4b3602 +8028822d +dcea681c +ef6b7bdf +5d1e64c6 +549dd7ab +693474a8 +827fae3a +b96e7224 +cd48a236 +a7541387 +630f96bc +033862ee +022e018a +36777332 +a21446b7 +943169c2 +1a6b624e +d1056dd6 +f891b70f +ebe321fd +655b6b35 +013a3bdb +67596d53 +4290cfe5 +7ba31d46 +80df7c9d +785edb93 +c57dc31f +5e495eba +5ecabfeb +0f04b39f +8a1efad5 +2e7889d3 +df360709 +655fad18 +c94a9d2c +87f18530 +f8aab0bc +55741344 +75b12e6a +ac98936b +d2fba5f5 +9a0b5832 +4a3a5069 +3f652258 +63ac89c1 +00631f93 +e1c12056 +68fc4e7e +d337bd03 +1dca7862 +040ec437 +b708086d +d50f20a7 +b5de5956 +830017af +38f77bf2 +6caba1cd +a39d772c +3c767806 +b9df93b4 +fec19144 +f5f22330 +bc5b2cda +846fb5bd +03970cbd +efb45515 +dd72d95b +4903dd2e +4cdbbe0a +8f0f791f +610165b2 +ebccecf0 +4dd467c3 +6cf5975a +aa25ba63 +1c4aefab +4adaefcf +6c802764 +6b43d7e2 +0c12be69 +ae0c3875 +1be668f2 +1f70852b +cf995508 +ab659b6f +6fda8f60 +a58e7e22 +e8ffebe5 +7ae598b5 +f033fb80 +344bf25d +c6d46efe +757fef46 +b7e33e82 +78d17716 +2f51688f +19015106 +21fc3685 +8d015bd8 +3565b499 +784d56d3 +9c03c866 +8c532c12 +28aed80d +a64d32bb +be4cdb56 +51348d8a +9aba6ed7 +ee77976f +9b96f3bb +3b3ddb03 +2a3ad26e +5d69c8e9 +d2c173f9 +7267469c +8d847668 +e985e88a +2e1209d7 +e1572535 +0ca2a578 +e60ec714 +fb78f559 +486c8b7c +5ff145a2 +2aa2bbdd +bfcf91a0 +7d4df900 +aa0c8851 +9dc1156f +4bf4361a +986b9531 +70a601bc +13da90fe +9221b8f3 +4bce7416 +7e2a59b4 +8ff4b403 +48a5d003 +cf25f9a5 +f5799c5c +75a4c7b9 +4ad96776 +cfa9df5b +1613a442 +addd37ac +d9d2424f +1ecad5f4 +1150f5ed +5a8b8943 +8cb6186c +b27dd6c7 +f6b23a53 +ba34ea3c +64c3f190 +b5fa159b +14d0a096 +2c14c412 +d1128331 +558590b3 +08cec6f8 +dcd1fc03 +d5eb6e15 +8168d844 +68822b03 +89fc04f3 +d4525f76 +7f882989 +4f5fbd7d +49d2606e +ac847e0e +9538b54b +4b572351 +5f105900 +ae44460a +396a6cf8 +1d432c1e +43e828a4 +57a9c379 +db102b26 +f9fbbd0a +cef498a5 +bcf15323 +f38153dd +bde7754a +90af1d37 +5507c0e6 +2c684cfd +8d772a8d +e24ff4c6 +3ac25d07 +7a0ac0eb +22094a91 +e296eaf8 +77efb64f +55f982ca +151f2153 +aa600b94 +28b468d1 +cc31eb0c +aadaf558 +425fb9bc +37f2f6dc +a08d6f8d +9bd565d9 +2735b5ff +c4d7f010 +22223d6c +c31e31ed +91da17f1 +f3a94039 +1e744fde +3b973320 +82c3f59d +1ac46c26 +3a129fb8 +7da29044 +7d7be910 +617d13f9 +234efa3a +5d6805b7 +aa18cf81 +e768ae05 +74438fb6 +16d2748c +9d7d0b99 +d9e19f11 +24564fe5 +6ec1dd51 +9ee9d394 +9038720c +2d8c0895 +8f92e3a1 +e6696727 +68ae28de +21879282 +00e52733 +84f7a6dc +6ddbba94 +5525889d +2915894f +ad31dfdb +10139ce3 +9703aa2f +59184f4e +1e4809ec +eec7af60 +7cf626ab +623e9b47 +df998728 +0879961c +6f1ab4eb +d6da9624 +c5d3e789 +bfef54b3 +4805ca48 +ec278e6a +e9d8fdbd +e3eccb04 +83763c20 +34cce7d2 +6fbef07b +89585e18 +ea8d4f05 +ea3f53df +25078362 +40dae2c5 +79aae8a5 +2f8d7add +2cd24ac0 +916e9a2c +d15f4d76 +72a9d1ce +c7ec25fb +a36eb32c +5e4152f7 +095f3c05 +742fffca +ecd9dd20 +71aee2bd +b16d44e6 +babd0f1f +74c49480 +217d542a +a4e2caab +af094307 +c60b6bbf +d867f5df +61f73647 +a8035554 +06894a0e +b5907fa8 +bffbd637 +cddd56a1 +ad062d55 +0e79f9fd +bd50245a +6253e3cb +cbffe0e5 +c367b077 +f77979f3 +2d5d7e11 +1381bcdb +c8591a9a +588b40b2 +90460e03 +5c0a1507 +65afeec4 +0bf25e0d +c1041ab3 +93414bca +c008c9df +625dc429 +2f5df569 +89bdfdab +4dba65af +6b4d7a3a +c8ea88d9 +5c595008 +5e163f0f +9fa29433 +2ebbf26a +b2353559 +555cd321 +813bda68 +ff933175 +fc574fb2 +32c6ddd8 +7f360330 +b2ff8c6b +3af33a20 +99153e7d +4962a9e7 +4c1df281 +2f3d2683 +ee76936d +79266ab2 +25475cb3 +75351cbf +102fc449 +d2da00f1 +0d598aa0 +83ebd498 +ad1f1760 +ea906d6f +fa467a7a +ca8b2a1a +4e70dc14 +8c46ffb9 +f189ac4e +eb8600ba +c74ee7fc +a90e5e79 +a9d1ba1a +b98be2c0 +f8071e98 +234191d3 +e3209fc2 +de829bed +2eb18840 +e9374fe9 +2b982426 +a2ccf91a +2de5271c +c4316e0b +d18f16f9 +022c81dc +607f4bc1 +01f71796 +e509a942 +084b5d3d +647eea15 +6f8d08e8 +2e7bc615 +59e23b95 +1db94996 +2cff2cc9 +407f71c8 +14108df6 +a0602981 +d6c04afa +207e3a4f +74056b5a +1f9b2a33 +af8db00e +06969a20 +0a509540 +c251e774 +6dc1c4d1 +a54fca2b +1f3f71a4 +a4861bb9 +e0ee3953 +5340cb84 +a9e21d3e +e8b24d08 +f412e004 +b21f08fe +5b0e9927 +76e67c5c +5db1ef75 +daf40beb +1a2412ac +bac304f0 +543dbc6f +d295078c +35e4d583 +ce0ff07e +681a3f32 +e0ee18f5 +6cdc8bfd +131d3346 +a6b876ce +6cf5aed1 +675cae34 +78ebcaf1 +b5c889a8 +45d3b115 +8dbc001a +bf94b88d +446be5fb +23287566 +d2160250 +fd8c09af +75803ac3 +24a39c8a +f88f2bff +559229a0 +a240ff99 +569913cf +af0dfabe +8b3a08e7 +5dd684c2 +e89210ee +a6ddd360 +5ff90ea5 +c0b54b27 +04ef2985 +492d8335 +9810119d +2d49999f +5a9e81d6 +e2876dac +fc9ac63e +292452ce +e2c18d5a +f0d65d05 +4be6e448 +fd8464ad +7c1f836c +9014f0f9 +4929aa91 +812ea57a +ae97ecc3 +bc566d75 +4d30aa09 +f566116c +2415f957 +ac52fb15 +42793602 +37663ab0 +924a3a81 +f8d15366 +ebd27968 +f717b29a +d9429614 +f0260896 +f492e179 +1f29ec61 +9009bc6a +0e1257cc +53d9e231 +9ea2e321 +e89eb8ca +1545f0d7 +17d9b759 +ab3069a3 +23a9a76d +07c3d3a0 +413978ff +15827352 +1886172b +e57866d4 +8187184a +f9175ecf +dd039517 +ff824c52 +f74f7152 +8b556421 +31fdfed8 +6f73304a +aff315dd +038f8759 +d68a7fd4 +2a892173 +46ed0b3c +abc790fd +6aa9f74a +e6250fde +71d7ea29 +1cd2cc85 +f320caf6 +8aceb51f +4431dc14 +0728c213 +4df3da6b +57e70a79 +6e897ecc +8c674b00 +023d3891 +51c5d5ca +bb1e9ca8 +16b21935 +e2275836 +b8596134 +a2327e9a +337d8d28 +3a8c68b7 +42b3012c +75d3c990 +7eaf5074 +aada1423 +87b94fec +1317e91a +a4bc0595 +1d858abc +97cdf314 +03b0a8e3 +0d91d386 +43da1ff4 +48ed53c5 +cceaad58 +53c5f305 +3f2e2dbf +5784e3d4 +bea58ab4 +c610e71f +3a5cfb00 +39f048ad +5258bd01 +d8107d42 +a84cf4a2 +b53db43e +18dadcec +e38a76a7 +55ea1fa2 +883a7c31 +abcca5c1 +ade1227c +7901647f +144050ec +ae9c6510 +2559d9b6 +559cd202 +f0d9127f +69f825dd +e815112f +90ddbf7c +4a593892 +ae28cea7 +12412a67 +6b94b61c +ac04e0e8 +a473257f +7d20a3fb +b19c1e74 +7736a2bf +4e1234cc +10040656 +7e7dc5e4 +a10cf729 +c169c458 +f29e2024 +217b70eb +2c5989f1 +df2987c2 +93a4aa35 +4a393d04 +ae74ec5a +e8f4b767 +6632d26f +c6a089a8 +e8b76093 +f554f7ca +210e69f1 +d4a5a2be +fc8e4662 +ad730b96 +d9c759ef +247f84ab +4424a0a4 +8c169bd7 +978a6920 +cc4a49ab +4e06592a +25a9dbc6 +f511c49f +dad721df +0cfbc5df +88e3c6af +0a069322 +cf2096e6 +e6cf16bc +d58f740b +16beb12e +912970ed +63210625 +95d8c83c +b593a63b +6b8ac38e +9bc78fa1 +d14edd20 +a3c5833f +1e3c8e25 +df0f0cd8 +fdb1071f +53a64a06 +fa622b73 +b6ff67f9 +82d260d1 +6a805a0e +88cdcba1 +edb12304 +a8e45647 +889bd31d +ddf40270 +dddd963f +9d9f6832 +78fc1b0e +9b45d6e8 +5622df07 +db5f813f +d7bba1ae +05758ed1 +1936a526 +422c8577 +ef97a140 +ebd8f6fe +26c4ae32 +4640d8d7 +dee34d3a +cd764ff2 +892166f0 +3048f058 +e0ef7640 +0c32c2c5 +e81555c8 +837782ed +5fe41dba +1e27c4c8 +b1302089 +35f1d5a6 +126c9dd2 +0507b832 +290e3042 +a08bd07d +eb8f48c0 +b16ae607 +68909f00 +e036ff59 +81875423 +00b8dc89 +7d48b3c1 +7cfbc0ba +e439dd9b +f50033e5 +4622e3e7 +a33da14d +24177fab +1c51f095 +6d68e99c +adfbda5b +8aa7e8d4 +48240945 +27ee6db8 +d8b631cd +2e2bd969 +b4f76d13 +60a23d23 +e70e26cb +14be02cc +aef6344d +83d11398 +06613aa4 +92d8ec64 +02f01e20 +25c6ebba +6d818e07 +69d56794 +f1ab5b11 +89620128 +7c2269b8 +3a6fbb6d +97b8cec6 +74e301c3 +ddf559be +1f7d09e9 +368a1c96 +79d279e1 +de65dc97 +6da7d68c +0cb182b4 +3c96d3ef +d262b21e +42d81087 +fec218c0 +77f7d01a +b7062484 +aad865a9 +14674f9b +ae1edc05 +548c2cfa +21ad9ca1 +e0182bae +9aa55138 +c38116c9 +f77a8d3d +16829d18 +18847041 +d52c7ad1 +60538e81 +d998d55d +a8fdb472 +9a82459a +b64212a7 +9b8c4db5 +d3e39ddb +9559bea6 +44504dbb +0c3fc478 +0b5ece76 +ef81bc7d +4bd13a09 +a513eed0 +e952ec4a +f7a61767 +fb2772ea +310d155b +12573c8e +7bebfcd1 +50340d14 +13ec578a +516195be +0efac1d3 +c3b8c6da +e5481fc7 +815908d7 +6074d864 +12e792d8 +dfab705f +25ea17b3 +f2be9bcb +e80ae76f +8d28db42 +b4fc11b8 +8ebf193d +bbc04dff +6cc0bdf7 +404fadc5 +1ce3ecc3 +cccdd69e +91b9f97f +14ae7bf2 +3dfcad8f +d3dd56d3 +b36ca009 +d2a5ca11 +9b5a6a83 +8485aaf7 +5b1e9201 +4a4e8baf +688f359a +80fdf058 +4e16937c +9406dc72 +fb00c8e2 +5d87c02d +9e17b0b2 +3a216454 +217d99f2 +5e7a356b +2fed2c4d +b20f9276 +79595843 +8f76a345 +99e7a41b +3038bf01 +a8e4fe6e +eb17a35f +903024b9 +0ae958e9 +0ccbb29a +e0e76958 +14fa210e +fda2c275 +f3cdac21 +fb67e61d +d8f0318c +c535a0ec +ccb85bf3 +c26b5dd4 +02651efc +cb9f8edc +3d5d2969 +fba62a10 +356fa1ec +1a211c92 +5f2506af +fa461c15 +35679327 +0e7f48ca +12a6592e +a9a633a3 +d07fce85 +4d2c9b0e +6efcae21 +c11477f0 +0d1b9366 +7e1a4d8a +cee9f178 +c8389df7 +8691120a +1620a246 +c9b266fc +9d08aa8e +9c95787b +24505cf1 +d82fb770 +77660bba +3a2b2190 +dc96c4b0 +40e29d2a +1e68f872 +c82d8eb2 +3e25e5f5 +673c0d56 +2d0bb053 +faa78901 +9a6e9a96 +ad334f54 +1cc16de8 +d37c2a33 +1a277242 +6d737967 +a8e0f0c6 +33b0f0e1 +8ebd9227 +750d1068 +0ebc8ddf +78530a26 +3f565406 +9a89c28d +79fcb5cb +f238735a +fb11a931 +cf1221e8 +884478a4 +94bf744c +2b9e95e8 +28582d10 +2f49c59e +765b5f71 +54747c3e +1605250d +90cfbb67 +704bcd37 +454fe7a2 +f2f8a7e2 +00b78dd1 +0d26bcd2 +df97efd0 +722bd39d +747ea14a +6e521569 +b02eef70 +c3cd9e9c +4ca91e1e +93625cba +c8d259cd +9b3255a6 +d2aade62 +e1ac77f7 +ee9ed69d +50996ffd +bac307cc +9c25c3f3 +c7e6b6f3 +80de833e +b4a435f2 +cca21054 +02436a51 +f5baaaa1 +1cbc3cca +c6a9d95a +4b0401e8 +126216a0 +794f6f8b +a552a47a +cef18e1d +f0bf9094 +cbfe96a9 +0af7c64c +715f1291 +c888d015 +fec781bb +de877c2a +99b06d74 +ef3290e2 +573054c2 +7f758956 +ceb8574f +e0f1de3a +2223bbe1 +ac4acf1b +f3c64936 +5c4a968b +6afa614f +7cad642c +da315591 +49c15c8d +db23286c +1ac8e354 +9c792869 +f6114366 +342f00e9 +9f44248d +41dfe8bd +ac79e11f +a66dcf27 +18dc3782 +cf539875 +259ecb43 +744c8e3e +2f2a444e +7da04584 +a43baafd +a723edcb +aa322bcf +6aaa8dbc +733cd612 +68d4cd79 +633f7ea7 +de781d57 +0f762d27 +67f18454 +e8b148e7 +453545f8 +99e01c3b +2b8f96c1 +baa2eb66 +178b0ad8 +9adf3328 +ed807c25 +72a87a31 +661da0ed +2dc7d066 +50b07d60 +18517138 +9ca59173 +98eddd86 +a6bf53df +717db705 +74d258b9 +4e9e3b1e +a772a8e2 +4724c85b +fe83a0f3 +384cd4c8 +4267a81c +554efdc2 +9add9e7b +d601c43f +8a8ba5d8 +a27f29ac +117b1660 +085e9824 +908c84c6 +15eb8c62 +58be2b32 +d038e464 +f7864b4d +68bcec11 +36721ddc +81baefbb +033b0f45 +298421a5 +d5223973 +b4f53f74 +35a3a286 +14b3c33e +43a44453 +883b58ab +1afdece0 +8ec16239 +6fc31e43 +b28d1085 +38645649 +9dd8631f +91f74a64 +5846a832 +bde42a15 +027bbb3e +58251aab +764e251f +90ff0d8d +c39914bd +e5133863 +7f7458c8 +8ae3cee1 +12642bae +44773e40 +02443eae +41f10449 +2547a09c +e9c61033 +f3996583 +7af2211a +aad60a5d +eccc2578 +d83fb924 +a888f201 +73c54e3e +55e4f717 +3bfd73d1 +3de8e0f8 +962bbefe +cb1612e3 +2c00caf2 +9c34b09b +e5a5467f +3bcc995c +03259d67 +f9df5022 +c31d207c +46175d31 +733e1a5b +f5a6875b +778f5086 +876a7e78 +42e20bc6 +e38b602f +6bdcea99 +78c64a1d +7d9f3a10 +95275a51 +36673c74 +e0cb89f2 +d6c9a527 +7b403f46 +370f28ad +b43b1e88 +fbf35bf3 +e0052e65 +1ee67fb5 +e92521f5 +1a015fe7 +e84d9f7a +e8d4033b +fd16dc03 +4b11a292 +e7dfec07 +4db04ed5 +d36539aa +4cc22009 +48824041 +521b6787 +4e917140 +de9cb0c7 +d7b9be02 +f3bbc114 +298440f7 +e25cc91e +3afef1d4 +06373944 +695aaab0 +a18e4f89 +cae64906 +50a9ce4a +f75bc6c8 +099b839c +b29e0819 +b15b8172 +04ad44dc +618ab562 +7e319349 +e01367cb +a94ba589 +beac2588 +f1e1df0a +1e578945 +feb7c7c2 +c7b09696 +a428132e +cbbe08bc +33b4066f +d2f03b75 +9efd8b77 +f28cbdb6 +8c7816d3 +e6863a8e +94199158 +70ccb37b +6c2fcd3f +78fa6c90 +6900c8e2 +80d1ee72 +4c97d3ba +586a2aab +bd7b7794 +4b2ba50a +ff18df4c +d3e4765e +81f86262 +bf6a9963 +04318a63 +99637b25 +413759ad +bb06390e +6d4dbed1 +adf0052b +29f33fcb +355e8a3f +1cb4f44f +7d775e9e +0268068c +2880af3a +902a109f +0c67c4ca +c72eb942 +ea6f6206 +4d4745a0 +40f9f2b8 +801ee1ae +58ae23c0 +77366052 +08805adb +f728aebb +cdc6b72b +d7e9854f +c6438ddb +7457283f +10e14b33 +b4316eb3 +1ddb1d9a +8abed8ff +429860e3 +f0449815 +e02fd783 +9ebbad56 +5a7d5bd8 +e6c5b5cd +6c947207 +808ff1bc +30d3612f +a1517d9c +49e58eb2 +c44556e6 +63ce87b1 +b53e73b4 +936289f3 +5e877be7 +547b8c62 +bc5095c8 +184a3554 +25ba53ab +24566b17 +3f488e91 +6ba03318 +0e444a54 +94dbd80a +e914effc +d4696a42 +0d604f7e +58d23284 +c94f6bb0 +876f9708 +027e6d5c +ef6fe5a5 +731c0cbb +856048a0 +afa1b545 +1daee501 +e974eb9b +8d1e25de +15c5d1cb +0b409f8e +70884403 +bee1e977 +3c237d18 +062f70fd +6641807d +0ce49139 +cf4a3e0f +5c5f4dd6 +796a1a2e +7683d651 +62615981 +4ddb1170 +5bcd6532 +b302b2e1 +c5bbd8ea +fc8350a5 +cbd68e8d +364f5bb8 +38f1e55f +c1563774 +f193d2f6 +15cf35f3 +131566f7 +36cc336d +7da7b9b2 +9bc78475 +5163515b +31b59ad3 +3b23ee68 +bbee52f9 +6045815c +85e5b07c +b2db654e +b22663dc +3403e98c +7501d6be +61f52294 +0bda6c6c +7d7542ee +2aaebd23 +71c460b5 +21879cf5 +1e82594c +865841c8 +2a0f2dfa +b49353dd +43275f13 +b88d2fea +603a2e9e +18993625 +65b8074c +25753fb1 +56aba88b +e8973e1f +3628a186 +15677940 +53a91212 +63cf9103 +a8830f2c +6e3a19f2 +e04ac6ba +d002b6d9 +f679d5d0 +5ac40597 +8af1dd15 +d8524628 +59b212e4 +19378d26 +6cb56b0f +18231224 +622c34d8 +754487ee +5f7a33fa +e4e3526d +d81d048b +fc45bcbf +96231dc6 +c9e013aa +4f648a87 +dd751531 +c06bba41 +1cbd1882 +faabdac3 +8c1d85be +5502ed6b +a3443e75 +91b8fb2b +e857f574 +ac8848fa +1726d6ca +63cfcd4e +4909d3b5 +11384998 +633f1661 +0e8af873 +5a205a23 +e7a9991a +d53709e0 +b4e23a79 +b25845fd +89b076fc +36fdeaa3 +8d787bee +80afa366 +97e04114 +d7a661f9 +1ba61dfb +cb0f0e06 +1b47b808 +818651cf +af56328b +d493d6b4 +eaa2a917 +e20a93dc +f31180cd +ced5be3a +c82b028d +e87e1df4 +3b12d492 +6c39197b +7c42278d +1396e916 +608ca4b2 +2a7a147e +6cfa4ac6 +02319a52 +1e33dfc1 +f137c9c9 +a8c1b20b +42e41d92 +1e6bef34 +78916971 +8ff759e2 +6aae217b +b0009333 +4f2e5eea +11817ae8 +a733d362 +74f82d5d +135df24d +33e5b3c4 +eff62e32 +2eef01bc +f7b14c36 +67daf98c +f3635baf +137346bd +62487356 +59621a99 +c7cb28b6 +a785131a +25f5cee6 +ddcd2653 +1247bc49 +e63b30de +5cedaf14 +b9c9993c +543c0413 +9608911d +ca419ead +3b87bbd6 +61b4e99f +54973283 +fa7b7e5c +cac2f8ca +04595d90 +b3b12b81 +862dcf90 +e5655411 +725cbd5d +6a170b88 +5e396db7 +60403b20 +4e505ea3 +e2dd9a77 +3068b94c +f9bd7db7 +8ba8b39a +075f843b +850cdec4 +79e800bf +11b334da +631b539f +d22224d7 +08812651 +b4569567 +1d06b1eb +1068335d +907a361f +1c703d37 +102957f2 +de2f758d +c4b55f96 +028b3996 +f9605f71 +b046231a +f107d273 +2703247e +4a378089 +35a6d30f +a1e267e4 +b42692ff +63f3dbe1 +c7532bdb +f7aa54a4 +e083c32b +ff4a3566 +0b528994 +387ececc +ac182643 +009c8235 +231f3923 +a6d97bf2 +b5351783 +ada91bd2 +11984f7a +9d9ef20e +a1d90ff1 +c8eb437a +e29aa995 +3aa85cb3 +12f48803 +d51e7608 +8941fc47 +a8db6590 +21bdb810 +4957164f +3706a538 +c27f6c76 +1bc32d5c +9ead8b78 +1042ca77 +0816fba2 +2ae4121c +f3e7ba3b +5568e7b8 +53175e74 +3d620870 +870efc17 +ee569ce2 +286d9690 +ce0f2958 +bd2c909f +e3cfab30 +98674466 +6f6d80ab +a67c19b7 +47656a7d +f8ebf901 +8f3ef960 +e2502ec9 +b00d57a8 +b9c4a1cb +4f55eb8e +ae717b6c +a8e962af +fc1f50d6 +345a7624 +3fe8c1d0 +2718f7a2 +a5007c7b +7c5bcff3 +e458ca69 +7c4f0ad1 +9ee86a69 +8736735c +2e6376d2 +8776c080 +47b64ef2 +abd8f51e +c1124d0c +236888f1 +8db2662c +badb3463 +dbc5e126 +c9e96939 +004dd4ed +b79ee0f9 +f78f8a99 +1bb48b6c +333b9800 +47a431f5 +2406b2d9 +a250a852 +ebc72f39 +6a13f121 +97620915 +97082ba3 +2d541419 +e7dd0bfc +d0b3a21c +ce3c65c0 +52b49730 +e8ba0304 +83258839 +5edc1a28 +dbf47116 +45e17a48 +aec1ba74 +ce39fa55 +7e6956e0 +87f76302 +ac2a3732 +97bbf6e5 +ca6db340 +7b9bdd9c +234453bf +65ccc4ef +5726b2dc +008efb75 +28883800 +87f8fcde +a1fa3e9c +2a079683 +be77fbc9 +f0d27586 +732eea45 +3b2d8705 +d8c099d7 +2a63319f +5307e616 +8ab5b746 +ad932be1 +7858f722 +307ba917 +a46c3543 +16a78aed +b19c72b5 +d82a1750 +a8690d4a +d2988321 +95e6862b +0f942372 +d57668e2 +ce5ff47d +bcdada2d +311bf554 +231bbd2f +ef1823bb +7b973dd4 +53de4ce2 +b8437aeb +52baadf5 +1050017a +72f85ad5 +d1ea3c15 +acd50d4d +487ddf17 +a1ac2b6d +db12b98c +064da126 +5c3dbd29 +cbdbab51 +16634bc3 +4755f655 +da946ae8 +dba8012a +5e3f66c0 +3ae36386 +b3de59db +947ae171 +856fb045 +7bc0f42b +5fb54e84 +38d99054 +51ed9966 +eb1997cb +b5aa9529 +bc55d84c +64dc52bd +e9910d7d +02aa1879 +fc29c5a9 +32cff810 +143da7b9 +e40dc223 +465dad55 +a6d6a075 +5e4ae600 +c2041322 +54971505 +d7f255a7 +34ad39cf +2ee9f086 +40318a15 +a2c9156e +206c5a0c +45f80c6f +ba8b8b16 +1b9ea990 +1f6a1fec +6a5222b4 +e83e8005 +1b856468 +f5fed91e +bad3cc31 +aa39dd42 +d582d840 +11290d8c +618b0ee5 +47fde388 +94eccbef +cea3323b +b7fe4065 +0f475426 +a85e7b5f +d4c446d5 +500c45a8 +38dea4a0 +280a440c +0065bb75 +20e0957a +56e96b36 +0e78291e +c9349f4b +12e876c8 +487cbdb7 +b8db89ad +c279efa6 +41415003 +3046a70a +e4849971 +8c236762 +5d69436c +7f6af6b0 diff --git a/models/rank/dcn/data/sample_data/vocab/C16.txt b/models/rank/dcn/data/sample_data/vocab/C16.txt new file mode 100644 index 0000000000000000000000000000000000000000..8832f7160de90699622a3260b8c2d36467f833f7 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C16.txt @@ -0,0 +1,1731 @@ +cae0eccf +afd2b3a4 +5165dea3 +16b7b16b +9bc7fff5 +8e63e610 +561c341b +80f3dc53 +01fa3a2e +bb01ab0a +4d10556d +447c553c +df3e8e2f +75d5b49a +6615ffe6 +bd4c16e4 +c6ff2f13 +2a08cb76 +31ca40b6 +9c3ab443 +283d439e +06f4ae56 +6db5537a +1fc8b40e +6fa1c2c7 +e7a6bfa7 +dce552fc +cd27642f +6d922e3b +15f1882e +0a6bdd7f +751ef953 +234a28d2 +52b66428 +08c8970c +d85a4e9e +2498d843 +0c76e706 +32d8c0fc +8e662061 +fd1bdc62 +ed067317 +f1eaaed6 +15da0096 +974c6edc +1f2ccccc +c0c9dd9d +a323782c +2a98c117 +a23a1df1 +21dc8df4 +f76dabef +b0b60d11 +6a43d0e2 +c81066d4 +c9906857 +adbff367 +5eb9c4aa +53850bd8 +99d3874a +44e56dbe +0f24f259 +d37efe8c +2dd4e74f +e4392c3f +40de7f97 +2f4fe648 +3f6a5fd0 +7471db7b +514e8248 +487a3acc +489b1305 +c6b1e1b2 +af6fc4b8 +8ad23cab +a9388658 +65a893c6 +9bbd716e +f2a191bd +35533465 +8430d68f +82bc9210 +41055d57 +89052618 +f83a681d +743db411 +fadee8c3 +e1dba062 +efd92064 +2b2e3ba5 +708f5460 +beb10f0c +8a788b29 +f9be7ce7 +bc164e70 +85d9cfbf +06f33c3d +d617f1ff +92101395 +ea748914 +d82ec2e6 +bd7b8828 +10f050cc +10e0405a +aa7d0863 +1478197a +e8345353 +bd44a60b +2b2ce127 +b13e0025 +6f4d535f +ecfdc8a2 +b97f8f45 +6083e1d5 +11cd5ad9 +54dd60b2 +4c63632d +34d3c2e4 +1279f5d1 +aafa191e +6168daf0 +2bfe9822 +fcc06f9f +01fed589 +f25d0dca +7fd23f14 +8b4e38bb +ee238677 +f81d403c +0d7e5968 +4d612a0c +f69d8369 +2d0bbe92 +9462f7bc +8f4762b6 +cbc9bb5b +d797b346 +3b87fa92 +b98c1201 +a73325b8 +41bec2fe +30682b23 +e6b23bf9 +ce1efd5a +2c562262 +cc498f79 +be2132af +8dcfd2e9 +cc95908c +828b488c +2e5c410a +1271e443 +ac01c54b +8064deec +1e8e1075 +f82fe53d +b031d057 +71895e92 +b03f023d +64db8f46 +571e4ba6 +c3352fb6 +fc7cf329 +69fed5ea +e6bf8468 +2774343d +cf393f9f +97d75abd +dff2640e +37d72a2c +8b15d58e +299ed5ac +601d6f98 +a7d2766d +d2ee3e11 +dc1edaf3 +38008e4e +20c3c861 +af3fa3f3 +006e616f +e1253924 +73480f4a +c28be541 +451c4d0b +3b58b07a +7c17a186 +dd81aa8f +baf0ded6 +d0be961b +840307c7 +2873aefc +d79dd8b2 +cd0a01fe +5d9228fd +5e622e84 +ea3544d3 +a9ff631c +9a3b8889 +0e903673 +e2b64862 +98358e3d +196f40bf +09954edb +a4a21eea +dacdab3c +8bc8a1e1 +342c1437 +c39bb110 +156b58e6 +c84a8d24 +f7d36847 +4e939ce3 +470550df +d2e70fe5 +208d9c1d +26bf6b76 +ea6028b9 +1b9d47c7 +7d1732dd +64bd637c +81cf9a89 +cc81317c +4df5d193 +85520cc5 +1a1231dc +e82d76e7 +a8a75566 +1bf03082 +d53e706c +72bb3f2c +2c9d222f +e3469046 +db283b1d +8351b996 +1b5dadce +d33e34b5 +179d9828 +8578e9a5 +c2f6e6e1 +5a6584e5 +ae4b68cf +1b9c30fe +f83a3710 +a88c79f0 +83e507e1 +6a6f7772 +2d3fb4ba +8a00a9dd +8ec308fc +6f264602 +e26d4d55 +02f1ae6c +38e9704f +c7b50b55 +f4ead43c +c77cde77 +4dab12d6 +58cde36e +ff8dfb8b +a1d12214 +979a0804 +9faa714c +21d71b93 +fb8ca891 +7dd3ec13 +1210402b +d114c516 +30de134e +d4aed6bf +f822c462 +745d0b21 +da635fd1 +49258147 +4e669708 +28cf6109 +7226c4ea +90d6ddcd +01589eb8 +ae58fe16 +940da9ec +5ef8643d +0a32f9ac +f47fe81d +09954283 +ed5f7ac0 +db2482b1 +af6edd0f +9fc98721 +a06498ff +f08ce1fa +84a7032a +dd35897e +b64575c1 +0f655650 +ebbc78b6 +a5092e44 +f6de1122 +88078b95 +4b34a656 +880b4662 +7295d80b +9e14a657 +ed6d847a +2a7f62df +e3ce80ff +7e52dfcd +edcaa3e7 +ce580091 +e18142d0 +687aedf2 +c0bd8d11 +4f4ee7ab +77facfd0 +4d03fc5c +291a7c04 +2cbbafa4 +afd51269 +ed168377 +eb288602 +dc2888cc +d296d513 +d388d33c +36cd32ed +a8ed1a69 +b0f32bfe +d9462a51 +1a06d925 +8ec71479 +5c0831b0 +c9503369 +27b159cf +450d3c93 +23056e4f +08514295 +49f8f6d0 +c65f695b +f5c0df64 +39d3899e +a16f9f0d +46c94a1a +d925fa94 +c26ce5c1 +e66d1649 +dfd505b1 +72719c09 +179c9c5b +0a605846 +3dc4161e +72d1790f +e8b28b69 +f6e0a711 +008a0f1c +0462dfe5 +0ada1635 +97f0f8fd +3a0994f6 +4f07bb6c +ef4073ea +5f45d1f2 +f8b34416 +7d9b60c8 +f19a28e0 +64f2ada9 +a98ec356 +922f1718 +2cfeef71 +18e0b979 +56bfb1f9 +a09fe1df +ba0eeab9 +eb8a8ef3 +bc05011a +06bafb1b +b9a86283 +31140703 +ef03d344 +3a753b84 +757d27e0 +9452ef6e +4c05759c +c304c76b +0aa7c298 +8beaa75c +bd5c70d6 +7444bc51 +12e989e9 +ac388dc0 +5db86fb1 +43a7c9a1 +eca39129 +e52b079d +ca47fe98 +6c3c8c53 +20922717 +bb01ced1 +f67f1d00 +b4c7c2e9 +0a047b5f +3a1a0a65 +fab4dda8 +fcb03a0d +9d05a081 +bc1042d6 +656e512e +20340c29 +c0cd21a7 +f294bed7 +46b5b94a +849973b8 +25c23598 +e4419971 +55af5def +6b421932 +3e8c1b09 +41d0f91b +4e02cba8 +69601db8 +114789a5 +ac704b5d +aef3b576 +1e6beedd +a661a977 +2a3c2d0b +36c4741f +9ca51d92 +abf7cf2f +e73fa8aa +4b0bcbe8 +29b0229f +5a9431f3 +4c99f67a +bcf3b985 +860336c1 +1b3728ae +7224bef5 +4c7535f3 +93c58c36 +2433f614 +1f69ccdc +df1d6cc5 +692feca8 +713dc1b1 +affa8bde +ac163d1c +2b78e3a8 +7f034b52 +84cd5428 +fd358509 +4b3cf298 +db0cf8e1 +c70b9c18 +4cff2ef3 +c59b5981 +0c15d525 +a26e6c28 +877a0d08 +3eef319d +cfec49b7 +8df716d2 +f38f1ad6 +8cf8002e +e83517d4 +01a953e0 +20c50219 +ab0bc9c9 +732af477 +ef26fc9d +889df0bf +c7cbb0c6 +47cf0073 +afc0e5d0 +69f18a97 +f148c075 +d04d484f +164e9b80 +696a9f28 +0607e9c3 +421f0c5e +12b81da2 +86a29fb8 +bdbb8d34 +32f5183d +e1533f50 +116648a6 +6ac19842 +820d735d +34744eac +6ea4b293 +c15b3b27 +ec676ace +2376e033 +4161d52a +a2d72a3f +86575745 +bcaa621d +39048973 +1b4d5a76 +a0b94b82 +de77f397 +13798f0b +949b03ad +b6d021e8 +6a3fd5ea +ba79b5f7 +81b7a22d +0cfecc91 +f0b7d70a +fab26a41 +f370632c +10a87365 +f48266eb +68d8d3a3 +4868e47f +2c52502a +8ec07f77 +8075af0c +d61e2a13 +d910c5eb +e118a362 +332f7099 +b7a016ed +8f2b49d3 +f4ae7edb +8f13519e +5421ac75 +ffb61047 +13a83624 +d0ffe660 +feb3c46e +15b70811 +5ea15ec1 +233426cd +85806c82 +3eca4adf +7dc581df +28de384b +f6f8c63b +0bbe4985 +a6a6ad50 +c336971a +c170278e +731fb6c9 +a08737b2 +c0d9bff4 +4562f4f5 +f5b1ed89 +0f8bf16a +6dd5141b +82708081 +071a7236 +893f2442 +d58d490f +0fd6d3ca +0c6b4ad6 +fd164c2b +f1bad98d +808c0b0d +8acba4a8 +ddf2b9b0 +b4444678 +542c1f96 +5a84e8aa +dd72f8c1 +8fdaecc1 +f2c276c3 +f1ae102c +542b1cfe +b4ac091d +22531fa0 +ed7abfcd +fe29a868 +6d9ef2d1 +754f444e +eab0541f +15816386 +3ccd9eb6 +08020620 +384d2714 +c62b15ac +61b9a121 +88aa944f +ef734ec3 +4de97669 +3671f003 +84449e99 +3d9023a4 +e0823772 +d290e290 +96d73731 +c4d74589 +d432823b +74f15ec4 +f796bcb3 +15fcdb5a +834b85f5 +33a1f420 +e8474477 +498519e1 +1689e4de +3a24b9ab +c37719a2 +aa6059e9 +925e59a8 +0fda2db5 +e408e1f7 +f4281abb +d8971452 +ffda1616 +d4b48c2c +def38fd9 +301d75b3 +fb6eda9a +c6abf9f4 +e6b81728 +0ed962cb +b8c2e9d2 +93da9544 +daa60e5c +86e0d825 +46cd1499 +c8719c2b +5e1b6b9d +4aa45c2c +a2c3e3bf +6137bb93 +f80f36da +808ebeba +478c1d9d +b556f548 +0ded9094 +921a13f5 +8d422b7e +b4823cb8 +2f0415eb +8836a52b +0c794472 +a5bf2db0 +84898b2a +f0d0056b +930b788c +3704b755 +982df0c4 +acafcfc8 +bddf8a43 +569ba1fc +b4275cb2 +9137a27f +478a3caa +dac00324 +ab9b38cf +8874810b +61340085 +0239b329 +f1d8a21b +6117a6e4 +32d7d6c9 +6e177038 +50b03903 +e4025117 +410dec23 +ff48ade9 +b2fe1c00 +c71d72ac +e568843d +5acccdad +672761b3 +d54a8875 +9aa86a71 +ab5583e5 +55744cd4 +9e6dcadf +100ca56a +10b37127 +20debb53 +6515dca1 +4860e447 +7eb9657f +45885e5a +c64d548f +e5bd6255 +b7a70408 +00f5b9eb +4ce4d1c5 +19b5d667 +44671422 +d038a670 +e8e891a7 +44879595 +5a99ee77 +6e1fcea8 +424da7bc +9226afe8 +2a14a268 +6683931b +73c5cce6 +f9d663c0 +25b075e4 +b681902f +4ae7939c +6375532a +baaf75c0 +55396b8c +35f81edf +a65f23a2 +386da210 +05480723 +9c54f8f7 +74284a43 +15469308 +7af48a61 +722ee340 +e9194f3c +8f35bead +6512dce6 +7c93429a +b6bb85bc +e047b86c +482b97c0 +fb1d7fb9 +36103458 +d720af47 +971a416e +bb5f54a0 +8884cf4a +10d214c3 +354a37d9 +e3a7947c +3e049d9b +94a59915 +45830731 +64052f86 +48e669c4 +73bee060 +e77b3ec1 +a6a69939 +51b0c534 +3f177f53 +353b21f8 +e1c6cde7 +5766f62c +7e28aee1 +85a68fde +9bae805a +3c39ef53 +8737ecc0 +cb120e85 +3ecdadf7 +ce06dc79 +15f867a5 +b9a485cb +f10ee122 +0decd005 +b8996eba +c41d1835 +80ec9d45 +51a8930b +cbec743d +04e3abd4 +c47e9279 +5614787a +572b6b0e +0a00b0a7 +229a113d +4d5fd931 +73c3f6f6 +807b85d5 +ee045eff +e5e5fb5c +9c8f5069 +c8ebd6d1 +27e96fba +4c3da0da +169f1150 +f4fe237d +1203a270 +324dfefb +12e66851 +6dc8c52c +4605797a +72dbfd4a +ed79a622 +31864932 +f8d7f193 +cf28e926 +461fd0bd +10a66e28 +5015d391 +e3eb0683 +370172ca +4f0a3b07 +6b98792b +29fd6b7b +28a15409 +ebc92e5f +6f5e1c59 +49c430ef +6364c8a3 +0167dbb3 +70908237 +ab8b968d +aeabc7c5 +1d87e348 +5e431415 +d32b8b58 +316f8364 +f6f410c6 +d1a4e968 +eba16983 +7b31c46c +ba92dd6b +58fba838 +731b4fa6 +d8027e71 +e46d3bc4 +a56e8538 +9a14c887 +119cf460 +83928875 +3c0f748b +6e092adf +a9d89996 +9f56eb2f +d099393e +6f8c3cff +20d25aa6 +446fa98b +3e9b78fb +53c3a448 +f09f93ab +eea8dd9f +66532548 +1eb90712 +7db2eaad +a867f8e6 +0c0ca96d +146a70fd +8e98024d +f13e0819 +c4036541 +5053c298 +756fd7f6 +541a7675 +5b987349 +d621ce3f +e5157e36 +eba85660 +378b65de +356f6a16 +05f98a59 +8d83ed6b +ff674bdf +d2b0336b +32061fb4 +db29b42b +208d4baf +2cde4ca7 +5d32e679 +bad5ee18 +0f0d1d70 +f2480acd +96e51d24 +d20f257a +5d9dc78d +d08de474 +84534f54 +15329ff3 +0e12e381 +bee50777 +101d02f3 +4a81344f +c75db6e2 +a0613853 +a043360e +a4676ba4 +7edc3aaa +9243e635 +3141102a +8213a764 +2de68aa8 +1057e51f +f4917c7b +e67ffd3e +0a671bcc +6a841a1b +fc89d1b6 +e7eb8087 +30235be8 +92e4b1e3 +3241ec25 +fc53f85c +bc19fa9c +c408db33 +393fd56c +559e0253 +c574de76 +8f24e8fd +3f4322ac +f2c6a810 +c92f3b61 +2e632a1d +7b274b5b +599bc9c9 +c0870772 +d037f349 +70cbea05 +1d0eb9f4 +7aa4d9a4 +1034ac0d +80a5e23a +67e2b595 +15204f2f +1a00d73c +fd81fbb4 +813b4439 +46938f5c +f049917e +978122ff +3f8c9229 +4e6f7f94 +574feb13 +5f92b84a +37a59704 +8e75b06d +f050b1c2 +99d07cb8 +8d5674a4 +94b37237 +d6527b8c +6194470b +431c40cc +12bf7f57 +236709b9 +f3a4510a +99597fb8 +8cec3c5b +79f223ae +b08ca972 +ff5837b6 +1c72109f +10d54ddd +cb819dc1 +f84992d4 +5bacecf8 +c00ab85b +8295d26f +080e268d +ba46c3a1 +c5c60ff1 +6ee8f7b4 +98761926 +cffc9d4b +4a392807 +7505431d +fe49babc +f9a5de15 +9243b160 +b5699521 +e7f36786 +056d8866 +ebe989c7 +33bcdc9a +c5abb254 +bf3da783 +8b4ddd30 +0614d25b +acaa85f0 +6049b763 +53c569e0 +3311902e +03ba499a +4905a617 +a0da09ea +32c4ab02 +80778e5f +4da40ea2 +d22376fb +39286441 +baf6534a +5306324f +26a7cd59 +8da176c7 +e2315f69 +d245456d +0f3e52cd +dedea45c +99ebec87 +af42819f +77ecf4f4 +f6505d8b +c4ef13a9 +8fef7c31 +00a362bc +994db95d +afb79297 +8aaa31c1 +1174f1ac +2bb0a227 +3cab5c13 +c14ad775 +2c58c4c9 +49619833 +ebfe78ce +e9bf33b6 +071015ec +83600e40 +69f67894 +6e8334e0 +e1d99b20 +3305e464 +98b478e6 +a152c6fa +92a5822f +5da8ab92 +85200fcb +ff48f719 +cee8ad01 +22197936 +0bb0ac33 +dfdccb2b +2538652b +2d0324fe +47ad791c +377abb26 +31af4795 +460dec75 +fb914e97 +da1333b6 +2bbe2611 +111f9514 +878192fe +d071c642 +271d5b6c +0302196d +5a05f38e +de573b7a +81246ba8 +c85dc1d7 +edab8953 +f356b4b9 +ff5a027e +563c1077 +553d3322 +bef7b2dd +1ed45831 +be9937f2 +ddbbeb4f +4bd6a847 +cb1ebe81 +4d582443 +75c4ec95 +17b82863 +d54ecb0b +206d3694 +eaead249 +32b77bca +941c0bd2 +2d66e7d9 +9d3d0702 +8b199911 +3084c78b +2b486b52 +f0910df6 +e2a38f90 +010b4748 +ecbb1f29 +12d5686b +2d27b48e +8845d54d +d4e599f9 +e4f8613d +aa7e0d02 +2d3aabbd +93f15153 +e07ce4a6 +2210df91 +004352ac +5f32239f +7292beb4 +f05fa1de +f744ce7e +05e9cdcc +b19f0f9c +87140baa +2dafbd7d +047ebe19 +7a76439d +bcfc5b8e +568a6980 +1397bef2 +50d2b997 +ddfabc04 +99dffe5a +98334731 +dc0c2eb5 +d07baf38 +ae6d9c5c +9d3a34ed +1656bd81 +5feef02b +6de617d3 +b2ae3c75 +d7e9a5e7 +79b8cbbc +73c60e2f +b5595c57 +4a838997 +9fa7a7a0 +9bdf183e +cd3ebf28 +cc1ad3ca +4cff9ab8 +9f064e1a +9e0269a2 +7494f9ca +ea80b40f +ac63c39c +521c14b8 +feb10b8e +bde37cbb +30f8923d +b151f39c +c686a4e6 +4bc3e211 +310c45c8 +44f81422 +c9cea2f5 +a52c02de +c63c4860 +c9e13b26 +b77d5417 +a8ea7dd4 +350805d3 +29042374 +ac2a6674 +d0b4477d +4cf88e5c +fa608050 +74ee75f0 +4b784c7f +4fcd8a20 +5a56404e +9606585f +a029b14b +2bf6da38 +5509d325 +afc96aa6 +56223e9e +b0888b66 +e8cc6979 +aa2872ec +5ad327f8 +5085ea22 +b74e1eb0 +3f0d7ff4 +92562f8f +c94e5879 +ac6a6c69 +fb5401ca +b00d3dc9 +13832203 +25f08141 +cbfc3b36 +41388a35 +76ffaff8 +06cbca6c +2795dbe6 +33bb926b +87582436 +603eff57 +0af60b43 +57eb7640 +eb81c23c +c41ec047 +bb0456d9 +20ae1873 +5e228b63 +f036a5b6 +beef16d6 +48aa2ef9 +a7c73aea +7c89058d +0ff23d24 +3e54f2de +5e7869e6 +fb361ef1 +81d0ea9e +900ef7fc +8309aa04 +2bde9f1b +ee029c86 +8b9923a6 +6232d8a9 +a8d4711a +a46acbe8 +9a5109f8 +5e416359 +389b217b +8b30fd90 +13e2a30d +e66306df +a54711b4 +e1fa124e +c9df465b +07f05fbe +9cf588a6 +f024e2e5 +def71843 +bd40ae8f +3889905a +d707e487 +18469f99 +8e47fca6 +005b3220 +659f2c5e +3fc987f1 +9c5a6b67 +38d74309 +3357ae7e +bbf76701 +684e7195 +42bb41b3 +019187b0 +0186e5e1 +fae7560f +6077db2c +5e5cf891 +01e777d6 +7a99cae1 +3aaae0a8 +5131d930 +62f60446 +b4df7a81 +3f7cda8a +ef65250c +ea95fc5f +4a09aba8 +c4cde3e8 +b1054099 +743293f1 +1a7791b7 +f6e6e0c7 +2e96c2d2 +13b1cd06 +4a484ccb +fd2045ee +5627d7e0 +5efa8d38 +c9a5d168 +8fb26375 +a7633a2e +07408417 +0f33b689 +a40234a0 +77d90ebb +b1296b69 +731db326 +89e1e64c +3c4ae2c9 +aeac1355 +0128620d +eaee869e +439f27b4 +710d9802 +cedd5bd6 +162db140 +c737b3d4 +59e681a4 +e86d1dc1 +777865fa +5eea53aa +776f5665 +b61f1a5b +b6f28485 +b041b04a +1ab2aab4 +01adbab4 +2d08259c +1c16ef03 +69542bc5 +e15ad623 +6779aff7 +735b87b1 +4b6488bc +b65bb5a6 +f46f5e2d +5292ab7e +02df538f +d360dae2 +20e899d2 +2be3c2c6 +77c6c8cc +02d816f5 +6596e6e9 +4563039f +86cf30ad +b399e966 +c92cc179 +c1f64e08 +9f2a6a96 +ae365d93 +7e348ca8 +0f99b5b5 +19f33e86 +1206a8a1 +9a9902d0 +29ea6d8e +35b1ae1a +bf27550d +d87236ce +37f6b7ba +bd6532f7 +658a84f7 +e41271ab +966d7566 +250c7973 +dbd6e947 +a9f1618d +a398a2b8 +c9df9574 +647d5d9d +2d816edd +2a27c935 +51a8a5ef +cb1662be +c98799bb +12daa519 +b706d7ea +0c98f503 +fd94f924 +8e6c8cf8 +057d4aa9 +cf831015 +e5e1a10a +2f6bcbc0 +ff770af1 +695998f1 +17329968 +2b0da700 +9fe6f065 +5b9c12f0 +1b5a24cc +ee293b0f +91e3510f +78550b97 +ce7e3667 +c50c200c +5f0f99d6 +bf67130a +5d05774d +348b5f6b +c0673b44 +e51a1d95 +5fbf4a84 +056512da +1cbd80aa +6bb29970 +bf6033d4 +851ba1e9 +bc5d0fe6 +b592b5d7 +90772df6 +d99c0f09 +4acd10c7 +27c229c0 +b5f483fa +6b423eed +83bfc78c +8ffccf5d +d2173eba +587267a3 +57325571 +10138641 +ad774107 +286e74e5 +841e145b +cf445916 +91a6eec5 +b9bc9b86 +3f487a2a +d8daf836 +0fb7893e +860fc9ef +8d04fe7d +cbeda6bd +c4f97e73 +946a6214 +8245f73c +283066b5 +ad48368b +2b524f2b +e307e1b3 +1af9282c +ecc5a996 +016308a2 +a78f25f7 +1fe58112 +c22e3268 +3292b8e0 +9393d331 +e05d680b +56a2daae +09948b41 +36e6f2fa +b06f79e3 +118ad0d5 +a231edf3 +0ecc9ba3 +8a3074c9 +2b1b1104 +cf91a2ee +94d7b373 +be928393 +6553ae28 +b8abbe53 +784a2d05 +0eefff36 +0fed94d1 +01171f7e +0abe22ad +3b5e40ae +cac6d32b +c8e21b43 +474808b8 +6d790484 +97131038 +788faa1b +9ab4d6b1 +86d4ce4b +56cff7f4 +7992413f +a57495ac +713ac685 +797c5039 +67b3c631 +16fe1dbd +bbce9ffb +bb26bef5 +a7cfe8b7 +232038bf +e3463331 +526e49a9 +631f0045 +93b613d5 +1d4fe3c9 +981f7a30 +c66a5050 +8e2fc5b4 +65ac3c6a +a59243a7 +e63161ce +f10a7996 +bc3e9121 +831a2231 +ba2f32ea +c0c7a39b +755f8311 +db2d4359 +5ab5ddcd +a9dcda12 +1a190c21 +6d87c0d4 +6c9b0432 +f089b621 +054b386f +0b442a80 +f1cd3235 +8e8f030d +4549ac92 +03b5b1e2 +9689b397 +0fd4fbad +51168bf4 +b7f61016 +c47d8ce5 +f9e311f9 +778b5d90 +3a00c84b +cb6c245c +ac20c297 +b4023aaa +a5b8b6b0 +565637ad +967fe9c7 +7da9962b +8c3aa0c2 +1e2a8a01 +8ac5e229 +05e5b5e6 +1ce2c3ab +8759a2d9 +2d1e4c26 +8ec11ae8 +36a11f89 +9ff8d453 +005aafc1 +e638c51d +023d28fa +332e83f1 +551b167d +bdb3fdc8 +e04d9bb6 +08de312b +93fdfa71 +30bed612 +15109528 +9e0369ab +288db732 +b2f2a0c7 +9872e04f +8bfde9d4 +9bbfdd44 +a2f91f2d +2c22cc36 +256b5c71 +7e14b290 +fc3c75c2 +9bd9d055 +c2807520 +c57bda3a +e071b305 +14b1aae9 +9282da85 +153cc4e3 +f7b89495 +9c91bbc5 +a13c2bfb +91c2360c +c92dd02b +f47fbf28 +3949fb6c +bcae7dd8 +25195683 +07e39ac1 +ac13b0c9 +996376c8 +9be443fa +d68aaefd +99944c06 +355e0fc0 +6bc40863 +940a7930 +4bcf344c +f073b53c +5efb510e +43f65e56 +858ebe08 +58bfa110 +ceb59ce6 +410c14ba +267c028a +477320e3 +e2ea5450 +210f4624 +c2b1bcd9 +04a1a565 +17bb48ef +01b74094 +0b9df185 +88aba84c +1d88db53 +86758547 +362e8de2 +afce40f1 +5151f2ca +3770493f +f98306d8 +07fc819e +38fc4d35 +6399ea39 +23b497d2 +4f02a842 +2af5302a +35da571c +6aef3c1e +a8903c45 +8a6d5f7f +bcb792f1 +d8097e8c +ca0962d9 +97c5a99d +da441c7e +d82d8ba6 +82f06a35 +03f89a73 +a14df6f7 +c1ad684c +93068590 +dba66dd1 +13fed0f6 +a3625962 +03f7048f +1a3b2c65 +4ade0efb +ceee664b +d5fea315 +74e69a7e +3b35c4c2 +eb41785c +978d609d +c36529ce +c1b18f73 +ab2b610c +e334d594 +c4c8682a +f8fb9f92 +ca6d17f6 +15f7d055 +c4de5bba +de319688 +1748bb09 +6e159954 +b4851db5 +72491ac7 +b72d8ca1 +3ab25b0b +5c646b1e +e895d2cc +fd90abe9 +64bda102 +2c37b1c7 +46973e83 +5feb4d80 +cf3ec61f +5f704016 +dc671cac +15b23f84 +be809e2d +069df1e6 +dd39b141 +412b23b3 +0fbcd4cf +097b7927 +84e63284 +5a0accb5 +8acda24f +16f841da +5bfb82fe +c86a06ef +ab444698 +e373e613 +e2e2fcd9 +25e6ec8c +0d5067c8 +6cfa79fe +41b4dd52 +449af417 +a2ac460c +94025981 +23440ede +644b2622 +3b233707 +efdd7154 +8ebd7aac +15857827 +be7e65d8 +e832fae6 +ec6e1470 +97a55a46 +7ebe13a3 +1776d153 +a5d59761 +6a4fdb11 +2c1cea37 +3e0c4a55 +25810bea +9364d972 +26f6b4ed +cd13746a +766102dd +e7a94a1c +b458da0e +b93ac0ad +7f43e4dc +87acb535 +30f8aa32 +b688c8cc +acf5f625 +dc9d47a7 +823a0874 +0b065b85 +a424b389 +06f8836b +d7916960 +31d0d1d5 +83525307 +a5aff774 +7d594f0c +266dfb7d +11ff5139 +9e724f87 +7c8ae841 +a57124ef +db8bf2c2 +bb6d240e +ad5061b7 +58d622ca +19254a71 +d458fea0 +34e85fee +663b0827 +bc8707ae +a847e1a6 +f327e411 +eeaabdba +f09c47f4 +6c12a781 +62589caf +0adebad3 +9e6ff465 +668f77c8 +c638c67b +ee029252 +50038464 +f3c338af +6e6350b2 +0757ce7c +b9750c83 +84f42268 +b2da78a1 +3b6bb4ca +7f787ad5 +49033934 +3bd3c82c +3df1fda7 +5d09b37d +47aac979 +6a3f7e72 +0835d27f +7b6538b4 +13728406 +ab423a9b diff --git a/models/rank/dcn/data/sample_data/vocab/C17.txt b/models/rank/dcn/data/sample_data/vocab/C17.txt new file mode 100644 index 0000000000000000000000000000000000000000..95c0fccec81cab5dfc06bf906492566a043fbfe1 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C17.txt @@ -0,0 +1,9 @@ +07c540c4 +776ce399 +8efede7f +3486227d +e5ba7672 +1e88c74f +2005abd1 +27c07bd6 +d4bb7bd8 diff --git a/models/rank/dcn/data/sample_data/vocab/C18.txt b/models/rank/dcn/data/sample_data/vocab/C18.txt new file mode 100644 index 0000000000000000000000000000000000000000..152a873922d041f038a54f78e11022c0624d4fb9 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C18.txt @@ -0,0 +1,1197 @@ +236eaece +c1b71324 +5ffc34e4 +c6c8223f +9ede65d7 +42a2edb9 +ea3e5063 +3987fb8a +44631fc4 +4ff1b968 +642f2610 +c3186a4a +c61e82d7 +6ddae0d9 +cc0bf907 +afcf762b +deab2e92 +e46d32b4 +449d6705 +f3058562 +744ad4a0 +199d5d68 +0f2f65b1 +3cbc29b4 +c2ce2fbb +9d4b7baa +fa5f2e4d +181879d3 +522e8a7f +ae19423f +ae46962e +9e066b21 +622ba7f1 +01f66046 +48c6d900 +9e6c2033 +dc593eab +a1d0cc4f +94d86dad +ef97d1ee +b6c1d748 +9a89698e +416e8695 +f4b06ee7 +16f4f19b +24de59c1 +63aa00dd +a2157fe3 +7d461236 +7ba9340b +082ff924 +0babc5cd +be03c068 +93b0d1d7 +3009c5ce +51b03af8 +be7bc2c7 +4e8be8d8 +e3f6ec41 +16631f54 +2a93f7c8 +e6f5e38e +b7b8cd0d +63d354f8 +9ef8c1e3 +bc55074b +a8f42b59 +b37c34ba +af0a538f +2b829a72 +2f6ba926 +f2fc99b1 +f5d4d21c +218cd882 +750192a8 +582152eb +70d0f5f9 +2a5c1ed3 +90c88cee +bbcfef98 +b0bcc1cd +32d83fe2 +0f820978 +bc6f1d9c +5d01bce4 +30228196 +205d1531 +ff87dac1 +b238b9bc +72002960 +d51975d7 +63c4742e +e589f353 +4cae8121 +53b5a4f2 +ea22fc4f +566137f4 +222616cc +6391198f +8e8af94f +f75ed668 +a2c1374b +140bbba0 +e392c918 +ac02dc99 +fe49f530 +98c4d3e0 +abd741d5 +97f132c9 +51ec7a2a +cbae5931 +6fe9da0c +725fcae5 +42c62349 +c8d26de7 +5b5794f1 +306a7468 +5d961bca +c04ce6df +95f11b33 +63cdbb21 +75edcf1f +fadc3645 +15f0df20 +e1cc12a2 +5916bc73 +e5213cd5 +95f5c722 +607d062b +5a5b8bf9 +c63b394e +1e4afada +7a499c3c +93e0e949 +f7be65bb +def1cd2c +66501661 +6de7a3ee +ce500fd8 +31f7449a +4885ae60 +891589e7 +e9a3d86d +23fb8a75 +92c4efaf +f1a8f10f +e4ca448c +f2becb37 +0e128609 +ce4d072d +d73b34b3 +661a2801 +381bd833 +775e80fe +38b82d9f +c84cfab2 +385c471a +2c6cb693 +0248f398 +157482f0 +1bae7658 +b04e4670 +2b0a9d11 +5ae61280 +bc33765c +4427594e +8aaa5b67 +97ec19bd +31114d25 +e88ffc9d +1ec1a272 +df903078 +e727949e +12d119a8 +65a2ac26 +05f89946 +a7e6c628 +97235b4a +28ebd359 +0b502ecd +96549fa1 +701d695d +b4c9444e +4ac4fd60 +e5c40f39 +cd81e6cb +b6d33a04 +04fdc63f +71a94f1e +52e44668 +b486119d +00ce28f6 +269527d4 +409455e2 +474ecca0 +e37d2c6d +7549f127 +c6fa25f8 +b3e92443 +06762f0b +94ab5489 +7ccd2973 +62acb0f3 +a32b8daf +26ea54dc +be645006 +9f591d04 +ca8583cf +e703a375 +d942f032 +f2f9ae5a +b0a66c0c +62c2b7f7 +74fc71da +c786d1ea +caf3c615 +335ea8bf +c0424025 +e310ad06 +4aad5ba8 +b5c23ebf +02607769 +e5f8f18f +6d6312b5 +bc48b783 +fc923ad0 +658dca4c +387f058a +966c77d8 +5aed7436 +4172ab05 +e8623312 +38dce391 +be457d6e +1866f3bc +43a9e4b1 +135390ff +cfa866e4 +4c6aba3c +aab53bcd +89a6dfcb +bc5a0ff7 +d0e5eb07 +a3e3ec9a +6c913fe0 +6e046711 +1ed5bdd8 +91e72260 +d632055f +16bddfab +a5ac4b1e +35a9ed38 +df00d249 +e6f0d720 +f724634a +0280dd56 +6ae8c28c +4b17f8a2 +a9a6d3d6 +c1299c0b +102bad49 +4bcc9449 +be2b722c +aa6ed13f +6fc84bfb +57c8dedd +a3d71525 +b8c1a741 +69a65434 +08d65fe0 +da9d18bb +0b331314 +78808395 +b2d0d922 +8fc2e6f8 +5b22094b +dbebbe86 +037e5c3d +4873986c +d5e4889c +b21492d9 +79d7c2c9 +5b17ed49 +a863ac26 +0d40d1db +717b8551 +9f169174 +c3a4b048 +d452c287 +874ecd52 +4b519f6d +79a92e0a +5e8bcf8b +4623da58 +12195b22 +fd3919f9 +713e6091 +908eaeb8 +97954b01 +cb2feb6e +5d1eff8d +8ecf282f +29b0e3e5 +0d6480a8 +af13ada3 +d6be9f7b +7ac00b77 +0fc6cea4 +a2c19c3c +d3d245d2 +90ad4528 +a086cf41 +b76fb0de +3e50aadf +38748bc3 +b4abdd09 +b0a0fca9 +babd84a5 +912c7e21 +240f5971 +0c52d809 +b79acaab +f6942533 +f0ad6738 +f207eeeb +7a824e68 +03364bd3 +1490697e +0a106e05 +88416823 +4e6b896a +6eeba0b0 +303a3ab3 +35176a17 +4390975d +3c59b550 +06c23e12 +065917ca +c79539f7 +cb5f60e5 +2a64e498 +779fb8f7 +e3d9ff6e +c196a249 +d87588c2 +26b3c7a7 +f559cb8a +213ffd91 +6477f501 +df4fffb7 +89b242a4 +abad9dca +43e64261 +44e3f649 +86f93336 +45aa217a +3d8fdbaf +2e171ed0 +e74ab908 +d24f3c5b +cb95e657 +ae288801 +bf4e216d +2939761f +2a92b119 +cdccdc82 +6edd3a0d +ad19d8d8 +dd4c6357 +7d8c03aa +45af748a +ca533012 +86f1f0b5 +ed8965e3 +afa6ee61 +1263c077 +ffd53157 +cac48684 +ce18773b +ba0e319f +84eb7a34 +1cece7d0 +5a6878f5 +78db103b +60a331ee +8019e4db +53d8aa6f +30d1165e +db2a6191 +f54016b9 +a69461b9 +ed43cc6d +3ae505af +16bee6bf +53367220 +6ef500f4 +f8c14a22 +1f868fdd +c342ea0e +d29b1174 +61f32b0a +73b57b6d +281769c2 +48dc5aca +ff809076 +fc16085c +526e8765 +a628cd1b +f8078ad8 +9cd2305d +e1174b91 +69e1d4bd +ade68c22 +665a060b +8c6bc614 +fa0643ee +f0524df0 +0e2b2aec +be5810bd +b49c9b63 +d9be4b29 +3e3ba623 +4b49363e +6a74e011 +e01eacde +b4562df2 +e712bb73 +d0505ef3 +51dc528b +b3e4ddc9 +dcda5a9d +b2b0c96e +1cdbd1c5 +e43cd1f6 +d6301f08 +4cfda94a +963139a7 +0c1cbf43 +41d2aeab +f8bea632 +cec3268b +4539f136 +4d641da4 +61d44c4a +ecfc6e86 +49e22b38 +d60f3983 +63e4be9d +24a3debb +15bb350b +108eb01c +1292d860 +401f44c4 +09186e1c +bdb9e553 +698d1c68 +fe74f288 +048d01f4 +83a18735 +f8babbef +f93845d0 +06747363 +66fcfcc7 +ab78c7f7 +5742e45c +341f23a1 +02e8d897 +817481a8 +8cd9b2d3 +371018ba +5de94169 +deaa119d +e015d952 +5214a8bc +1c381aea +1e9aa8c4 +c23adf9f +7ae26406 +832bedbd +003d4f4f +1c130afa +3f6bf69a +c9da8737 +47ecd034 +f9edfcb8 +b133fcd4 +35edc425 +fe94fad1 +e32bf683 +dca44521 +8222ff64 +8e950a44 +257796a3 +c4eab330 +30f25b5e +3e340673 +56ee3543 +6ffd3334 +8ef31929 +6830a76e +cc693e93 +35cc0917 +3735c118 +47e4d79e +70eff6a6 +bfeb231e +a673f1fe +5fc3b9ce +34ab890d +0b59e971 +627060bf +2ae4f30d +0b75865c +31d0e6f6 +cb9ae335 +76ae8aa6 +f7c2843d +02cf5d49 +d4328054 +c402f369 +3f10e4b9 +cbd13810 +997cd4bd +0c4e94df +43c6ac42 +eec58038 +da72d4a6 +96af95cc +570391ac +faa19495 +e14dc045 +3fb96179 +3ca7ad0b +c6c687be +27b1bfb9 +1b884e69 +2a40f0da +6771b543 +82816173 +238d8de3 +30adf650 +d5d1ae1c +23a483c8 +ab7d03ab +a7e06874 +cd6c876a +defd44e8 +32224310 +05c7f49f +5dce8960 +be07c275 +901e19dc +252f0dde +ac7705cd +92555263 +311e1ffe +d4a314a2 +0a2d848b +1f98b1e5 +f5f4ae5b +e7a96a4b +45e3284c +9fb8fc2f +3a2028fd +0545cc03 +f65bbbd5 +8f9b4e88 +0b25643e +21eb63af +eb0f5533 +cc464611 +1996f15d +a2926ce7 +bcc05e92 +a30a18f8 +cf1cde40 +04d863d5 +a1ff8a24 +44fa4e35 +4b0f5ddd +ca5a79fa +934abd6e +9c9da140 +74ef3502 +8687deed +5cd2e5a3 +e138f81d +370c59e8 +7da6ea7e +ab5ae14d +14a8c0a7 +da507f45 +bc836583 +faeb6b69 +5681c2c1 +1a66fb6f +97b81540 +51360aab +65979fb7 +9378e2ce +e85b49c7 +1b71d04b +68de516c +7e32f7a4 +b2e570f5 +c1c7adf1 +d4aabcd5 +ab194a92 +1e3d9f94 +cdf5b4bf +562abdc5 +cdfa8259 +59718f2f +9eed203d +595e9ddb +5162930e +5cd35b65 +07ae81f0 +0a20b09c +2ebcb279 +659bdb63 +9e4517be +1616f155 +b1f2cae8 +eea3ab97 +87c6f83c +2cad38b8 +824dcc94 +9f1e2f58 +d495a339 +3453b1e4 +da738eed +808e7bc3 +40685634 +bbf70d82 +bfd76bad +ea9f4495 +c24ac50d +5cd0443b +6a2d2873 +e24773fa +d4df8873 +8f1ba373 +94d8f2d9 +718ffb5e +4b340164 +7b06fafe +b4cf6245 +9a0908ac +8b61249a +331653e6 +a78bd508 +a53934cb +a70ca30e +c1e3e8e7 +9dde83ca +08154af3 +752d8b8a +a62ebaa8 +0705fb3d +e96a7df2 +f2f1286e +e12da5c8 +7ab54100 +5ba7fffe +bfc6a90e +67007047 +46e9560c +5911fc7e +ba67aba9 +130ebfcd +b2879faf +41f61cc5 +d1c83925 +492675bb +7c3c801a +7c21218c +9e8d3bce +20b2cd03 +45e764d2 +19ef42ad +d942e999 +e8f3ce77 +ab368164 +836a11e3 +b4270c3a +641c905d +f42c5fb7 +c9fb83bd +395856b0 +9a1cdd7e +191cff01 +8fbe065e +7a71d8da +98ff11f4 +f3644223 +893857db +699f5baf +e161d23a +73a47204 +08d20fe7 +7a8e3247 +e84025ed +637510ea +6217c532 +9df49ecd +5447182f +f68751cd +020c927a +40aab586 +e261f8d8 +dff11f14 +d513f9e9 +b608c073 +14012d9c +8cc913b0 +bbe2f8c3 +f190d96a +9b82aca5 +426d4e67 +7181ccc8 +eb4d3f8a +8d18bc02 +5f2d60ad +c68ebaa0 +ca5a75f3 +7955b5c7 +cc7032eb +58fd9158 +3593e33b +43de85d3 +e7648a8f +d20a7fea +c90735c5 +135c06e9 +a5bb7b8a +3e7350b8 +ae09efbe +8a25126c +e569651b +a7a5c186 +7ce63c71 +5080e3d8 +3cb7e3f0 +86b4fc22 +5ccbf8bc +3e9b1322 +04c62c3d +8f445203 +2c65ec06 +c04654d0 +2bbd3980 +c9bfd921 +813e0639 +01890ebf +66c3058a +31941843 +df2589f6 +29907d97 +97029569 +6a756ddb +423679c5 +2dad8067 +fb342121 +6067836d +adad417c +167708ca +3412118d +6e245777 +6e200add +eef7297e +a00a189e +15a4e6dd +bf6b118a +f4373605 +d5288836 +e5477d35 +747ad3e2 +3d513ec7 +f8286ab3 +ac4787ed +8151ce98 +cbadff99 +01cb4e6a +62274968 +75a3693f +44992f00 +8814ed47 +abc718ac +1cb978cf +ca6a63cf +5d93f8ab +0e393340 +2804effd +807ea8b0 +d3303ea5 +05773134 +d8ce605f +2b0916a3 +d245c200 +a7cf409e +5ab59e5b +d53925d9 +7eb5f96b +1999bae9 +cd231a7e +12869708 +07070d63 +42a7e7a3 +1f9656b8 +fad5dbfd +be70385c +25c88e42 +85910cb8 +0bcc943a +f6707d4d +f9b74a64 +f54fae70 +c235abed +873af5c4 +fc35e8fe +96d926ee +f699ac01 +870cf59d +6c62e002 +c7cf2414 +a33fb37b +1576ec18 +c3854c72 +2f7ca015 +3b659b79 +124c6b00 +7face29f +5705c078 +e52d145b +fbd943f3 +195c811d +43c2c7c4 +db8d9382 +98bf96cf +3bce7100 +ff62f93f +4cb86eeb +bd17c3da +1f9a787a +795b8402 +36020264 +427f76d8 +a9cad496 +b9f82cf2 +ac2846a6 +955ed1fa +e089d5fb +686da8a3 +6c5555bd +61efab44 +331176b7 +ff58a873 +a00e54d0 +9469f352 +d2f0bce2 +4ab7652a +0c63bab5 +35ee3e9e +452e336e +d94f84e4 +26692966 +b5dbd3fb +4fc40d0d +f03e8b05 +84abbf61 +de2a126a +3dde2dc8 +9d83e7f2 +2c698a26 +bd9a37e8 +f0e2be93 +366370e2 +b07781c8 +8832437e +006aeba4 +f57e4608 +a6f5dd38 +a5b84a06 +005c6740 +0edc7d17 +a0f3a3dc +58681afc +dceb92f5 +99d64e00 +8abf93c8 +62b2e723 +3f9969b8 +3ff18c32 +7abb2837 +3182300e +1e9e2790 +1ea311a2 +2efa89c6 +7ab25cfe +431b9468 +4961a65b +3cb7741f +af035b0e +e7e991cb +6fba30f8 +1f8f8372 +bd246965 +616484f3 +2585827d +112d0327 +9943b99f +479030a6 +8b2c8140 +82e4ff9f +53515e19 +a4667218 +c587eafc +94008e9d +618f779f +9d3171e9 +fcea3412 +fdbdefe6 +88daae07 +ea3d03ad +a4dd5669 +70e5bba7 +2e39068c +3cbf782e +15fa1f82 +01125673 +2c98cd83 +17a67eff +1a9f6745 +b6c7c5c3 +9bf8ffef +65bcc8d8 +15a36060 +68983471 +0b14a1aa +540a1cbc +a58f62db +69d8c303 +7119e567 +37ad08a7 +60502883 +5ce4203e +0533e21b +ebcbb440 +24fead2a +58b6f121 +7cf65c5f +45de52e0 +5d50ce9d +bc95fbcf +2787cb2b +4854928e +e1bdfb13 +88b0e440 +bb983d97 +836a67dd +f855e3f0 +1ba8cd7e +f6a2fc70 +4771e483 +6e3d8cb0 +166a4729 +3d033dfe +204e9bc1 +3ac30845 +cacb8db1 +88ff59ed +d1464cb7 +f92d697a +1e42ba17 +72175246 +3ffb873b +7b49e3d2 +b182a697 +c25374fb +b6b880ec +5ff6b040 +a8df06fa +acd948bb +87fd936e +9880032b +35901cfb +d2f29bd8 +f64c5d3a +b34aa802 +f953a972 +e8bc4abf +e1e3d16a +908f310b +0c425168 +0bcb7dd3 +1a47ef6b +280c9cbb +b81a5022 +989821a4 +0f4a15b0 +784f00eb +a45ed116 +4431064e +de8971ff +8e8b535e +416587b1 +436a5570 +002dcfdb +95e4ca74 +ef981aa1 +de5b2875 +87105aa9 +36a1d942 +426a24d8 +3598c4a9 +35ecb99e +fffe2a63 +43dfe9bd +08ed8a1c +fba30a05 +d3e54c7f +07801acb +ec24516a +7458820a +1b8d9b2b +12c649f7 +a7ccaded +90b7bec5 +519b56d4 +7f98f2d9 +f2a4ebbc +3e608631 +09518cd0 +29b9d89a +5a87d8e9 +3842635d +c185129a +7ef5affa +5c4b15cd +bb84f5b3 +ab9c686d +c0b5f1cd +13145934 +906ff5cb +ae4db229 +118f3bce +78e611cf +51369abb +63226d20 +e262a40b +6777eb08 +fe623d4e +1445a5e9 +65cebfa5 +47b9d9e5 +2b46823a +fd673b92 +fd0ec440 +5e5b3998 +4903cd40 +93444c11 +15c0d0ad +456d734d +1ba38918 +4240e004 +c41887ad +03afe4f8 +24d4558e +05719980 +19fec6cc +863eba0d +d1605c46 +42076ccd +f1a41ea7 +6c8360a8 +c15e5a62 +a573334c +0ad1cc71 +2ef5e1bc +e1b6ea80 +b75b4438 +67bd0ece +cfdf1056 +04bd1bd7 +d981a095 +c08a0c90 +9397091a +6ef5c311 +caebc32e +c191a3ff +c3c7460a +dd489dad +bdc06043 +a10c0817 +86c37593 +c4ba79ab +42235923 +cfb045b5 +daaca6f6 +0f9cf934 +6ecd217b +670f513e +5bb2ec8e +a56e3253 +9480132a +ec7a9588 +83ef104a +f5508183 +82c4bf6e +9221d3c3 +821c30b8 +bbdd12dc +fde97152 +87c9f30d +bd6b4cf0 +2ab4da9c +0a6e5453 +e7c97dee +f59d3e4b +57598e25 +0ebdbf46 +c2d5aae5 +befd6e69 +da7ab2f7 +c3d46189 +a896fd82 +004fdf10 +c21c3e4c +d5a8843a +8cf6783a +45e58044 +1c4b4926 +3d6594d8 +65c9624a +44a0d901 +c8219a71 +5cebaf83 +c7dbecd5 +2170da5e +e05e805d +1304f63b +a1654f4f +48970815 +6305316f +20157126 +b3fe34a4 +20e28e86 +a866c2a1 +9d40190a +25935396 +6f5ec0c1 +caaa7e73 +19f8590c +3868b983 +cc793350 +faa6829e +c351d4e3 +876521e0 +c9ac134a +745169bd +b37f5bce +79c48790 +ede11b1b +262c8681 +0ccbf1dd +a30a2069 +8f0f692f +fb299884 +e90118d1 +9efc6015 +9b3bdc6b +7e2d7802 +09d9daf5 +64da4141 +d9942b4c +4ae65742 +bab43a1a +3fb55a52 +7d0a2593 +cc0b0790 +6a6c29a9 +8950eb26 +3a165c37 +86b4c7aa +8db09f74 +0ac416c5 +d39e7a70 +0f2f9850 +ecf26b99 +52b872ed +3c4f2d82 +9de259c3 +fc45d11e +d2651d6e +6a58e423 +561cabfe diff --git a/models/rank/dcn/data/sample_data/vocab/C19.txt b/models/rank/dcn/data/sample_data/vocab/C19.txt new file mode 100644 index 0000000000000000000000000000000000000000..fd141ed95d49f963bfd871d6dc3ac4219b57da0a --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C19.txt @@ -0,0 +1,584 @@ +5520c45c +b41b58af +04de9d96 +1c2a036d +609029d1 +2d6b8eb8 +3b422a71 +0f265be8 +f6a8df04 +3eb2f959 +b009ee50 +3be24715 +54591762 +65b79aa2 +7839a083 +f3c1a470 +3f7ee9bc +e51f040f +74f2710c +3d9b755a +c61b9367 +4632bcdc +a04181c4 +7d7d0ad4 +5048dbb5 +82390ba4 +b85fd9dc +6f0c4cf7 +b2e77b63 +d3ff1b16 +6a3f73bd +872eb0d7 +b6799750 +7c629f16 +9908ba56 +a9d84a0c +eb30f6ed +2221c689 +389c11a8 +f1ed3100 +700b0c57 +c708d93f +169e9700 +83a6a781 +9a9aaf67 +c361c1be +6fdd6e61 +289ac443 +1d1eb838 +c453eb25 +8633b12e +d630e5f7 +c60a4703 +97f9ffcc +6f3756eb +ec1695e7 +6678f597 +d785f37f +fd577979 +9b19e0d9 +da6e9c74 +158cdff9 +c9414bdf +3aae8792 +dbe199cf +e3b5ceb7 +54156659 +8279049d +841389cd +cbe37417 +399d5c3f +410d7406 +6c6e7412 +200779d9 +dd2d8ada +23a4bfcf +92524a76 +8c604d64 +c393dc22 +c4aab396 +5b1d6ed9 +34fce22d +75647e0f +7e8c642b +d913d8f1 +18259a83 +0e8004a0 +f4cb0c7d +5faa1322 +9151fd50 +511667fb +77f48d1c +a88b4268 +08dcc8dd +d951bdce +909bcde7 +0cc116d5 +4bd8c890 +1b1b9309 +3a1e0f5a +f33fe217 +ae44ba4c +5fed1d47 +1339d4a6 +3ed24bb5 +44a71869 +a02e9a1e +920f5f20 +d271d52f +b1fb78cc +0421a5ee +670dadca +dfdebe48 +b971ae39 +db709382 +757bb18e +75916440 +e0237f36 +73006510 +a35e3db3 +4b1019ff +03a07a24 +f44bef3c +f9730b28 +77129a30 +13c9db1f +10a826e7 +0b8cd6e5 +28125b9c +69578b6b +7e57d0f3 +97fd470f +566c492c +064f1f80 +55f74743 +45d6674c +83552c76 +d8f18599 +b7380686 +c79aad78 +e4b30de2 +05e4794e +ea727e37 +062e2590 +72bdebf3 +2a56f4a7 +39e30682 +d989bbf7 +a73cd2e0 +423fab69 +9890ba64 +5b5de845 +733bf73d +061feb43 +f7b3cf28 +a2c503f1 +7be4df37 +9d523618 +dd25bffc +a8617aff +58a67fbd +473e5032 +153bb189 +69ff7363 +de2c6717 +fbf39fb5 +a34d2cf6 +8cd56d91 +25047f94 +4322165b +6ef46a75 +72592995 +e14dee06 +e142ee46 +af8bed6d +b1aed9b3 +8b3a2728 +03e9f0e8 +4a237258 +d13f30e6 +7d551238 +93d183db +b795e71a +641df83e +edfe7dcd +c68db44a +fb3de65f +c0a97214 +91d8fa7a +650dc442 +a2a24dde +738584ec +1d474f25 +d9aa05dc +bb2479f7 +54564c1f +5a9b3868 +071c1933 +825112a1 +5b885066 +790d09cc +ed2a0c35 +4e1ffee8 +89c06616 +3e0910c1 +7866b2f7 +72d4f58d +5b9203c4 +72719375 +0bcf2bf3 +382b1e40 +b04164d1 +e5093397 +5fd56cf9 +dfc341f8 +45455b38 +ae25bd5f +1439e83a +0b86bc18 +2e30f394 +1bd5359f +f005689f +b6abc58c +68c36492 +645ae380 +21ddcdc9 +afafffd7 +2ba39771 +a105e305 +08fffa8d +46f1d1b5 +8eadf6d6 +cf99e5de +91066f77 +9ff26bea +df1de58f +3d29bf8e +185d5000 +2e631106 +d7a14759 +c651ec54 +e847a21e +943674f2 +05802368 +083e89d9 +9437f62f +479655e4 +aafe3a09 +f6a3e43b +cbf94c6a +4764bf77 +52f9e685 +a7ba9291 +19050a44 +f7090e1f +95709483 +bf212c4c +e22752c5 +34a10404 +55dd3565 +49175026 +c31bf66a +32695916 +195e20a0 +449c7d20 +6506b94b +5d097c5a +a18beb4f +966f1c31 +65a3ca24 +b287721a +cb9d08a1 +e5e1bbb7 +2bb27f45 +b24872b9 +0d7273b6 +4c01641b +c94fbfbd +ec607592 +3dd03255 +41fd0e18 +555c64f6 +712d530c +c63ea0b4 +37c0d2e7 +3fe5a574 +a2eea4d0 +a4038074 +c220703e +9bc2b29a +d1756250 +38ad7000 +09243db5 +a8ac0fc0 +b034efb6 +54f1657e +5af15ee4 +2f4b9dd2 +8c0ec819 +8c2c7ffb +b8a0b6d7 +c4209246 +1a7bd53d +17e184e7 +fba3b75e +463a84e9 +1f4e7222 +2b47c6cd +a153cea2 +1e6ac7d4 +ba92e49d +610c11f9 +3cc52e83 +6f86de17 +84fc6c03 +915c3457 +f0e46a5e +d16737e3 +8817e1c3 +c5849342 +65c9d3c2 +fc134659 +4cc48856 +dcb7a0e1 +601f1f3b +e77cc843 +02883f9d +81551f75 +d80b0064 +55c3a60b +4bc5ddcf +102512e0 +c5cd97b1 +53d07655 +1a9b8580 +1ac39a24 +f51eccb3 +ed601ba0 +2c434f3e +afd8410c +e8a609b0 +8491d222 +2918b658 +f2edb1f7 +1ecb6a20 +4aabab64 +64d8d024 +8b067084 +050f9eb1 +b656d252 +a9084bcd +26e97973 +5c2784c9 +8f80afeb +4c3f8eb8 +5e5ff12b +108e6f07 +881fb6ec +e87bdfc8 +d0a7991d +8cccb387 +fe22cc73 +c703dc9e +a0dfc6e7 +71d82dea +bb8d42f6 +96794921 +fbce4e45 +2c12be6b +1ae44294 +b99b8dbb +cd11c728 +c5f356b7 +1176e15b +39c70805 +67b50e6d +83072916 +be323b68 +d7b50177 +43cfe51c +cf77ac68 +52f9ebfe +361d380e +9653bb65 +8a319e43 +2c6a63f5 +cdff2091 +d928a345 +e78e0c47 +b3824928 +aecf55cd +1c3eb40c +a84a01e1 +83b188af +ada95f0f +deca810a +35c9aac8 +a32d11fa +c2c9cc0c +45372acf +ff40648c +e27c6abe +b6862699 +8c8dd18c +1bf8725c +c9be8835 +ce199c86 +a4c44aaf +898a0348 +38ecb055 +c7dc6720 +9b99c7f6 +84dfb479 +97b66ca8 +7734aa05 +d0dc53b4 +410499c1 +662641e6 +b87498e2 +ac1a2337 +77e4599d +c5cce658 +49b8041f +a8dbd7f0 +73ba0e1f +8583a7da +8733cf72 +5a7ebc3d +f455cee3 +3fc9f59b +1d04f4a4 +af7c4727 +647e63d4 +ec05e327 +dfb213f6 +c3c4c8af +2b558521 +6e2e2cbd +0bcb00bb +efd98782 +83236299 +7a471cd5 +d74ff162 +49463d54 +65e326cb +e809b8ed +abfaf938 +db0b20dc +4b403ba3 +db3c96e6 +11247e20 +f30f7842 +d3fd955c +a231b7eb +7324dc45 +5837ec60 +85684dc0 +338f20de +16788d7e +7368c400 +e9a984fa +c09ad765 +6301e460 +315ba0e1 +82368759 +bfae7bcf +656485cf +f08320ef +edb3d180 +a85e795a +0053530c +9bcb61cc +1608be0c +01c1c86b +81d9a273 +6fb9a07c +2808950c +bb16f112 +07995af6 +ea132b7c +d779b884 +3d1013ec +3f2c5984 +f67dba39 +2030fcf8 +8e453acc +ed9c25e8 +4b0c4f0e +40af282d +276c2365 +7a45f7f2 +d412b549 +8647a494 +26de7434 +18884750 +3a55d521 +b386900c +7f638078 +7caa15fb +19b31d2c +6f62a118 +68628d59 +fb9c5daf +b171f800 +65d4fce0 +bdffef68 +11f12e8f +ffc90f70 +5e89f4c8 +28f6d2e0 +b8868b4a +22cd7c5b +9902b8f1 +4cafff97 +5ce524d1 +8aff387f +4114b273 +115660c3 +bb71621a +2e7e0472 +06035f73 +db0cca70 +35f2504b +59e501fc +60b01a98 +88a2cb01 +c584e779 +2efde463 +a3c895d5 +c48b5b0f +cf2c2521 +b2166334 +c27239bd +a8d7417a +3014a4b1 +3edfe27a +b077911b +0ec8d23c +f7dab263 +d0289910 +54e53a39 +c9b4dc46 +efa3470f +24ebf1da +79849f24 +e8a57b45 +99f90f6d +7fb78749 +cb6b4a8b +cfed19f3 +c10eb73c +28e1676e +2ed534da +47e67bca +5958dc97 +9616150a +c51f3181 +ff6cdd42 +a9e22034 +4b46b36d +1d78ea79 +6a342af1 +fefc1f4c +af1445c4 +7a6e31dc +69d52f7b +f8443395 +2442feac +11b8c1d4 +bdcd34dd +cc4c70c1 +b8ec925a +b93aa927 +245e2acd +419b4cef +a74245e7 +e29e5544 +c85b2f47 +790f389c +c1b929fd +5cb64673 +cdc8f390 +27ab133b +b9a905aa diff --git a/models/rank/dcn/data/sample_data/vocab/C2.txt b/models/rank/dcn/data/sample_data/vocab/C2.txt new file mode 100644 index 0000000000000000000000000000000000000000..26f550d3753641756f72f4afbb6bb503e951f32e --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C2.txt @@ -0,0 +1,422 @@ +6887a43c +00ac063c +c44e8a72 +58e67aaf +f3139f76 +39dfaa0d +a244fe99 +33424936 +1cfdf714 +cfcdf408 +2aee75a8 +3df44d94 +85ba09f0 +d833535f +6697ea82 +c01b42bc +2607540a +1329e144 +46bbf321 +a0e12995 +d9060812 +b26462db +064c8f31 +b71e0773 +b06bb7e8 +3458ac28 +6ffd49b0 +73b37f46 +59ab477c +2fcf9bcd +efb7db0e +e1d6d0c5 +1550810c +270cc1b8 +d8c4e58f +102fc1ca +a05721f4 +47e8ab98 +c6000c21 +bdaedcf5 +dde11b16 +f40dac87 +8e465f4d +78ccd99e +8ab240be +cfb45bfd +a90d6e47 +7772ab29 +bfdcfc4a +56067431 +40ed0c67 +d5b3b632 +65265295 +3f0d3f28 +beea1002 +06174070 +a07503cc +9af7d014 +89ddfee8 +fff6365b +532da141 +55e0a784 +52e9ecfc +e241319b +fc1fa80d +10dccf9d +fe5f56f0 +7008ef6d +d79dbf86 +4c2bc594 +f6f4fe4b +0aadb108 +e6b41dab +1cf8ffb9 +6c9c9cf3 +1cd31e7f +e3b5d099 +051a26e5 +f988e09a +802009dc +8cc9c66e +6f609dc9 +9e5ce894 +0d6ad090 +1cddd76d +2705da39 +9ac2ee61 +0d3cb2b1 +094e1902 +999aae35 +e112a9de +097e9399 +c5c1d6ae +cbac4677 +e04f8851 +9adf4cf9 +62e9e9bf +df6efd70 +3e4b7926 +d4bd9877 +637af2df +30bf41e1 +a90d9954 +2ae0a573 +028bd518 +b56822db +8e4f887c +98269b3e +4f7e8e40 +68b3edbf +8947f767 +681c0354 +db2905e6 +cc4a4a1f +9a82ab91 +57a04a1a +77d5ad3a +e6203a55 +bb9f48d7 +63e44a0b +5dac953d +30af1585 +8084ee93 +56eca72b +a8382141 +302debf8 +13f25995 +31eb7ac1 +aaaeb481 +5d9e94d4 +bf9174dd +f5384b37 +c8687797 +7e979632 +a8da270e +a016abf8 +09e68b86 +980cc9df +7cd19acc +9b5fd12f +dd8c896e +92a5b341 +2efdbb44 +5f06ed0c +023a27f8 +8ac34ffc +ae46a29d +7bd1349b +6d4d5095 +91381efc +f9875f50 +e18b1e61 +0b8e9caf +8db5bc37 +93c5dc56 +5368c225 +0bf920cf +8dbd550a +403ea497 +bccb7a1a +2f86bdee +7e899df2 +ad828524 +9f7e1d07 +39c6751e +ed7b1c58 +ef01ba63 +6c2cbbdc +d4e5ee28 +9bf4fe35 +287130e0 +9b6b8959 +b7bbb864 +d4be07ad +bf7a2333 +2796cdff +e3db0bac +14a8f8d6 +510b40a5 +a3659c14 +e9ac66c5 +cc8e236e +8b0005b7 +78c51e9e +c5fe64d9 +2a8248f5 +482fe41f +a7e699d4 +26a88120 +6c713117 +26ece8a8 +f8c8e8f8 +0acbc0bb +2fe85f57 +d8fc04df +4bb4b657 +bce95927 +d4ef6e5b +95e2d337 +f0cf0024 +9bcd4a15 +d57c0709 +42016cda +8d42d2d4 +c1384774 +24d41293 +56273427 +84b4e42f +c37e7940 +4950f9dd +c3d483bc +cb89a94d +16edc335 +8cafcda6 +27f70843 +7a1bc0a3 +537e899b +c1d8ea5b +0c4bf847 +1287a654 +ea3a5818 +9819deea +08d6d899 +e9b8a266 +603e7ec9 +f3b07830 +2c16a946 +90f4f36f +b2659ff1 +a984ae94 +b0d4a6f6 +a3397841 +f3f84ffb +70a1db74 +6496eea0 +99679f51 +cb3359a6 +8f5b4275 +09bf88cc +b3f3d753 +24c700ac +71ca0a25 +784f09f8 +faefeeb6 +876f5f5b +92f101be +c2004197 +31520db9 +558b4efb +111631d5 +08c2f5df +a7147fb4 +a0baa1e8 +c319674f +5b7b33dc +4883e3bc +4bbb9391 +aa8fcc21 +f5e11606 +6ff18bcb +791f3f76 +8b57fabc +b723f84a +d7988e72 +6e638bbc +3c53160c +960c983b +a796837e +069b6d24 +ca843edf +bc84a2bc +6f115d49 +a40adb47 +172de694 +d1f70341 +bf7159af +2a69d406 +0363d860 +7b99bba3 +5ca60b73 +207b2d81 +221a0666 +e77e5e6e +04440d29 +016cbb4f +ce2a3d4e +c1c79489 +ad88539c +318d2c95 +3491b642 +2c2fd77c +38d50e09 +33728ce9 +298d0556 +dcb2560b +f234d60e +f7ab4058 +b78edce9 +edf9ca84 +85af3139 +47feb5d7 +2eb7b10e +46320fff +9239554a +ae51005c +4f25e98b +aa157e5d +0eb070fa +6deb1348 +af447d7a +f53b0269 +73a46ff0 +cbafb605 +1e327ff6 +404660bb +0468d672 +38c81d1a +76c475b1 +71b67965 +942f9a8d +ad61f1c8 +dda1caf9 +51d3128b +52b2f87e +b46aceb6 +bc478804 +b7ca2abd +f1bd57c1 +9c6bc64b +8d406027 +5df29557 +762b9a6f +e3a0dc66 +ef69887a +3e25b403 +1bc2d3e2 +2c8c5f5d +5a88f1d5 +4e8d18ed +e5fb1af3 +9e681c70 +247a1a11 +ad4527a2 +04e09220 +25231301 +3e50afd4 +453a17e8 +52edee5f +54b0d681 +61e10608 +333137d9 +953c5ca5 +9b25e48b +7f068eee +c76014f5 +fc67db1d +1caf43ad +52d631d9 +9fae339f +3cb90ca3 +df15595b +b4ef78a3 +1612be27 +ab577bd1 +ed3ebcd1 +083aa75b +0a765a7a +c6fe9276 +a5b69ae3 +d0a34130 +e3ce8d54 +8aade191 +512fdf0c +90081f33 +4322636e +c41a84c8 +975247a0 +0a519c5c +aa6dadc6 +23e64f61 +8e980788 +b0660259 +b06f9574 +2fecedeb +3c232dee +d97d4ce8 +e5857f7e +f6ff9aa4 +e1696232 +0c0567c2 +c66fca21 +c5e4f7c9 +291579d4 +421b43cd +2f659110 +4c7b80e7 +6582398b +80e26c9b +6cb60366 +825b3afb +98159f6d +68aede49 +86d4fccc +014e4174 +876465ad +b80912da +8c0e1294 +4d554e60 +38a947a1 +3ab4d7f5 +0f8a625c +669afbed +b1f0fea7 +0ca4b7d7 +5e5a2f21 +02de4366 +b961056b +bc6e3dc1 +854a10a0 +f2329666 +bf58e3e3 +dc1def19 diff --git a/models/rank/dcn/data/sample_data/vocab/C20.txt b/models/rank/dcn/data/sample_data/vocab/C20.txt new file mode 100644 index 0000000000000000000000000000000000000000..7e2df90cf93e2c54611e62aef11f134357bdc613 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C20.txt @@ -0,0 +1,3 @@ +b1252a9d +5840adea +a458ea53 diff --git a/models/rank/dcn/data/sample_data/vocab/C21.txt b/models/rank/dcn/data/sample_data/vocab/C21.txt new file mode 100644 index 0000000000000000000000000000000000000000..3e3077b9b197194cd43e6b487489ea7d39ae66db --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C21.txt @@ -0,0 +1,1652 @@ +f99850b4 +00dc22cf +f6f86ffa +6821b359 +ff8c5410 +96d57eeb +b4dee110 +307b6d5e +bd511f73 +58f22221 +4645d72c +3e7ad7ee +9179411e +396fa1a2 +b28aec66 +59f17c24 +e1a7e876 +7e5b7cc4 +9e64f3d8 +d45dae63 +a8e82f5a +07b818d7 +4a6e55a8 +206e5f33 +975f8b39 +4a490bff +74be63ef +97d028a6 +110e2e16 +db65a5eb +26e9f66b +5346761b +aa1759a3 +4063500f +e2a7a0f5 +b8e64bed +ae950ff3 +067ffc55 +39429ae8 +6e73599a +93ff20cd +ee6cb673 +c9b0e118 +6a777618 +c576fe9d +f638dc86 +fb8b0b45 +1988119e +3a8607ea +ed35ed93 +13e6792a +bb829898 +1d970d19 +305e99e1 +1d0aeb7a +12a583ed +eca3c63c +af5dc647 +deaf6b52 +bb776325 +9b6ed758 +19b534e9 +744c59d3 +a0f79e44 +b1aed7f3 +c0cd6339 +2dc77640 +f7a03bbc +57454cfa +0014c32a +48a439b8 +3aead2c1 +23696c24 +a8f79430 +ee91f72a +9877c7e1 +ddd879fb +1a00a447 +541a022d +413ca5e8 +c8297264 +f5b0a7ea +c3c1485b +700fd15f +cfb6bd8a +921fee9c +1826f894 +486fd8a5 +c9927317 +06f9041b +87cd3c7c +3cf3f609 +802628f9 +d51c4861 +924dd56c +7af6ef2a +a6244f2d +72f082ba +e8fc62db +abec5c93 +89c0bacc +6f2b9e30 +81c5b96d +37385fb8 +9e805f53 +405920eb +cad88c3b +c94c0fdb +51fe7a92 +04458f69 +90bb0c94 +cd56cbd9 +96cb648e +a006b999 +e106ec2a +1c207144 +0429f84b +a17a10b3 +f025509c +256e0d3b +351f6e0f +0c48b21a +1147ea33 +b0d89763 +f45f6fb4 +0eeb6fcd +23259350 +f2beb768 +14785471 +44bba10c +2c71b47a +aec73e74 +290c14f6 +2abc4810 +2bce7b1d +672b8599 +3dd7f9f0 +e5fcc02d +fdc4f2dd +04d0c894 +572bdde8 +5ba30e27 +866ae800 +aa305063 +c101ad6c +4b1a8d75 +0aa67561 +15fb7955 +e784452e +d0d58819 +66d1b210 +42a96311 +55274123 +a4b7004c +adabb77c +a92e4560 +1e65bd80 +41de37f5 +25609db7 +a0cdba9d +933de4f7 +eaf9f45e +08254b44 +05cee18f +ff3ce4c0 +34dda59b +73a05b01 +39fed57d +ea6a0e31 +bafa34d7 +3ffa7e0b +4d34277c +ea1acc1f +63580fba +41917ca1 +fbdbc2c0 +6901eb2d +d9d9202f +5499cd34 +3892086c +553a9125 +2dda5517 +03242e1b +9065968e +2272694a +47ed3c6c +f3e08856 +34906df6 +eb0fc6f8 +12383cde +5a5953a2 +5d5e077c +73911ceb +512e309b +58b10cf8 +89eff65d +11a6817c +2ce387f5 +aaf7d15f +1cf1b565 +9148450b +c3c2dca5 +4468d193 +8f4f775f +eb177b04 +f49e3fc7 +8e584d7d +4b8bc745 +605305ee +d4703ebd +632f9e80 +6ef07378 +0370bc83 +a1cc3401 +29911a67 +5fb6d34a +17a49741 +88dae2b1 +87ea5d4e +65131293 +845453b6 +1f29edb3 +1b28d570 +92259097 +9973aba4 +0f4d4f1a +1a5b248f +1521ff26 +9c7775b8 +ac628d47 +12f66f7f +ceabc01a +41e7a5c1 +b26219c3 +7c7d4827 +e1574bfc +4d646eb5 +702c3a05 +ebe5064d +80530232 +ca6512ef +7dc1b537 +afa033f3 +72e47560 +783a5445 +5f24ddc8 +9249e83d +cfe7812d +147cf6df +5c2357c6 +917a840b +a013190d +ff1c8c30 +98296e80 +66ccd171 +7d4a17a4 +81f8acaf +0628293c +635d4ac9 +bf8efd4c +5e9baaea +5c7c443c +d4568750 +3e3b6b75 +bbf96cac +fd741691 +180d6a3e +51c2f103 +adc40847 +fb510e79 +6cce8b6e +959bcfae +dc55d6df +634f9da4 +4923f51d +ccc4f0e7 +e2a50a6a +ebabd1c5 +5f771429 +38eae2e7 +fdb27279 +8d663382 +76ff3b70 +599d651c +e9ba6c16 +dca9a28d +e5191f27 +cf158609 +82f817cd +cb9cef67 +f64ab18a +33f24a65 +11e4edec +d49b7689 +32f1f809 +29201b1a +5b6b6b73 +ad110f35 +ffeab582 +d78d48f4 +e754c5e1 +29b4c0b1 +a670cf46 +a2d1f99e +563e2490 +3349cebf +a846a3a4 +1d170c31 +e9df034c +7c76bd05 +0e63fca0 +552c638b +62dbf1f8 +547c058f +db863d15 +f22e0924 +404e2c40 +0a47a519 +18398c0b +8247502d +999f460c +232b48ee +e79470cf +c576dc74 +a4dff8f6 +8d9a161e +e530efc1 +08085eb3 +7b877178 +0586873f +4b0ac19f +c155211f +42ce69dd +2327e62c +2de2ff11 +f426075e +3ee29a07 +18d3b551 +ac4ebf7f +31c11f6b +0aa1048f +5c1998a9 +c3d093fb +bcff2af8 +e659ed0a +1622c145 +f204ff8b +206a3073 +6569e54b +97e3049f +d152ebf7 +0f78ab39 +2e246c86 +22a04a97 +fbe846ae +e7c19539 +99a2ba60 +86a6dc71 +8db9be7c +5ef8c5ab +d991438c +cc9703ad +b7cd6fb5 +75bc7ac4 +7eefff0d +1cf598c7 +3c677f78 +63ebd45e +bd5d189f +0be61dd1 +b72bc267 +d9c46345 +9752428f +2063e5dc +75bb61dd +f5bcfc28 +5dc70c60 +24da1a62 +b9a9a70f +334c0b32 +c2c1d8a1 +2de3ac85 +d479575f +08aa4ec1 +01a0e18d +fecb5e8c +3e120d5e +af53b446 +33e08fec +ecb880ff +ced91df1 +8c60fff8 +18ccde85 +68a036bd +3b226dea +bb959f9d +024d1e8b +ce332a97 +7633c7c8 +a090a37a +7aa7103f +b3826027 +5fe2e239 +eaacdba2 +7842225c +b1770886 +6f107277 +a7d02174 +77799c4f +fc573961 +70b08046 +e9412ec7 +3b6491cd +70e737bb +53cb3c2b +7f34dceb +450ef7e3 +1bb70ac8 +444c24bf +5524f7c3 +53070487 +7b2b2bb6 +dc6ae5ad +9c9532b9 +5d444249 +b0cbef3e +bd074856 +6c581814 +28e6fcb1 +5af340e7 +695d27a4 +e58d8a84 +455df971 +0fcf7a27 +53fbd75e +0cb0671d +f52f289f +2abe3412 +2c613179 +395eaa28 +eff0052d +ba63e022 +8aa20324 +bc2a1fe3 +fd72cd8a +48beb5b6 +122ecd28 +a3773d84 +d364e0b1 +a9dc70ee +b221a02e +d93de4d4 +a003d877 +2b81e06c +996f4cd8 +614c649f +f15fe1ee +6e1963f6 +01d9669f +fd1a30ae +e7f0c6dc +ac660668 +9bb8bade +3a96e155 +a8e7b758 +20e129b8 +fa632b06 +bd2c82b1 +a3ae3fa5 +c17a2d4a +20290c31 +dccddc19 +961cfe92 +c00b313b +53682fb2 +c9af3868 +9069264b +82d51b48 +7d24f355 +ee14fd3f +83e5d1b6 +0303d915 +33b519e6 +8e60a921 +16554324 +d44b821a +f3a50e6c +893f5fc3 +f5d0a169 +287cc8d3 +9c3eb598 +52f5108f +b3bfa7d4 +4ab4ce41 +69c7ea42 +5ed168cf +4bef3539 +84ec2c79 +22265485 +abfaa6b8 +9e616bbb +df4da2b7 +b1ae3ed2 +bcf105a8 +f9b789df +2716996e +8dbce355 +45838e05 +f0bb1194 +22850398 +cb66f1e5 +6d779133 +118624bb +e9672021 +fb92f0ae +8717ea07 +51a9f5bc +7e274524 +ac3aac58 +c2a93b37 +9484a6ed +aeefeccf +a27e2a32 +f9860df8 +1a61934b +c608f557 +09bdfd2f +eaec45d0 +a2eb375d +875bc056 +588029c7 +de8cff3a +8aa27b9f +7d27b4d7 +7f311475 +3ad09b4e +7a8f7051 +53f975fd +3b51048c +a64dca2a +613a7ed9 +558cc24f +d8e97ca0 +da10527e +2754aaf1 +86c3b59d +8c9a0161 +3ec73293 +74cb7e67 +1bbb5c9c +619247e4 +564bd00d +ad4ddfa2 +960a7d7e +b4e06297 +30eeb0b3 +7acf525b +c3ec1415 +1df3ad93 +85699a97 +15f6ce3f +d7a43622 +32a6d80d +663788cc +3101b9f6 +75f133b6 +4c7ffd03 +7072f0cc +872c22d6 +deb9605d +9e0bf7f3 +fc1b1382 +0baa810e +b17d327a +60f6221e +56725ea3 +a97b62ca +59056f22 +077336e5 +15fce809 +3294f8f3 +d4a99654 +5053994d +d7e60254 +9c03188d +49ddbd85 +01c82a58 +6c877358 +2a40b116 +ed2e8a12 +d6cb2886 +e7f43ad4 +d5a47947 +6aa6bc88 +078acbb4 +9337fb91 +64b47588 +bbac8571 +64001231 +0b841f38 +bea5fb63 +58c647e1 +951a607f +523e61c5 +2548c38d +55b5edae +50d1b7ec +865546f4 +f89f9b62 +a58d9ce3 +882e211a +a4a5986c +30519829 +3f829dee +a2b7caec +d9bd2fe2 +f27b638d +cc9b27eb +9780a253 +5baf84fe +68a8ee0b +fed8f4aa +0c8b6f3b +27ed5ecd +6cee777e +e3d9a25c +34b4de25 +2b796e4a +bd86ba66 +75d65efb +6919decb +a7a755dc +90de4912 +deffff48 +565fcd66 +8f359be2 +38d14678 +1ed32d9d +dc1b605a +3103ff79 +42286ff9 +2aa7444f +f563fde8 +cff06640 +e9ab8737 +ec0a74ba +30ec1dcf +1720a38e +a32cf5e9 +67bb5322 +d4f60ad4 +bacd3941 +43809027 +1a0fc4bc +5cc807cb +71b9f31a +f070ed3c +153b1e66 +9988d803 +138231e4 +3796b028 +24c96cf8 +e5195a68 +76405b4c +15414e28 +d8bb0075 +20f2f9c0 +11612e5d +eeb3e1dd +b6af5d81 +6e5a7a1d +31d441b8 +3bbda4e7 +e25f2cb4 +c8c10603 +82e00bbc +8a1d6051 +ec1594f7 +3de4b3fe +e2e82c3c +0bf1ddc4 +84e17141 +4c14738f +5e52d78b +d4b6b7e8 +f8729ba4 +92e2812e +59a15e58 +de5ab50b +dcd998bf +7767274a +e77e3775 +e91dcbc0 +f5f07930 +122d6055 +caa43aa7 +387a0a8e +c7cf9eeb +0187218b +cbec39db +78766d37 +a466b525 +45fdf300 +477e15f6 +c0d83e8b +6226c3bc +60b707f7 +723b4dfd +a769dab3 +01fb5ffb +6e0198a2 +3f5d7bc9 +dfe80055 +3ff9c11f +b37c765b +2af73b1d +75ecdbc1 +f6afa8c2 +551fae35 +a716bbe2 +cf649f7f +238dba10 +fce0707d +fec2ad5d +27125229 +dfcfc3fa +c0428ebd +ff4f1642 +9aed4330 +e1a91d60 +f15a8aa8 +11b3a893 +edd5bb8d +f8c88eda +fbaf98df +47c22908 +eaa7dafb +4e14161a +2c18ba52 +97147821 +e4c72a38 +a40dde7b +97855e81 +05861d16 +ad6ee353 +bb0240d2 +297d0f59 +ada328db +5c859cae +10236799 +6aa90754 +06c4ef72 +97f663de +6f861cad +f30c76bf +cc097d36 +876b9abf +72a8c407 +80a18360 +61e8eec5 +257324b7 +0cfc9935 +52ff833b +ddefa1ef +4457c150 +18039a1a +0711daa5 +03f02464 +377dd8df +4f1aa25f +9529cd0f +486d06b1 +16907e69 +3ea1f173 +a82c39a1 +0ac4575d +3288603f +d41d994b +01805bdd +dae8fcb9 +a262c259 +2620001c +56842720 +e52eec5c +f6f1de98 +74715d78 +86ca49cc +32b712f8 +8912910d +62e04ecf +95b757a6 +83504e3b +0ae83b6a +fb236348 +9adaf9fb +51152b76 +6a2d420e +67ee088d +879e47ce +e42fa830 +4000298c +23f3c59f +db9e7457 +81a9f375 +c16366f9 +109457e4 +9f2bf83b +c75676ad +9beadb85 +c4d244b9 +b5cba562 +542b9f47 +3dd38d65 +a32eb4ee +59fe1952 +62d3d585 +4b3ae1ff +e7e29fe3 +e58f5b50 +c4073818 +73d06dde +794c73bd +0dd41d11 +52252402 +36a4f6c3 +0e4d0e2a +932bbde4 +784d5c90 +6fb7987f +6ec2bcf7 +d6dfe93e +36c57c20 +e80431c2 +8b68c97d +2f153e08 +12965bb8 +ae90cc8b +4e37c79c +0ee8d107 +9d45285b +58a9b2cf +f7bec017 +42ab8d60 +9ca57840 +03180670 +5754880c +b7146468 +c5cea7f6 +d4fa2b9c +834f61ef +c815cc03 +68bcc2ad +5a9032d6 +f2e48b5a +66e40ec3 +b0782e7e +02f8f889 +c60a5d27 +892ac502 +7a593b43 +df7c386a +b6d56156 +1b245167 +27dd043b +8185e4ff +b6f517cc +1db52038 +b0ecb78f +c8f620ed +c53c6f04 +ea48946f +a19054a4 +f06a8211 +906d0191 +a3ec19e1 +f6ca7ac2 +d3ac1dc7 +e7258bec +2580fd8b +4a50b9c8 +f068ed61 +517618e0 +60cc6d6c +2dccd904 +800b961b +216374f4 +b1c7a442 +d3337aaa +6387fda4 +a3405885 +80e90bce +7edbd38b +d5c325e0 +ae7b2d98 +d78066e7 +6157ed55 +9d8e02b3 +14195e38 +8be38803 +a17e0831 +fd50dab9 +c3444bea +f0def462 +1c63c71e +a6928003 +3b453869 +13530739 +91311aa2 +ba1ea4da +52cfcb1e +3b689f8a +ab6399cc +b964dee0 +d34c47e1 +6e244b6c +7262c4e7 +bc97d93a +f684da87 +f8e4bc88 +08168d73 +a62fa482 +ef335a31 +bac2090f +88e2295c +156fabc2 +38d30bf3 +69216694 +288eaded +c17bc83f +5155d8a3 +424af181 +5c5200e4 +17a800e7 +16a16949 +4aa405a1 +e05fa5d9 +e44c1409 +8d8572e4 +4ed90330 +2866d136 +fce7cb8c +66bee02f +4703a36c +21c9516a +0909cbc8 +28e194c1 +6f2f598f +87bf569c +d381852f +a120230e +6e963fc8 +634571e9 +6bbca3f3 +dd162b51 +199ebf08 +5f361005 +9cfdbc70 +f6e47def +15e9dab8 +b2b4048c +9824113b +d002f067 +5337a20b +1284f248 +c7be8078 +e5adfc2f +ea03ca8b +ac2c2b41 +45973cd5 +d3e31025 +0689e840 +278a31a1 +35c9cd92 +b566ad45 +826a8402 +df66957b +c5a8c8bb +49f40294 +d51b35e7 +d38433bd +950d91c1 +cf4250c5 +4b4716a2 +14b530e0 +809daeb4 +1992c897 +36a862f1 +69e29ad5 +b0b1d4f4 +24e5131b +17da6214 +a4e1425e +9fd12735 +d37aea01 +7fcceb02 +15837f71 +241a1c48 +901b12ea +362ad5a2 +f0987c72 +f48102c8 +31b4af04 +c9ffd163 +4a74c2f6 +0affe296 +f669e8c8 +397abb5b +6d37a2fe +598c5042 +e587c466 +17aef59e +33c96fc7 +8eb451d6 +fbe278c3 +6630794a +3561091d +a13bd40d +03a47151 +e17839cf +d13fcba0 +233f0d38 +8b563cfc +55e899dd +34d9a8f4 +e800ac5e +9dbb42af +9c28a03d +f96c2136 +78c86246 +35173275 +4090cd5f +2ec8bfe3 +f2d01817 +e22a5394 +2bf9e48b +c1a2053b +6b012c1c +98fd45a2 +25a45402 +1c108732 +f40613aa +c39f166f +f0dd122e +33e00b0e +a012ca78 +3b1a1662 +f1732901 +e22e102f +211286a9 +ce247dc1 +435d7d92 +1dc95fcd +3e711d83 +c2410e6c +7c63db81 +780bdc55 +b15b2b2e +af1869be +c30dce78 +972d4080 +40acbeb3 +21f70572 +02a01d3d +fdf90dad +ace95b6e +602ce342 +0272379f +7f1bf047 +63bba41a +16e2e3b3 +ddbb8a5e +1762389f +b6e2d4cc +600ddaed +112e52ec +1ad431b2 +0e8585d2 +ecd6affd +6a909d9a +e2dcbcdf +7e39d717 +5fe17899 +6234a766 +4ac46f2c +11c700df +b193bbca +71d4501c +d39acd52 +8638ccd1 +54ea07b7 +21dc9672 +193238e4 +ce88b997 +150518f2 +0d9d598b +ec92df64 +a63c48b4 +42c08f72 +5e5902af +62bb718d +79725e40 +345e27b5 +912b264e +0fe21b0e +c171c0ad +2c466a1d +16741b68 +29670e19 +78ba0a03 +98040c74 +ec64c4d7 +e3b35e99 +6f393b20 +09fc6c82 +f200a8d6 +2e9b1af0 +0bf4a9b7 +c995c90e +a1d5d41a +0ee473fa +d8ad7a42 +0f3f8951 +9153b994 +12edb6c8 +a84fb99e +218fb84f +662c923a +9e7c55a8 +6dfd157c +d70af1c6 +ad69ce75 +97f203aa +d41a1a9f +9ad47d25 +89a26962 +376f7f0d +20062612 +58c5bcc1 +95f07388 +7c2f3adc +dec13458 +1fe24a90 +9e063b0d +a41bbd15 +c6008d7a +bfd95a58 +cbfa4917 +500f132c +3edc9deb +0366ddd4 +4fcd9076 +55d7255a +ae0ed514 +b691bac2 +d83181ad +b300c516 +06f2027c +024722f1 +54bf0a81 +8039e3b8 +e751a45e +5a634328 +230fcdc9 +6c5b8354 +ae43f51a +30f37c77 +3ba1c760 +2891c920 +65229b6e +2bce5813 +95ee3d7a +935e4b2f +e6584790 +1ea17cde +292c4646 +6d5cb8c6 +46af0015 +cc2ffb60 +dbfd7937 +784aa3ad +9ea3b81e +ce8373db +09f4f5ca +2b1c0330 +947cce72 +2802c63d +c0213c31 +50699d39 +f5148ea7 +9b10698f +e339163e +90756215 +c430d55f +54d8bb06 +c5cc8079 +26e36622 +3ff7a605 +17b90ef0 +5dcc9e3d +f3e9f13d +89272cb0 +cc6a9262 +d59ec484 +d67f1959 +6364be0b +6842eb57 +08584528 +ead945fe +b31e1f74 +f58dfaac +c97af6e9 +1718ad45 +e27d6c43 +82dc787a +9447c917 +1fb42d80 +6cbbdae5 +d1cd4aac +f6f4a94c +7b6393e8 +3de90f45 +6c01005f +833c4620 +8b0abce6 +0c2239c7 +38483e30 +90d91a22 +9502af25 +99c09e97 +704031f9 +1aba3fd6 +958c71d4 +1f215d99 +55efc8ee +b426bc93 +0f74a194 +b6fd7699 +fd6072e3 +8316999f +fa77045e +fc39341f +94ed3ece +87e212d4 +006a1016 +e1627e2c +e0c6d533 +2d1e017e +5911ddcb +b6119319 +701e8d19 +de9fabc1 +15f80464 +a3bd0899 +5bcb843b +3c84bfdb +8e4884c0 +14c4474d +21d7978f +7279a3c5 +1ceb5991 +71e3dba8 +3315b01a +166779ab +c4e32492 +eeaa7077 +08b65540 +329e8c53 +a30afd76 +09730561 +b7bb1eac +694efdce +8a72cc70 +4db5f6e2 +f2b28cd7 +1e4963f9 +077bab1b +c67620a8 +ea3a6228 +eee84f68 +4986aa94 +0cfb78de +7f9fe834 +0ccb9bf3 +19657d0b +8e1cb851 +39059201 +4a057340 +19e4f3a8 +85cc3ff1 +7cf93b74 +7b8c9565 +d53381c8 +7fa1816b +db086a72 +c3a4c331 +f6e3bd9c +ad789d5a +3cff4e7f +43d01030 +8cfc8f03 +44cb2862 +c6b16df2 +2834c793 +003add01 +1f5196c1 +4b3387f9 +0704b0b2 +9c23db80 +29e83164 +a1fe1c97 +053a45ab +fc0524ce +4c9b6081 +fad15dad +e0a20aee +2d1f75c0 +33241664 +3df2213d +3c1adf80 +79ca6193 +bafb971e +a948e2c1 +fa041ecd +3c7fc748 +a5cf9110 +1da20bf8 +b853bc32 +3ac4edc2 +85b48dae +1952b3e9 +6d327a6a +07ff6f40 +1d1bec73 +a0c56c9d +3b958bc0 +5e1fb081 +f4868def +59c21cca +faead7f6 +5a775d44 +3229ec62 +43215f00 +3db17de9 +92db3899 +bbcac452 +40d924bf +12ad5e03 +d7c93a6d +21756f76 +ddfc7f5c +849d3db3 +3443a4eb +6ee9862d +0cba1665 +28fa11f6 +929192e3 +4784c2a4 +361a1080 +20cf75f6 +0fabec7d +08119c8b +4f45f117 +2510ab84 +2899d36c +50ec0a1f +40bcbcd9 +78c1dd4b +f226d6a0 +4bac89df +a921d7b8 +2f4978df +ffe9bf4e +9ae3e892 +09192c91 +9885a271 +bda00e85 +164ab357 +54acbe2a +a7b99eae +96eac89d +f6936d17 +6ab09ef5 +cf744eda +f3ddd519 +757536b1 +218633e2 +c8bb8a95 +b6c42b20 +76ef8858 +182fdd1a +29bd6058 +28942d4f +8c66acdc +ef887cfb +7db36402 +fbca226b +f9bd8f54 +3316a698 +8a65310d +e049c839 +c0f28cb1 +921c1039 +34a1e7bf +9fb07dd2 +4a08ec4e +85350345 +769c5847 +242bb710 +a4f13390 +af4c4f22 +e014f4ed +72557d9e +1f93dd86 +c3f2592f +143de831 +5033304f +9ac6b7e3 +8c7e4180 +27b10c4e +3173b047 +30bb890d +ddbeead2 +54e54a66 +eaa687a1 +6cb23951 +831d5286 +5387d45d +d20113f6 +b5d13cfb +8d1f6da9 +513ce97e +7336716d +f68b38fe +cb105f80 +5f1ed37f +9f80b735 +7ca98d3b +7c2dd7b3 +19ad0d9d +cc85abe7 +5c6c011e +b87b65ef +7fcb7db3 +8b7fb864 +46ccbbf4 +86b10dda +8a3290e6 +714ac7d6 +f799acd9 +3dd09d1e +360aedef +58bf1e98 +f3cf62a6 +0e9478f8 +ce62560f +90da9c54 +01394575 +a2d91f6e +00cd7438 +ba8cf27c +a69cb007 +2a4891ce +066228d7 +e5b175af +76851c4f +7a4c0cb5 +fb5ec17f +effa916f +af460a0d +4e1e9322 +b178dd37 +cb896c26 +646e302c +5c3c860a +bfeb50f6 +79682ce0 +6e51654c +7401c2b0 +b92ba73d +fb7b0a40 +fcbe92e8 +b5768eb0 +adcf1fd1 +f22a431d +f420ee6f +3631d5eb +7a0873f3 +3f0af554 +858323e3 +cb3e5850 +b39b1608 +c526fd2b +fac8a0a6 +b055c31b +ecd4a633 +d90f665b +af2a560c +9a8a4df4 +f288712f +ed01532f +97ecc0b4 +5f957280 +ddf683eb +2fed5554 +c4bababd +055d5768 +8a54c4f7 +98818775 +159949d4 +7034bb6a +5dcfd068 +15e1c508 +5f6bc5d6 +92cfc76a +29b895b5 +a8c3795e +7288f4fc +69e15563 +cd6a523d +22601592 +8ddf9112 +974c22e1 +85014ef4 +565b9e6e +1529f99c +29d21ab1 +39be81ed +5d05ae85 +ee0dc527 +a43bec0d +ba293893 +1280d805 +a8333d55 +c6047019 +2ab07a3f +c6b806a0 +347fbbd1 +430d27ac +636bf64c +7702742d +6a4bdd9b +c57954d3 +98a79791 +a2408af4 +d7866de6 +7ba8d8f7 +57a5effb +cf65ec08 +a59203c3 +b7a2973c +8dc34570 +bf9670c3 +e0136b4c +261a6a22 +dfc3e034 +561711eb +2b337cce +927a8cff +d9e590ae +eab99233 +74ea047f +ee4fa92e +6b7069c5 +ceac1e70 +5a8fe828 +310eecde +514b7308 +5cd86926 +2d4c8386 +a10e2bab +1e3227a8 +6791461d +64e2daa1 +d9dc4f73 +adb3c670 +a50737e9 +c057c236 +e983f6ee +55486e2e +9deb011d +c71bdbf9 +1e687180 +9874e03a +783c7a2c +194a09b7 +237b756b +b4198b45 +c4583fc4 +03cd6ce5 +ab09fdba +f229bf17 +ef8600f0 +888b7233 +c73e1386 +b73f278f +2c6163fc +654ae73b +8ca007fc +1c353974 +29cd4eef +437c4394 +cf6b91c6 +ec5ac7c6 +4afd0cac +a2321eae +5ac15b45 +b2d90d0f +52150d3c +26ea29ca +8bcea858 +05c27aaa +9617eced +5b08eee1 +fc0a0585 +c1849e4c +fea3ba36 +887e0ae4 +9376d3ac +9b27cd07 +11c5f92a +c6d83625 +db6abe3c +c6ee92c5 +ef486571 +df89d9e2 +2796fa99 +d5fb7e7c +52fde8ea +e4fd98aa +336dac29 +c646942d +d40e2611 +da2ff2a8 +755a7303 +80346042 +b7643ed7 +d1f36314 +2500f511 +5c26dd4b +a0a725f0 +0057ee52 +01cd89b5 +0823ecf9 +00f9a917 +c46696a7 +1fe472e2 +0ae865be +e5752394 +6e5ab00f +98f5f4f7 +e6a746f3 +58cd488e diff --git a/models/rank/dcn/data/sample_data/vocab/C22.txt b/models/rank/dcn/data/sample_data/vocab/C22.txt new file mode 100644 index 0000000000000000000000000000000000000000..3b6f6a760862e95652851d248f4d7084eda46451 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C22.txt @@ -0,0 +1,8 @@ +ad3062eb +49e825c5 +ccfd4002 +c9d4222a +78e2e389 +8ec974f4 +8651fddb +c0061c6d diff --git a/models/rank/dcn/data/sample_data/vocab/C23.txt b/models/rank/dcn/data/sample_data/vocab/C23.txt new file mode 100644 index 0000000000000000000000000000000000000000..4cf222bf01de901752cede45e57ffbfb764c607e --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C23.txt @@ -0,0 +1,14 @@ +93bad2c0 +c3dc6cef +423fab69 +25e3c76b +b264a060 +85d5a995 +be7c41b4 +3a171ecb +c7dc6720 +32c7478e +72592995 +dbb486d7 +bcdee96c +55dd3565 diff --git a/models/rank/dcn/data/sample_data/vocab/C24.txt b/models/rank/dcn/data/sample_data/vocab/C24.txt new file mode 100644 index 0000000000000000000000000000000000000000..ac7de137388ba7964349336c687cdd1dad0eed64 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C24.txt @@ -0,0 +1,1770 @@ +3814fc66 +3599e91f +74798b91 +ddc4fca0 +5a456be6 +498c3321 +8ecdb20f +efc0a15e +8bcb92ba +1f68c81f +59d5131b +6a6f8ecc +5627391f +9dfcb3c8 +14806529 +a8380e43 +57e6fda0 +20c8320e +03b8c7d3 +e010ad8a +ff24030b +0d147601 +25cb4641 +ef39b317 +cac07f27 +f96a556f +f3e1b768 +6758ff18 +d2288502 +fae97cfd +087dfd71 +c9170981 +2dcedde1 +29ce79bf +fd0fd1bb +f91651cd +ab246148 +53085255 +0a42fb3f +93a075b7 +5c6b280f +a5725134 +6095f986 +b63141be +25616ee5 +aebc75c0 +e33735a0 +f8d85724 +72c326ed +d56dfb81 +15a9a163 +ec531568 +ec8639be +4b3abb84 +7b80ab11 +1481ceb4 +078b017d +a9b776de +7851af43 +5a1a48d4 +75070ba6 +65f72381 +2cda5b6b +d7b29d8c +d96682aa +45ab94c8 +b72b38a4 +87f61a7d +5f986f38 +af1e90d8 +c049edcb +0c3013ca +97347d1d +40b4aecc +53fa3f5b +891dbdde +b61e3676 +39c28d2b +ce327ac7 +41c913a8 +6a32b80c +65e74c52 +4acb8523 +460ca618 +7dc1d687 +958bc15c +6c4e776a +71292dbb +0e8fe315 +e4f45003 +55dea74e +c651fc6a +5a816fcd +198d00e5 +ec498394 +cf23f0df +4904c5a1 +fb1d9706 +67442292 +bf921720 +6566aa76 +3ad63d3f +a5a7cc68 +c0ad5792 +eb251029 +2a475b60 +3a076b66 +2cb8e5cc +dbb0f7fb +d19832ad +cd361e60 +17fc42dc +c2fe6ca4 +a4bff677 +3c6cb018 +51b4beaa +71fc35d2 +bc0cea8e +34675a54 +a0cc244e +3dd6d4c7 +2e661f08 +1d7321ce +7cb64d22 +8cab152b +a611a48d +2261c9f9 +03a8e84d +c440aa3c +1a780b02 +b74a9cb2 +5bbc3e54 +78d01a90 +e457a564 +040519a8 +dc3b44d8 +ef15820d +d70cd354 +9a87eb0a +f828a610 +59e13581 +0ae78e0e +a6ef0df0 +a183a9b5 +40da8cfc +38ea3106 +ae98e1a2 +866b09e0 +340cc764 +524755a6 +e9b8f8ed +d4a1b4cb +99623d4b +82f556e1 +941adbca +517e5d60 +c6f82d6f +701470f9 +4d1bb0f3 +44cab774 +9094dc99 +afaecfb9 +d73320ab +5e03aeab +8f62425f +b0253af9 +29daad63 +61f7d033 +da89b7d5 +2fdc9048 +23b1600f +40de02ec +4001cb4f +043a382b +5d814ad9 +ff89b61c +69cd673a +5f13bb00 +528e9fa5 +12fd752e +eb2b9fc7 +b9981895 +9fb93b83 +83d3323e +5238e1a6 +671d300c +cde7b0aa +702a69f7 +882fa719 +3f55a9b6 +83a9835a +c07abd1d +775488dc +be059b55 +b936bfbe +6ee5593f +6c24d6e9 +abda10be +bc75d80b +f6ecd438 +00de2b63 +e9403827 +32588652 +feec5924 +8e6654d0 +0877de73 +d91ea8bd +3be94b64 +af647f02 +90b6276f +fd82c312 +b3901f1e +2836dcd1 +cc4cadb3 +b7c6f617 +38194a4f +0d4a6d1a +a1093ec2 +043ce596 +9ac59e2a +cef0214e +9b41a362 +6cef9284 +244a7d22 +f14d6396 +9e779944 +c258aec7 +16e901e7 +ed209d56 +31b11b9b +fd926e96 +1b478bd9 +348e7ade +8c7eb3ec +c70a58f2 +cc518955 +8b1f3048 +3b425be9 +9e07eb4a +4bf3b035 +382cd1f1 +5c59fd65 +c4803cb9 +abd6caea +56800348 +9b786035 +e04988e4 +af55e227 +61dcdbeb +f6becd93 +c4f35009 +40c02949 +66b0c3ea +d7ff2a41 +d3b901a5 +2896ad66 +3d29547e +84edfefe +936da3dd +ed3f20c3 +27b60b01 +489cbbc1 +26056640 +38b7753f +39fe175c +4b73039b +56ddf355 +135c8b41 +d553a122 +8e183052 +68400de2 +7b837715 +2e617f4d +b6b5bc47 +83f4339b +7f686ab3 +1f022022 +34423196 +4f18f205 +04936173 +145ae095 +856ed6b0 +ccad99af +f36b8c71 +32321167 +370676d3 +3c6f2df8 +c6d9fa35 +5fd07f39 +a5ce2d0d +8ec48ff8 +4e9d9b37 +8dd87033 +81ef41e2 +c3408140 +721c37e3 +458af519 +0cae79aa +70750a77 +e9bcc914 +4fe18e82 +5ef28b07 +6d14803a +78d8fa88 +7ce74ce1 +c0b8dfd6 +672dcbe6 +88c909ea +c9c24a79 +3a13327e +953245e0 +b67cb69d +cf6248f3 +8f8a745c +b3caf022 +71b884cd +f36969da +42bf52c5 +07eae818 +e14245b5 +67a6d8b4 +8e84e831 +67a18c8c +f54aa12a +6b4dea61 +6042edf0 +a7be3080 +b0734835 +aee52b6f +9d8b4082 +c8ea7afd +7a28e855 +3371d710 +ebf21959 +62aa24c6 +226b0ab6 +4b018d91 +64fbb706 +82c1b580 +f2cbc463 +6c25dad0 +dfb22eaf +2b702eb2 +cfaef5ef +bb039b11 +0393be52 +531ba5cb +9d214089 +d7d60a0c +2e1eb18c +3d146fbb +5d2db8ad +74cb42c6 +92a3affb +b34f3128 +4087e42e +0a10f385 +38fb6d0d +465f835f +d28d80ac +e0a4d56d +65c55747 +9e0bee34 +3294fab7 +f6c8a517 +abbf2dd0 +6bc2bf95 +87d71e01 +0a55c43c +dbc81ff6 +48954301 +7058cbd3 +1b06d1e6 +c83e0347 +5fcc9829 +b6a6d491 +e20fd388 +c3924d09 +d3eeb97b +2e3db81c +d1fc6400 +4043f8a2 +f20c047e +75b08a3d +021c0acb +d86e9fd9 +bbefa796 +8d5294cb +5fd6be32 +d09e7a36 +1d987843 +08f469e6 +5e980bf0 +9c2bbbda +db01eccd +14a69cd1 +9a2fec5e +70bf2569 +6bdf991d +e446429a +1d789fd9 +d6689ddc +b94bd0ee +dffccd89 +d278603e +e4c99bb2 +6b8aaf76 +81820397 +6ddc15cc +093bfc30 +cfc55279 +69661344 +84e146e3 +61842413 +2909a885 +808a3191 +158a894b +5ecd6f9b +66458243 +4ca51bd1 +b4f0f308 +ad21a9fc +adf537c3 +3e022f4d +ad80aaa7 +2c720b71 +82b7ca7e +502f2493 +cd56213b +48b11258 +a90e7e17 +cee0fca8 +d1d230cb +0fde6d0a +2a90c749 +7beffc84 +2af5bbab +727a7cc7 +96e0508c +de7d4fce +b2455157 +2c4aceb1 +c954b96f +7797fef5 +a7b94871 +8bb8d07d +8d988431 +9c123ffc +eeffd916 +ee70205e +0663db38 +41c6a05d +a3433af1 +a8833871 +c9a8db2a +5ddc2c4c +d256414b +cad46f36 +347f7b3c +200cf515 +61bf6e16 +2fd70e1c +fb55adff +887a9628 +1e48c981 +73496e83 +81940e09 +4e141a61 +9fc6df89 +6783c6e3 +8096c2cb +d265ca2a +af7e56e7 +73e86bff +aab05942 +ed2c5ada +47577e42 +f2c8ae40 +34842886 +79f9cf1b +921c4069 +8a17bfab +8c8c0a34 +f4e98c72 +ae39798e +727923fa +924e1861 +0109cb5b +c67ffc42 +df0ed3eb +0243a2a0 +9276a528 +7f0b4c99 +f4c62ae7 +46851bfd +3f7eb911 +4d9888f5 +80a15ff2 +24db27bb +cb8a00d8 +1cf05ea7 +b460c647 +698d3534 +06f6f124 +9f8b7b85 +841a44fc +b3540901 +ccdc9cf6 +657f7d7a +de0d7b75 +0b95f1c5 +a15e072a +93935bcf +99517c2c +8b51e37e +7ef78543 +daf43eb5 +7e60320b +726bef9a +4ed82ed7 +e7540df6 +d2456b98 +32ebc486 +8407b107 +a0ab2ce0 +196c454a +aab9e637 +8c33950d +ea2ce97d +bacc4064 +5f44b012 +f3f5a940 +3fac8b50 +e1b26251 +72e0a24a +0c55705d +971d53a5 +b870aae5 +c673354c +e448275f +44e65d0d +165e877f +bee64424 +81e099cd +4c5c856c +570e3148 +8c882225 +4fcc135f +f7d9662d +187472c2 +cd1adb91 +22c5df8c +55ae113f +00747dbb +47b52926 +7c4ba11e +bffa4efc +3212c2f4 +218c9ff7 +3ff8e180 +bcaac82f +f87cca3f +a9313cb6 +91367ef5 +0ab9c4b2 +f556f019 +f67c718f +9c1163ab +ac73f6cb +70c6904e +a1da5668 +2d3e3ac8 +6683fda4 +143b1e0d +c640e7a4 +cc6ea5b0 +eda696dc +299fa073 +0b8baf69 +812a6aff +09691cbc +8b7d995d +d1edecda +fa26a1ec +f2d06cff +3d87e5eb +47c5aea3 +038f231a +47620345 +36468341 +899c6ddb +fc7f8260 +696cc26c +6ca1f5e0 +ab99f948 +cbe16042 +3f1ffffa +d5c410bd +2cf2378d +335a6a1e +dbe0773a +77f43467 +0dfdc7d2 +4a5825e5 +f689bb81 +ecbda592 +216a829e +fad45c97 +cd1b1f96 +ef089725 +ebfb058a +e525e48e +56c60afc +a1f8d915 +e397a120 +c5cbfccf +cd9dfcdf +e0d419cd +38255568 +1260fbcb +60a197ae +e676df61 +13b52aee +22dd4e42 +123fff3c +3e1dcafc +c3f77dcc +b7d5a1f5 +92513de3 +331512c9 +79fc7b8a +bba4462d +9d58d744 +246f2e7f +e5fe7725 +c43c8d37 +25b923d3 +2ca52429 +1b3a4e10 +89064851 +fa749baf +1890c8c8 +246eec54 +e03ad56b +039f930b +58aebea7 +0a9d189e +32dbef3c +9153d898 +6c121858 +4c0a9db1 +a62d8862 +53575b1f +b9e6ec5b +a5278534 +35594d99 +49d074df +2916886f +29d9a0f2 +57ef7a21 +910fbaa8 +71b8baa3 +b5903154 +59c12dda +8ed869e2 +413a4753 +850e26c7 +5751afd4 +ed62d872 +731311f7 +13628649 +6a2507e6 +2c502c1d +9d96bacb +c75adb94 +7aaa93f3 +20b0a854 +09163aa9 +b99e97fd +b748fd41 +eedee301 +7a8e7ed6 +456bdb5f +9a4f8abe +b36618e6 +129e27b2 +50d994d6 +82437b86 +53951edc +8fcfcb08 +dadea544 +4003a508 +1888f921 +0e4b6ccd +9b18ad04 +673aed71 +1a495a8d +6da13322 +b6616a66 +cafb4e4d +e0e1e766 +716bdf99 +ca763252 +944ed2e9 +66ee6583 +75a8f3b7 +1eb46a94 +8ecc176a +33642e3c +a8b9ad80 +0acbced6 +e6971433 +85858d9b +08b0ce98 +11cfe898 +590b856f +1793a828 +a545e387 +87a038c3 +3b183c5c +4a5cfcca +96261dd5 +a6e8741e +ae18bc5b +7a39a7c1 +eb1ef865 +d18dc394 +052e29ff +c201359d +fe0d4fd8 +acbaacbd +3fefd57e +2a46f54f +1b1571ac +682a8518 +75d67d71 +fc7d5b23 +f839ad5f +1c884a87 +e4e10900 +1625c147 +428df801 +2de969cd +2437e831 +dc8e8f81 +92d45137 +799ebff0 +d24ccbf9 +af0cb2c3 +8eca1fe1 +5fd04b39 +bb502178 +72c78f11 +1c4b599d +d36c7dbf +a9d9c151 +03f412a3 +9f7f425a +5622865b +48e2b4fa +5ab11cbe +07e4d1cf +3e90e1b2 +453471d8 +093f678c +35adc05d +507fac5c +f271f41c +c0762e38 +4c8e5aef +4e69b127 +59aa86a7 +b4920404 +937f8adf +f2b01507 +89fa735f +f659d008 +0b351a52 +97dafa13 +c23c2e19 +dd5daac7 +a67b5cf1 +f7078ef3 +eaa1bb97 +c99dc8c3 +6138b4a7 +a5938ba2 +a0d302fd +9a04d350 +1172291f +6451efd5 +e630a04b +65d7d87d +1bbbdffb +bffef508 +f0f70e8f +c4426981 +7ab4ee7d +7697d011 +a98f5ada +e9513c86 +543fab60 +deda7b3f +7e42b083 +f5f4756f +d6b9343b +fa4eb4dd +27e81296 +65ca2360 +54a607b7 +5a9ffa19 +b839567a +25394d2e +03a47055 +c94ffa50 +8d365d3b +01568b8c +89ca0045 +fe6b762b +71703c49 +a6a329a4 +09511edc +919b984e +89856b53 +d691765a +4008e1ec +4c9292a4 +daef26d8 +0c9ebda9 +519dc45d +df487a73 +1a696ebf +1370c56e +98239188 +a57341ed +792d292d +8cc77276 +b9de745c +a3bd4d33 +8f282db5 +307b6753 +70417824 +2ed60951 +a113c90e +2ff7b3f8 +100dfaf5 +2663a8a8 +4a236577 +30d6ea16 +aaa9e441 +f7b7052d +4b352104 +b6654c21 +bc5b0a35 +4ccb4ae2 +079b4da8 +8a07912c +cedad179 +46008b41 +cb33dd43 +9287482e +a67c8001 +4f7b7578 +52e75cce +79869a4f +b0fb6a50 +359dd977 +c60081c2 +f0c37e57 +1d4dcf28 +d288f01e +0df4da2b +d9dc8cc0 +8c6e501f +c774a2e2 +eed7c069 +9b7eed78 +f2b0025b +66b8103e +a6e7d8d3 +d61a7d0a +fa83cf95 +cca8c2f2 +f0e3ead3 +17f458f7 +b94e053e +38be899f +8d9d382d +27b03081 +c4fd06c3 +03aefe56 +abba3671 +24d3b1d4 +88b2de92 +00c9134f +3e387bd4 +68359ad4 +832d3547 +1b2208f8 +aa3637f6 +42998020 +e63dd16e +2f15c94b +65aca77d +672b83e3 +2fea1d4d +51e4f023 +21c9d296 +f1fc44b5 +e46634bf +8decccb3 +0fab2d26 +6e311859 +b15e807d +240e5a71 +479e2b59 +b8468a20 +a1d7a338 +dd95f77b +05427247 +88fb0a1b +32ebebe1 +69e4f188 +825ef36f +ee448990 +45fc54df +20f6d101 +7de79d0e +f998e32f +3e1aae16 +ded4aac9 +36325a86 +da45fa6c +e9e62581 +d198e252 +c44bbc69 +dcba8699 +1dcb8764 +0505abc3 +2f647dfe +cc0e3da8 +b43c75ff +ce350354 +cc409594 +9fb5a9a2 +51c114aa +5029cba6 +896b9d63 +5160a778 +7939255b +e3c310aa +a052b1ed +c144fd6f +9117a34a +90b99a4b +0916262c +990a118a +33044299 +7c2d72a4 +1a3b3d64 +748fa578 +5bed8759 +6e828bd5 +e22fed0c +5bdb4bb6 +504fe8ec +3fe205c8 +9f94762d +d0cd5a75 +73897902 +b2df17ed +b3f3cd63 +4fa16304 +becdd73c +99c23ccf +8bd236ae +19b117ac +9f0d87bf +6a6f263b +b1df4bf6 +646a7ba8 +d891c925 +05b86cfb +4bc4a47f +f7b109c0 +16bf8799 +4024af75 +4e513205 +69b371cf +b3d84af2 +52f412c3 +3400540c +bd95e5ed +5bceb83a +b9f94fdb +cda41f10 +50bd4647 +487b8cd7 +0de4bad8 +71dc4ef2 +166ad104 +22ff028a +22b2abe6 +ada925b2 +0ae4c07b +4e877ebb +b46381c0 +871dfd78 +fdf5ac25 +3037ff6a +33d0ff9a +b0deab67 +b1ec9c5d +d6285a00 +c9bc2384 +7f6485ad +0ff91809 +10864bee +1acf8062 +89bd83a1 +54d76883 +996f5a43 +426c92eb +b13a4767 +764af1e7 +9ff482d3 +7d44b04c +8eb162c5 +4f129db5 +99296def +786a0db5 +f6fcb7d2 +f53ea242 +a415643d +a9a1fbd4 +41be4766 +59887b6f +ef218b6e +91de1848 +0f3002b4 +3b047130 +88ed380d +71640730 +8548f4a1 +afb24112 +0ea6eb3c +28cbfdd1 +dc13346e +91f54db5 +53e0a237 +5991d363 +916f4113 +8ea22d26 +6f90ebe1 +7e99499d +f86b306c +151606b8 +8804f0e3 +80dea675 +cd8c216a +98f3000d +8c6caec8 +66450483 +56f742f2 +df739657 +42bab436 +340d03c3 +f6ebfd12 +a5862ce8 +2a0f32b0 +f4b7f89f +6d179652 +ba986015 +68db1c55 +b258af68 +8ca3a6b7 +defc8ccf +dd48603a +62899acb +6d31f611 +ab6c4f7c +dc49cc4e +0bb1263a +9c71165e +0a3cd755 +8e35571e +66335bd5 +b44bd498 +1a5d7654 +b2a514db +4921c033 +f36ddc52 +fd42e0df +829944f0 +7553379a +0174dd24 +6b4edae7 +8a73292d +9807dde0 +c9beb5ca +32adb9ae +3e2c4cbd +37cc789e +f216590f +7b888172 +00954a0e +545ba04e +e4ef8e56 +f80ced1c +abf08f1b +a43e2630 +98f2c2f9 +58e38a64 +cd7bf52a +2cb14fec +9134a4c2 +7100b65c +1dd4e2ec +5ee1762f +63e142a0 +e4cf11c4 +16e042f7 +45b2acf4 +ad8e1407 +ce76fe7a +d052bbbf +ecc32110 +0784e21a +47cbdaec +f8bdffd6 +fa447a8d +819b58b5 +78aca291 +aa9b9ab9 +df62ac33 +43237b56 +6788e7f4 +37821b83 +02772104 +dcda2e04 +56db18d8 +8a23eec0 +bf118644 +fe3df019 +7566c6ec +1c6eb7ec +60efe6e6 +8d49fa4b +d104653f +e138864a +2a953b98 +7fb4ff91 +edc54ecb +45fd5c7e +38d9d896 +337985c3 +0e636f7b +998fc200 +3f57fe68 +b2f178a3 +ff09b92e +a9848e26 +7827330b +8daa10bb +2f7e98de +3fc1428d +b63e3fad +0ce5cb39 +8b9120d0 +468af5eb +db6a503b +c6eccc02 +08cc5743 +18de9e19 +273937df +3bae196c +d1736fdc +a6e96657 +fca4622f +ad65a526 +540a7116 +0799870b +037a0e10 +86b2dfe8 +0789ac40 +fb508a2a +ea444225 +471f55fb +c82232f3 +30d6a904 +42df8359 +c041f2d3 +261a4628 +9d919ce8 +c8213966 +ef38f1fc +de065242 +03955d00 +adc58845 +4beb20da +422f440e +aa640e91 +ae2cd100 +6ace2d4d +48056b77 +47b093e0 +86f85a4b +78cb4e3f +ba20a2af +eed53290 +917815cf +4943ec2d +37d44daf +32dfe8b6 +fa470cd3 +b889075b +d57e7d03 +da363f9b +cde6fafb +bf253a99 +87889f51 +f1dd75f2 +0b7c4dff +d2a38c68 +a636a323 +992bbff0 +58bf07a9 +7e4050f5 +adc85729 +0c95bf62 +cb461b40 +e7d518ab +41377cb5 +d5f248b3 +7836b4d5 +d719d049 +b675522c +7cff0908 +ad9125fe +d3d40c0b +3f4c58e8 +8f079aa5 +914b000f +e9950559 +7e3ee667 +2497cf4c +4e8956e8 +ea8b7f8a +47794ca2 +1057b323 +80ff3b96 +5bedd47e +6de25db6 +f5220a4d +c0486dfb +c48364d9 +ba38fa19 +d43818d8 +8055cecc +a88bdc08 +b59ef8e3 +732e04a1 +94940b2e +882001d1 +2a1e2684 +d1425cbe +7357b104 +476d291e +580c3edf +206e2927 +c4566169 +e3beb64b +9d8f9768 +b62c71e2 +992f954f +0d9715c0 +10b3e56d +c657e6e5 +37e9c759 +e9b3cd6f +c64ce893 +e4ff7aad +6a8e9007 +36125f5d +79a1dedc +e95018ca +43fe299c +5bdcd9c4 +921af7c4 +1c20ef10 +dd532e83 +e20d69d0 +78ec1d80 +51095639 +74591569 +81ca3223 +bc6e3c3a +fad805fa +4b927c56 +55d9e56c +f966d341 +8aa244c5 +9fb5b007 +fcf34ec5 +5e1d54ab +6b15bc38 +15c045d3 +b96588d2 +673790da +73b6604e +87eafdec +7c25ac81 +d08d9a3d +bc8b14b9 +fea28307 +791d26d0 +15556a9a +f18e11cb +c8983142 +e76eee7f +f9f7eb22 +8dca7de3 +497c77b6 +a025bb5d +cc92fe5a +838037e2 +6a62f247 +4507844f +8c6800d6 +91fce746 +830a0352 +c19679a3 +2d2ccfe8 +dfa876d8 +4e44852e +d64be7b9 +1305f2b2 +aa0115d2 +76503798 +07cbc0f4 +3fdb382b +88154d04 +0c130f98 +9f4f09e1 +6a22210d +55dbbe40 +92866377 +52c59e65 +4d547c31 +00d5a681 +12f3c872 +772b286f +98276f90 +fe4ff14f +22ea1208 +faf5d8b3 +87a0bd15 +af931d1c +08403048 +57b704c0 +1a691628 +2bb26daa +ec542427 +97a1ca52 +05e39ce1 +52077998 +2401b8bc +bbaa92f5 +3c65d693 +aeb61edd +03a1fa24 +af6dadc2 +b21b5fb3 +462b471d +5c4f7464 +195e7102 +3e8656f4 +212a56b2 +0dea7444 +55d1ba40 +f2e9f0dd +7bb205ed +bc491035 +16bb3de8 +575b0d69 +2debeac8 +c6bce007 +869caea3 +7e1145c7 +5fca8ab2 +d859b4dd +c3a031e2 +197a3a69 +69e7316d +4f778213 +a4b9e88f +41213946 +dd892473 +afec87ac +a994f5a2 +d0c103c8 +874db5d2 +87a3b049 +54baf4d1 +4ac791f9 +00ba4790 +38ba8d58 +78572248 +15b4ecfa +25e1b26e +677163ed +01eb9c81 +7ed7f502 +d48ac163 +93dd3d3a +45ca10b6 +b3b64833 +8fc66e78 +10edf4e4 +27c676b8 +bc069ab4 +e29de47e +6ca3d42e +1335030a +60b881bf +5db13492 +068be52a +e91468a8 +93800554 +d982520c +6216a5f6 +d8e17d82 +f8009a4f +f773db90 +9be5c7a4 +e773f0cb +01811a71 +cf01163c +54100933 +8a3cfad4 +60a57787 +a024e830 +67dc6ad3 +5647ab57 +602d066e +57b5bc3c +82b18aae +e944e245 +d9556584 +576efe81 +b77f253e +f188b2de +ad4c56a0 +e7bc1058 +15789c48 +b6ee835f +6b3a653f +e47759f6 +a3d6d29b +29f1f7ad +8d653a3e +23c0aaf8 +4de83b96 +488ba19e +5b11b876 +c7300032 +80f697dc +b3b23293 +a78905c5 +1aaa0c5c +56adeae3 +7cb5b4d7 +afe9396a +061b6467 +375c3609 +61ebc718 +343afb5b +6870bd60 +f420e5b9 +d8d2681b +279ba740 +ee2c9e5e +0a60f0b3 +0e5f0a94 +c646e587 +ca9e488d +b9ca963f +cf6d0b98 +692bc8a6 +3aebd96a +4cd51db1 +757d996c +79aabb00 +886696ea +29ece3ed +9f196282 +b2f8b1c8 +0b6472aa +adc36d25 +7f5d4de7 +a6d762a0 +e21e6ce3 +8495beab +962a6272 +fb6b5384 +16668505 +eff6c82f +2de3edc9 +a283230e +e21a5a56 +a9a2ac1a +04db156f +d9d34c25 +b6a0db5c +d6d254a3 +b1febde7 +364bceeb +494a0755 +6b06946f +9ef1fbff +afb22fb1 +4b871c6a +d3f51405 +0b49b877 +fbd1a9a1 +237343db +45dc0576 +db977bbb +005872ee +ac3194da +9fa3e01a +1aa84899 +c8965754 +79d26e5b +5dc43b96 +7d2e67c5 +b92e237f +6870b565 +202530fb +ba835183 +12c269ca +ffbe05dd +f1a27f66 +5bc7bd41 +4941cf83 +e5fca70a +3bbc13c4 +9568f0b0 +723f08fd +b050fb87 +5a3afc28 +a63ac4ad +7f132c47 +270dc187 +0ddb9ed3 +6c1cdd05 +edc3c618 +5188732d +28cee3a1 +acd8372a +41769d4f +26dd4ba1 +f1193908 +cf9f8644 +8451bc6d +53264305 +454b4db6 +f6f4eed5 +4bb4f28b +fa1177fb +10533421 +f50560c3 +23c88dd9 +2d794282 +798b43db +e4f7a0a4 +85e4d73f +d2623109 +6df5380a +46648158 +ed8e1d46 +382c8572 +1b256e61 +d9c126e5 +30be0ce6 +3da47871 +5a9a5de4 +40a0947a +29334d40 +984f840c +9195f690 +aaef3712 +a259b40d +553f4956 +8ab167ac +d28e90ea +e45cf762 +521834ee +fe300890 +9af06ad9 +0ad882d8 +6efc9bbd +e62aef2e +3214afd4 +322142a3 +f676f61f +2364c1ff +ada1744c +1e258e53 +8590a491 +fedcfba3 +810c1d25 +fb38505f +c9e1b7a4 +43f13e8b +e02e537a +4aa354ec +8cdd8b87 +ad4fcc41 +e3f7a6d2 +3822e7d5 +c05c98ab +1a3ece10 +88cba9eb +07fc91cd +67d37917 +67371b0f +63991703 +d8aa072f +8418f43d +c62ecec9 +416be1b4 +78db00ac +da408463 +948f70f8 +8e8b7730 +fbe24bb0 +8118a66b +bd635379 +5dd5bf0b +21c632fc +e4aec941 +a642674e +75aae369 +91e03621 +f0765a1c +54c91918 +48be0ede +75c8ca05 +215dcc2f +dc6c5bf5 +44a9ba11 +fdd7a5a0 +cf004f46 +fb96278a +be2f0db5 +53786e59 +87f419c2 +8d4a9014 +195e2646 +585230bb +00a359b5 +8b5bb744 +df470bd4 +f38cb55d +4997082e +1d3415b4 +6bad707c +7d5cc1be +f090fae7 +811853ba +32b2300c +7745a8a2 +c3f5ab54 +02d1a5f5 +8bfb698f +6e9a987f +e798ac81 +801e4eb9 +904cf83e +d5b4ea7d +2e0a0035 +5a4adb7d +20621cdf +a219426e +ecb5aa0d +135bb8eb +71033737 +68f7a8c1 +b43d6cf7 +200b8e97 +56341849 +d968c351 +732eaaee +34461b7d +b001878b +99aa8de5 +8d7ddeb6 +9149f647 +06c8336f +9b82dd5e +9e9a60e4 +d4af2638 +48a656c9 +7e862c7d +74ccfe0d +ffad9766 +b10c3a35 +4a4b30e2 +ca774bc9 +0b655ce1 +fab2a151 +05dd8229 +b71d0371 +a3da2fa0 +2b0975db +aa1b807b +34f0f59d +90c9635e +aea3714c +24fb0c28 +4f272e57 +c85648db +fbc5ce88 +0113e0ff +5a3877a6 +3e30919e +d8223456 +ddb359cc +ddbb8d8b +974a5c95 +9266d2b9 +8940103a +12d17b0e +0bab5d7e +2cd44b01 +396a8f90 +c0d61a5c +4a36b55b +eaa0d62c +f1b99840 +be673bbf +f09f6f4e +f14753fa +cc80b3be +0604c2c6 +79d2852f +d339d9f9 +b150ea7f +abe3a684 +eb8b03b7 +610a186d +e00b3005 +84a27184 +51360e73 +88b17bc2 +7724aff3 +5e26f7a3 +c5c50484 +c69e1e8a +005409f9 +a39c8d13 +a86c0565 +b9ef321b +130b046a +671c2b89 +ae362bdd +7986b75d +b8942a02 +b3398ce3 diff --git a/models/rank/dcn/data/sample_data/vocab/C25.txt b/models/rank/dcn/data/sample_data/vocab/C25.txt new file mode 100644 index 0000000000000000000000000000000000000000..f23c2ee0cdd3de63cba3bd06d77e3042001f113f --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C25.txt @@ -0,0 +1,40 @@ +e8b83407 +7a402766 +fd2fe0bd +ea9a246c +445bbe3b +8b8de563 +9d93af03 +c0812fc5 +e13f3bf1 +e0f2931a +07ee399f +5c813496 +001f3601 +59e2d823 +9721386e +875ea8a7 +82d3ae39 +24657b11 +2bf691b1 +8f8c5acd +c243e98b +3a6f6b59 +51c3d1d4 +9b3e8820 +ce62e669 +f55c04b6 +b9266ff0 +47907db5 +010f6491 +f7839e21 +46fbac64 +3d2bedd7 +724b04da +1575c75f +33d94071 +f5b6afe5 +c9f3bea7 +f0f449dd +60c2b362 +cb079c2d diff --git a/models/rank/dcn/data/sample_data/vocab/C26.txt b/models/rank/dcn/data/sample_data/vocab/C26.txt new file mode 100644 index 0000000000000000000000000000000000000000..1cb7d644ce8688720752f3a74f7494df109d824e --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C26.txt @@ -0,0 +1,1349 @@ +72b1f187 +a3efae54 +00095ee6 +c26860c7 +06a75e35 +3e01e343 +52769d8f +47b6f269 +6ae9621c +42e1f6ba +03e419e8 +ef37ef57 +e85c38ab +e3a60438 +d2bea05d +90ff72b0 +9201d3e9 +10373592 +d2e794c1 +08b9244f +60404332 +67ebe777 +691a6530 +35ac6843 +5cf0065d +d1d45fc5 +0da76050 +c97d7481 +54ca28ff +cfd96da1 +754857d9 +ec6b0e7a +3f8f3f3e +1e111169 +f3737bd0 +5cef228f +d6ced323 +159759fc +968f2b7d +2fc5e3d4 +5382327d +4a626f32 +4821aad6 +87d8715a +5cd866a0 +22174682 +81be451e +1c57d70a +5036f81d +9f96fcef +1295442b +f0fe762d +0ba6ef32 +c132cd74 +c9afef22 +08f26f5a +9502e7e8 +4eb653b2 +35599f97 +2f494e85 +a6749956 +584d8464 +0c1bbe81 +f3b1f00d +cd0af79e +b4bc8bff +350a6bdb +99f4f64c +31c2f4d5 +bf09626b +d9c73336 +cfe622de +fe5e6399 +68e890c8 +244c712e +9b8e4e84 +09dd415c +98f2cb71 +5236e08c +40cd9f3b +09b3050a +56be3401 +25e83f59 +ef472e96 +06ffc780 +3d186c66 +963a4122 +8221c0ef +66b8aaa8 +ac26d563 +2de6f28a +14b7c6f2 +226a47bf +66301586 +51e206f9 +79beb634 +3464ae5c +fe56b763 +ffef2a68 +6cf80e8d +41d8ab16 +06878f6b +9bce6de4 +dd830c09 +a5df7777 +210d4617 +4900cea2 +3fdeab66 +39f4914b +b892ed1d +9523b7f4 +4271e99f +e45edfc2 +a53e3095 +8a657198 +af9e8348 +c68033de +9863119c +2674da8b +a475662f +b502d7f9 +c3dd86ad +509bbc3b +3d83c402 +418e75bf +fc8ac6ea +a35b580e +a6d189cc +7aff7640 +bac82070 +a5f6b352 +08b44c88 +6704f643 +ac9faae3 +316b9ae1 +199fd640 +e8048e9b +00e78c76 +b1d427dc +79bf1fca +82503832 +e738d3f2 +63093459 +3a01ee68 +9af95efe +c3546e32 +e914c1e9 +a1004638 +7587faaa +db4d8c37 +99e71d4d +30fe33ed +92f24e76 +851a6ce9 +44de9504 +a034ca84 +c99deada +01c838a0 +7d171dcc +28ddfbd0 +8b80cbf0 +a8914830 +25a34e8a +db1e2da7 +ec1bfd1a +16ed7d69 +b29c74dc +ea481fff +f8d62db8 +0a5456c3 +a81ff309 +ea609d5c +2c444dca +d5e46346 +bb721794 +c1ac5aa9 +1206a3a7 +d90c05da +c0608db0 +fd6c1cb5 +903e4adc +8fd6bdd6 +d7af0b10 +a388434c +99fe62d7 +693f2ab8 +61221532 +5cbce625 +515eed79 +741fbc61 +901912f0 +512c7a53 +0278ad53 +c5116a1c +1cc46575 +b556b353 +dbc4d43f +0015d4de +6d7f6444 +aaed6d5d +5df320f0 +826dc169 +4808a23d +9e08f841 +8e0dad53 +1faf87ce +0ba13929 +fcd456fa +157c7745 +ceb009c6 +1d173a83 +2d056c0b +51ef6654 +5a4d1669 +cad27838 +66045105 +bcf1a4a2 +d6fcf5cd +c2d2389a +e16aa324 +45eeb1ce +776d35d1 +bf3ff876 +ba676e3c +4238d56d +e57ef3e6 +4d6d3594 +12e53712 +fa3124de +9f348762 +61556511 +920f8c9a +bde577f6 +70b6702c +9c1b4a8f +c4510344 +6077d3a5 +2fede552 +94c22011 +5222bdd5 +92c878de +80a27288 +a8d546b1 +df576608 +6dff734f +4450e3bb +1d6cced3 +70451962 +3ad3379e +d2473bc3 +748a713e +8efc26f8 +03764a6b +33757f80 +f69424a0 +e001324a +213da196 +6ee7509a +daa08341 +d0151bcf +18d5df57 +b74c530e +a4ab2614 +9fab4921 +7826e9ae +1617d874 +705ee187 +fbc30346 +04442161 +93791661 +1b8c6698 +e9069368 +6d75a07c +f159b6cb +3ff1af9e +efe23900 +315ad76b +083a8da3 +904cfc1e +cf995043 +e6cf77ec +b69ff5ca +bdf46dce +a329b171 +2967ea07 +46d78034 +fadcf53b +aa5f0a15 +4c6b94ab +0afec7b1 +da9e13a5 +32280082 +fbe10aa8 +6023d3f5 +4e87ab18 +84c3d38c +24420a37 +882f541d +08a0303f +22aa53d4 +1f477f83 +709dce56 +5a3c4cae +f9a614bd +44eced7b +b4e0464b +44af8b3d +88b19c6f +1f05f21f +18fda1f8 +0f81083a +294b0c0a +fcd5a3f4 +5bdcba46 +224b88ae +b8203831 +8b8b6204 +b2ddae6c +3090e38b +1a8cd4b6 +3956fc5e +e225c8e7 +39b76061 +0cac137f +a7c08b38 +e59b81f8 +00535fba +0624d126 +e8cee7fa +f0760dde +3508d15a +cf50627a +f379f550 +e4b8a64c +4cd8cb41 +1cbdcc4b +2a30fcd4 +afd260f5 +3135c89d +304c20c9 +a3a8e8f4 +5b729341 +d94377ca +4a5cc2a6 +c5686cdc +718a0860 +ca2ddb62 +bd422f81 +6167761d +de50512a +4d0c145c +3826071d +e3a8d2c3 +4c7ae747 +94525e91 +2139c64b +cb5fbc1c +9641e9f4 +7518c447 +48c7d77f +f55e3520 +dc1553c4 +6b2ae7de +a0d02864 +69148c9d +7e6f9939 +c1f5c61c +5a622c49 +37c5e077 +e75c9ae9 +4e64b6da +65aa49a4 +ec75f0c4 +f868e7eb +8cbc1758 +dd8b4f5c +92888dc9 +cb5a2b38 +0b57b1ec +f15edf91 +87da501e +dbc93f04 +f06304e1 +da681e04 +9fcd80f8 +a602d432 +4d0197e4 +8769d55c +f88aa0e7 +49e5480c +68a2a837 +ee61903a +e29f7e91 +0e35119c +c470a649 +9b1e24b6 +779ff446 +b172a55e +28f3d990 +68a56e9b +a3f0086a +1768030f +4589f06a +d19c4cc9 +3e0e39d6 +d4998978 +e222caad +dda91ee8 +b2ab83fe +e6a6ec4b +293abd24 +5bd8d5fa +fba4325a +bb574173 +cc0e8b70 +4a31693b +7a2fb9af +1e8667cd +3bb6f6fc +864fc796 +69c18da4 +d4060883 +9a483882 +3d04cc90 +b655cbf8 +b6030675 +cc7b7077 +be1fac76 +45d0d806 +cfb3c3bd +0e25d9c4 +7b840f23 +f9607f7a +eedff58a +2ae73226 +453fce6e +510b928b +723c999a +819513af +9d26dbb7 +27029e68 +adf2a43b +16edf87e +98ea1376 +ba14bbcb +a6308e9b +8d8eb391 +7fd6516e +7dfcab64 +9636866f +dc39e0d1 +03f7961c +6527ade9 +146e6aa2 +bb3b40dd +ba2e2d00 +af6e345c +43363def +0347f0d3 +db4bed22 +adf647f3 +b7ce06a8 +d5ca783a +397f057c +dd0ce319 +e1c088a6 +295b0bfa +d4d7b05b +73cca889 +9dd6ee43 +e740b2da +fdeb9c92 +f8cffed2 +d15c0cc8 +49a2a201 +98279775 +2abadb4e +cd888bfe +d121595f +7ee6b096 +eb178148 +1fc8fb5f +14ca3f83 +e17643f0 +3df61e3d +1731d5c5 +4ea41590 +1658f2f1 +5e24a43d +6fdbca64 +c45afe49 +a8cf207e +d37be573 +75bab1b7 +13e09a2a +c8a4f9f8 +8aa85f14 +1f622150 +88eee740 +bde2bc96 +b4a4615f +6e6b0fbb +cea188cc +708a7ad8 +e76e842a +79994cbb +1e370030 +8f72e5eb +bddc0140 +aa662b71 +4fccd22c +8f154cad +409c7293 +140d9b7c +0e808c19 +bb51a9f4 +1b220bb2 +35a05896 +0c57a22e +6ab28812 +4be29bf3 +c4304c4b +64a82175 +f25f4271 +2249063b +42956c28 +d509cc5d +77d7fd9f +03219b28 +c15d6087 +f46b117c +36b08c04 +7359befb +47d6d9aa +e86b2239 +02c5733a +8b781ed5 +6a25b225 +b2a97390 +f5908455 +723e40c9 +26d20f88 +0653fd2d +009abd69 +78ef31a6 +cedb4060 +cedbd4b5 +74373432 +984e0db0 +c1038b71 +84e33fb8 +6de18d63 +e10bbd8d +cd93c731 +2b839123 +db0fa156 +4b6a03d5 +06f77b0d +e9b68fcc +8115a695 +001e34ee +0cb77ebc +355a8ecb +cc7a9215 +65bbcf43 +2702fec5 +6bee583f +4f47de0a +fb7edec8 +3055b376 +93f6d392 +b7d9c3bc +3662e24f +cdd2b5b7 +1a7d228a +c106e37b +f19b4688 +ad8965e8 +61e54666 +f05fd399 +f231aa7f +a08dac3e +8aa73a74 +54b49e3f +8538ac3f +231fab9e +965db6b1 +ff6f8ceb +d14e41ff +3292862a +50d64b65 +c037ee57 +ce0bf6fc +067308a3 +6c679105 +1e21c6b8 +b9baa3d9 +af7ece63 +674bfc41 +37a5dd0a +aaf35019 +5a205e8e +c9940502 +96c9cf5b +873786f7 +b112057a +ea98f275 +6700f0d1 +8ca33e04 +d3b1c827 +be8b4aee +8811188d +aa86a675 +100fe023 +efac4835 +c40a0966 +b95f2202 +402af921 +4ac03fcc +62436b08 +eb9a9610 +f945c71c +653aee86 +8c53c771 +c6468596 +7a6357a3 +c73ed234 +6598e0f7 +6ddc02f9 +afb16416 +14d40504 +608ebd3c +d8abefe6 +456c12a0 +d745cf91 +d885a38e +40ce7785 +6b7a26a4 +04f73185 +e5ca37e4 +17c3439f +4671943d +d8ecbc17 +e8990e6d +84c60230 +69134261 +b80ee752 +95349313 +8d2deb5a +029398e0 +d67a6f5b +5ebffeaa +14886693 +632dae8a +8ebfb2ce +ee926a57 +72ecd2e2 +cb451a6d +731c3655 +997369c3 +7bdcd81a +c79a3a65 +457ebcef +074bb89f +bf8367ba +2b5727c4 +7438db2a +1d8c941c +0e8e05b3 +496b82a5 +a649b97a +c97f0488 +9a7a203e +f18a1a20 +b11e5179 +0b945011 +56133ed0 +0ca8dfbc +4d75aff6 +60228615 +9bef54fd +21db0a46 +59c54af3 +05c7ae70 +915daef3 +f524c586 +6ddf47a7 +41eb481f +b818451c +3aa72374 +b91a7c2c +1f44c09d +87db5143 +9569c251 +2de4bd28 +0355bcb6 +4640af2d +30d2386b +7ebbdf14 +8d8d9c8f +70f53519 +c131e22f +c6ee8096 +e93ac0e5 +58274fd2 +8379ffe4 +0d428e85 +bb4e2505 +67a53a1d +2080aa8b +e1cc3a15 +abbbe19d +fa3deb10 +56009c93 +434a7801 +b9d5a998 +b91c0f78 +0f43bbd8 +21fba449 +9b5de197 +1aa2e416 +1ba54abc +08e0e995 +d10d0f6e +63d1e016 +a2a92e0e +3b410cc4 +b13f4ade +0dd4407a +e539c901 +c3c038f6 +eac68b2b +63c80f7e +09929967 +b34f6f11 +655ff9ca +6c1aedfd +2a4caf7c +7de5bac1 +7b1f0488 +83293b11 +cb545e02 +8aebbad7 +48b0a13a +f89011c1 +6b0f3f1b +be31c894 +9ff5fbc0 +25bf05c2 +447046b0 +dbd4e512 +2921e678 +5048bd93 +00cd7c8a +247efbab +a8e9d3b6 +f7b3eefb +16cb50bb +73edb4b5 +fa1d538c +3fa6ef2a +caf3d9aa +dce6f283 +bc33111f +fda55550 +fc14c8a4 +fce22553 +0610d914 +5b938117 +a412d5b0 +175120e4 +def102a7 +c55085ba +c07c490e +fc92bae1 +73128e71 +b371b4f6 +6aa7a624 +a2ee9095 +56d7abe3 +c4206c8f +f1e9162d +e9e3604a +c16873c9 +2013a96b +b820b6c5 +adb7a642 +d6f0caf4 +2bf605fd +06016427 +8e1d68da +0e7eaf4b +b1617e25 +539454ce +d6952d32 +b1863223 +ec4dcfa0 +bebc2875 +d12e1d0e +2efac7d3 +6867cdf2 +89c50118 +60687331 +e914a548 +4612bd34 +d73f0a8f +0e6e23fd +d8e7b1a8 +02864ca9 +9bf02322 +7d704f34 +4a2664e0 +8f16a3b8 +64d6cfd3 +52bd701b +ae5c4798 +80b0aeb9 +d25a68df +8fc187f5 +d7fb715c +89678cd6 +7814ac53 +7f3a7824 +c4dffc79 +e5475fb7 +d0cd2d37 +edb3e7c7 +abc00283 +4426ce6d +a00dadcb +b999534e +1954e885 +b54e5d63 +ff86d5e0 +cc884ba5 +f3b2673e +029d11c0 +ab67d6da +988b0775 +35fe2911 +a2cbc80c +cdfe5ab7 +2280f93c +4e461000 +dbd747f5 +de298f4b +57504b73 +b637e203 +9b48375d +e493f174 +f7924e53 +12b59965 +375da37a +e1282c94 +0b9b375e +69e9d621 +006df4eb +975c3ad2 +e8b90e7c +0093c58d +e564f221 +9727dd16 +4a6648b5 +86d002a4 +fc5e989c +712ff32e +0facb2ea +124ee8f3 +47ee0e11 +1c2df582 +be8d43d8 +8a7c7f69 +6102ce2c +d21d0b82 +24fbd9e7 +6aa23ef0 +86e082c8 +8510538a +7a1ac642 +78b17569 +8aaf36cd +9042adf0 +6797655d +5fd064c9 +23caa300 +38e62aa3 +c90af692 +71ff9cf8 +77e5b96c +04e822ec +3ce84a7d +7d5cc2a2 +877c5de5 +fa7237cc +138f9d21 +5d579413 +03e819b2 +d4f283bd +a9637a08 +a68ab18c +f769f95c +c1544f0c +57737d26 +311f18a0 +b5170d16 +9f47d894 +2f49b025 +3c13f4a0 +3279611b +2339f197 +d7c5d96b +12d4e9a4 +15d33de6 +6c27a535 +a4ce2a3f +834c6d31 +cfdd3db9 +e2f05ce0 +3433dcd5 +8ed8cc23 +7f6a8fa5 +64f08cc6 +13e48a90 +27924c6e +c7c9b407 +35571de5 +d8a062c4 +78c19ed4 +602f0609 +45bc0805 +a00829e6 +c84c4aec +777607e9 +08fd6ea6 +73aba5e4 +d31e0d71 +91116abe +59b96d68 +b025bfb1 +03ed121b +5694d529 +3a490508 +b08575a7 +2ddaef64 +6719eca5 +fc1f43e7 +db23eb1c +4eff5f13 +def43eb3 +a91b75af +04a4756f +3b0cd992 +c43c3f58 +d9bcfc08 +d064b1aa +f0670357 +7d7023e7 +5bc9845d +c986348f +1fc6a45a +24d28202 +7ece26c3 +8e63e212 +0eabc199 +3547c540 +f921e5fe +61826ff0 +8270b5de +9973f80f +db3c44a5 +c2e4ae15 +c19104a8 +df7c8cef +cc7a24ff +51bb992d +6cbbcc23 +a4610e92 +17723a96 +54bb9bfc +85efdf7f +c8816bd2 +e8060a36 +9b648db5 +11616784 +0abd210a +c338ef12 +adb5d234 +a6e524ab +2176cd69 +fdd35dbf +0fd820a6 +24185db6 +2ab86020 +80dd0a5b +195abe7f +93032663 +5f3ed85b +3b93a75d +4f001fa6 +9809272d +52d71dab +50eec8cd +1c7f8927 +11a8c449 +f64d3d19 +30700dab +b4aa4b3d +33ced911 +c935b06f +9fcea641 +f9a06465 +0d2ff409 +42f54cab +a9e64f38 +ea0f3efc +77c1aeed +3dd87dd4 +64cb0863 +ebc95c58 +d43753e1 +42c1aa63 +a32ba1ec +8200fe31 +0dac3b4c +810e46b6 +42caded1 +b2671abd +1da4142d +b7047847 +a612b8b4 +55f266e8 +58bc84e7 +414c6af0 +65e4fe4f +51714c65 +f91dfab6 +06421b62 +60132ddf +d04d1ab5 +86d572b3 +bf7e4243 +ec20c783 +c00553f0 +46dc009d +058ed731 +349c5cb3 +77152453 +cb1956a3 +71961874 +cdc744c1 +c1a1e60b +dbcaded1 +05e40c8f +b9809574 +c5aa6f0c +311b370d +61089298 +c36f2d3c +b1966909 +0adbea63 +f5416171 +cf600c0d +51751315 +c4773b81 +fe158ee6 +28f9781d +7476f449 +3b9b1ea1 +ed6846b0 +75cf7ffd +ed284d23 +39bf9f5b +ba383c06 +b8bac2eb +49d68486 +1ab47dae +d7fc74d8 +9f6a34e7 +b1c17344 +895ec2a9 +0e74a422 +bcc9f601 +2d16df54 +fbd8ae1d +2ba3ed14 +02ad7ae7 +938732a0 +3b76b414 +40392c4c +99d96479 +7d493915 +5310c9ce +fccdc224 +491eeeef +4c0bb69a +89e1abe5 +14e36524 +2e5068eb +6888462e +816e7c4f +71236095 +d255f8ed +a2de1476 +2f44e540 +69c04c92 +8903c4b2 +3d90e67b +8060e460 +dd2b7392 +c27f155b +196d3b7e +bfcff13d +85df71bb +f5422ec9 +cf5f6c51 +55449beb +8177a934 +478fade0 +3aa1a67f +5fdad95a +1e6c340b +91002aff +cdebf969 +87f23977 +9bdb2a8d +cd499895 +9c48b948 +f2ca47cf +912316ae +1219b447 +87aaf011 +2841fe84 +875d7cb9 +93cca2a3 +a6dec5b6 +00dc9eff +53d3a2ce +8274ec13 +c7c83a0a +d8dae084 +322cbe58 +d1e5f5bc +e47d5fd6 +4361c4a9 +2ab494e0 +8e1ae331 +5f51d065 +65d78c0a +26c64313 +57f5fbc7 +9c9c0cd4 +2cd125c5 +b6594d59 +a869683e +aa636b9b +22594278 +a8b79368 +192c2d47 +98b5582b +df5cbf86 +275ffb27 +bae5dbd6 +0cfc1e76 +69dba424 +d5c1ba16 +ea2a173d +fffa8e76 +7833e4df +9bd47970 +115a51cb +778164cb +25b8934b +ba003504 +93fd67b7 +91183804 +c26ea7d4 +01774abe +d775bd12 +98f9ccac +621c7d33 +13843d40 +d3d314f7 +75594775 +5fccd633 +c025847e +ddf88ddd +8b6cc5d8 +bb105ac0 +de8f997d +7d045fa6 +f3fccfbe +e8200f0f +f8d04f33 +a9a5cd4f +39dfbbfe +4e7af834 +0f79cd7e +90ea1eda +69a16fdc +cffab2b5 +04176629 +96861b56 +a39e1586 +d5eed791 +50884cba +8d0e6adb +3c437d2a +56a92c60 +45e9d861 +11c29831 +5d379412 +718dad9f +f07d0cfd +2546059d +1d15466a +be62abfc +45514bad +b8adc4e2 +6eefd8e9 +d3b2f8c3 +6300d686 +f2e315d1 +849a1ff5 +270f2890 +87700c4f +1d5d3a57 +c0db400f +ec01bf7b +d67dab89 +955db1a4 +1bced191 +b39f5eb3 +770ab1e0 +b1262c8d +1790e73e +1b0ebd59 +bad122a7 +bc84f389 +7c5de8f0 +07752963 +505dde7b +054f795c +56760dad +caf035f0 +96911ece +3f2113d2 +d6081aa8 +bdcdb638 +22a3ad95 +4fd13aa7 +3ec889ce +4b66b782 +cd9ee518 +5103b5f2 +164d3259 +b3606536 +9a241526 +ec26ad35 +da9fe092 +ff7dd6cd +8e08ab72 +f3ea27fd +9fddce14 +e0671437 +a9f179db +3c99d8c8 +6aba8db0 +f37f3967 +c250242d +f496700c +ee42dad0 +9df43148 +4a9edd30 +531b4491 +4abca469 +32d7ba4f +058079ff +404b6540 +ab7f43ef +72b8d755 +6fb72cba +831f44d7 +032e8f3b +67d450ba +02fa3dea +ae34bc12 +8d4e6d8c +a4e8e846 +3dddc622 +8b3aeb32 +31129d1d +2d3a050a +966cf5e5 +6242c732 +72b8d7dc +2232b44f +79ec5c37 +6f451ccf +c004c6bb +85f5af35 +9a556cfc +fdd86175 +8bdda8d3 +c9bb7db4 +462a6b96 +9b10b2d8 +974bb6b3 +b1794f41 +1b462c8c +58a43195 +54f6aff5 +bcdecf97 +6b5cead0 +81c5905f +248f6630 +3738ef73 +fda9dac7 +7ba39386 +e9510b62 +c0c13be0 +d399af40 +7d50b7bf +18ebc7f5 +1be6c7f1 +323aab6a +38a0a8f1 +6321e1ac +9904c656 +891dabaf +79446d01 +55432fa3 +4ca64076 +eef24cfc +ee99a821 +ba46a667 +0cc1543a +422e7113 +e2c9ffae +b6a3490e +28793267 +6605962d +3b8f3836 +3626d9ba +15f5348d +72966777 +6935065e +0b35b5e2 +d1478842 +aee7bde0 diff --git a/models/rank/dcn/data/sample_data/vocab/C3.txt b/models/rank/dcn/data/sample_data/vocab/C3.txt new file mode 100644 index 0000000000000000000000000000000000000000..a794b343b63ddc4d727a454a1485b5c557fdd679 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C3.txt @@ -0,0 +1,1548 @@ +ddb1783b +ab0c401c +015450da +b9769c83 +2ed12532 +fbead95c +ff030570 +40a52a3b +53f9aa51 +455c46fb +c658dd74 +bc4ec02e +9577a60f +5fbbb62b +5d2a373c +9dabad1e +847d4d09 +1bc3b471 +af709d76 +6ace624e +948a3e21 +fbfa5f46 +2ceb366d +727847c6 +196e2242 +5d3a12c5 +d0c01507 +e42cc8c2 +23aed453 +af5655e7 +b2a093d0 +2efd4490 +f3dd6a1f +d577be04 +f89b52a7 +c0dd0705 +7da86e4b +b9b98a33 +340745ec +ed458a77 +9eeccff1 +41f71350 +2dbfa925 +6e5bddab +f9f78e8c +0662f9b6 +b3eea8ef +bb6adea5 +06ec8bb9 +d507fb3f +a1780056 +993aa5eb +77b35cda +850e7558 +3c548aa7 +2ebfb65b +6de5c512 +74cc1f20 +ae06bf90 +9143c832 +2c2915ad +af169d43 +ee6e4611 +c804b8dd +bce3f26f +4a75b52b +d1825ce2 +a544b0a6 +8512d54d +2279cb88 +0cd3102e +b3770b31 +27c6cfe4 +a47ffdf1 +8dd2cbce +948ee031 +3b318456 +d4f32f4e +fd56a128 +31c3612f +5cbc786d +c5c5f657 +4e1476b1 +e52136bc +cf59444f +50b60277 +9f7c7c99 +0a1435c1 +0c38a323 +233378be +9516176e +9069ec83 +5a45eb29 +7a6d9b45 +0e4f7fa4 +23ee74f4 +97053b66 +80793437 +44b0e0a0 +81d4a8c7 +c711073e +c81ab184 +09dc35ff +9a44114c +c3a3f4e5 +378e8302 +785f1adb +5cca3efc +f9506251 +f9e4de46 +e3a92241 +b542f5d0 +d1e7b5d9 +fecb26a1 +d8d869f2 +814a9e19 +a5079607 +e126dcf4 +90488a91 +d03e7c24 +63f00f19 +2bce25c8 +322488b3 +ababa78b +a4330150 +1ae827c7 +0890aca7 +4824fcf4 +0ed56658 +bfadb215 +b1b6f323 +539fbf75 +597d596e +a98d9b55 +e48e5552 +ea6b1af6 +2b8564f8 +2a4c390e +1b3c04d7 +5bc87b59 +4552917c +9c1c85e7 +3a864d1f +7bf6b80a +95c48c52 +ddda0e18 +7deeba7e +7f15ef1f +b9e3d20b +d3386cca +2c14b932 +46928ef3 +80e96ca4 +580235b1 +d8461118 +ed458acb +063d90a8 +6eb4e2b4 +ec13b576 +2c77bee7 +834c6d29 +c92acf96 +e9015daf +722f4985 +6f2bf6d4 +6035209d +795c3cc3 +de211a17 +7153a1f2 +2632cc5e +fc1cad4b +7e3ce46e +cb2e352d +13f4e374 +146971d6 +c0ac520f +eef2d500 +125bfa8f +1967dbac +704fe5b6 +1c239854 +31692ff1 +3c5f3c81 +a5781643 +82593e7a +9972167d +119bd655 +6d4629e0 +091f2f36 +1858be83 +f1c030c9 +4f9666c3 +c510e130 +77f6ea44 +02bd7bb3 +4c56abb0 +faf21a45 +e78bdebd +c48cd8f8 +378112d3 +5d1ca1e5 +e74ea3bf +2787247d +9b792af9 +ef4b47aa +40cb550b +ea492f68 +edd5d2f5 +961d73a9 +6dace5b6 +2c727545 +e4bd2d4e +1bc9054e +4197e80a +8f9e5a86 +9270e53b +2401bdc8 +0e38eff1 +225cd5cb +7b36f13b +aec46440 +c798ded6 +8b1bfdec +b34e125c +24c93e37 +75746b02 +6ca29110 +341ad6e1 +79ec5d3c +6f6cdf1c +1a3f9411 +6b8d3b5f +16b30097 +92c2a738 +adb580cc +29bfb2cc +7542ab52 +d20fdd45 +cdf6abb1 +aa6d27e5 +551dce64 +b7506183 +173284a4 +74e1a23a +08de7b18 +d91a58ba +b0874fd0 +502f417b +05e27d26 +b642d4d1 +1fc15dd2 +ab654591 +8dcd646f +e980a986 +b7810abb +3c402e7d +f82fff8c +7ae80d0f +d33de7e6 +df58a0e3 +ed0efebd +efcccd46 +6c865690 +1f06b85d +4385e7c4 +a5cea538 +d88496ea +840eeb3a +a56bed9e +7623ee18 +d384736c +9c64e4bb +dca5d15a +397bf656 +ad82a6f4 +68f5ccf5 +68b7d1bf +1e88f1ba +af21d90e +c4f1b7d8 +03380d83 +b9d09879 +010a5a81 +2958f27a +0a83c6af +c4b406e2 +a3c9e878 +1c8bc12d +d36105b0 +b6025941 +d1063f65 +050447a9 +8ae24953 +f544f869 +1704d8fe +bab1512d +ee9dd06a +2b280564 +250f83a6 +962bdb57 +0021f343 +4470baf4 +293cd84e +d6be853a +8d9e5174 +d20dc4ff +79b8616c +6c04f392 +f84d40ab +762fc25b +b915db9f +01bd58aa +66b3c112 +c1102de8 +97469fb8 +b12880f3 +889981ce +63f98b5e +f652979e +109ddc69 +dbd1e7b4 +bd4d1b8d +b393df87 +daf652b9 +42db3232 +df00c4f0 +cf6e068e +72e5eac0 +ae9684f6 +fb5c5031 +39800186 +ffe810c0 +29a24574 +e28faa26 +946aa7e7 +51f449fc +bd45f0c1 +3f2cf26e +04cc3bef +1e08dae2 +0035792d +b7a01d06 +82e8e720 +6d8e7880 +48cbfcc7 +e38f9fdf +82059855 +5eccd0df +f27a97c9 +a01554cf +7ccc8a31 +e9c3a8e9 +5c05f1ab +bdec0e5d +d9429dcc +7d0bcac6 +519ea5b3 +c47701be +1e358e52 +0fc95866 +28677526 +9011c162 +4a48fe14 +d743235c +d5e9e7d7 +53dd5463 +46818393 +c6ae415c +5a1201eb +60c37737 +93915f07 +505d7888 +5c7adc62 +69638440 +a5576c90 +5e975d57 +0a1e0060 +b009d929 +af709891 +1a9dbb50 +12da0bba +223b0e16 +59ee5d15 +b2e50211 +93655629 +e7f030ce +4387a5b3 +dde182a0 +9b9cd1bb +46cbfec9 +1c81733f +615cb3c8 +a65db9fb +48a29f29 +6406abee +be3b82f7 +7fee21cb +7555338e +9b47d5e7 +93656bc0 +517bfe1c +f48a1b1e +55f6b073 +2296d72b +059b987c +2ee4d4e6 +837d918a +c8437bbc +cef97273 +9c5f3db4 +75e2b65b +78a62ae6 +dffca8ba +332bfa7b +67212b6a +f9aed79a +87c73e27 +20009f96 +c041ee3f +c8d6ca0f +60dc6bde +382be412 +a816b43a +58d4eb03 +2f60f9b9 +b0830d8d +cbc2a46f +15b27e1d +dbab5bee +f33f3202 +af2e6b8f +e9ba3c02 +26dd9517 +0b064033 +724423ff +5fdb3c8e +6e82e332 +d3d01a24 +d594ce19 +a84c8242 +69866e1c +e6319005 +4d564a1c +2ca73647 +258e7f83 +d135e418 +a7ded28e +cd2e49f6 +469781c4 +0739a78d +489ec9a9 +ce2fc08d +9a46383d +d032c263 +7509c305 +f7e2684b +aad619fc +8205c476 +d43f535f +996a90ad +4ec501f8 +45f68c2a +5a5cd8d6 +79f19a9c +9db30a48 +b1ecc6c4 +253ec1f1 +ff92fbfe +96cb9be2 +873cec9e +ab223c32 +17b70ad0 +5aa043f5 +843d5113 +2c43536d +d822fd07 +e56d2e98 +8679dd44 +90097620 +40e7e38c +89ed150d +0b0f3952 +a472032d +f74669f4 +1967b0f8 +7802d793 +b015b8c5 +92ee4c97 +8160d721 +8b9d6c77 +9a5df585 +6e981d07 +3a192a8d +8b5dc0cc +83d8004d +bc236a94 +80796f11 +e426872e +35e8c904 +274507c6 +feeaa45b +dcb20533 +d407d36d +d2c61e57 +4b3e29f1 +a070f5e9 +75df6d36 +10a2b97d +0961ef7f +71a318e5 +1c3d2e8c +561f09ea +5da92388 +c470c841 +03942b3f +66b90a69 +164421ea +4b1bf593 +d35af343 +406c45fb +3970719c +e7290a18 +6c2a81ab +915bbd8f +6cea144c +58128c6d +ce013d83 +a0410512 +47d34037 +3e4271a4 +50d9a8f4 +4bab508d +f00a9cf4 +5f169e93 +db080e48 +0d7d1680 +f794f100 +d5e7f4bb +fd53d470 +a52e6cfa +8e8980b5 +03f5e595 +34aec1f7 +3c368043 +4e1c9eda +2810497b +1bb8c9c7 +9c0ff811 +6bc1a9df +353686f2 +c5aee658 +f4caa708 +c02372d0 +d73903c4 +04db0280 +ba2dadc3 +f772a31a +3e50a6a4 +53a79aac +15d7420a +462a1c4a +5432921d +6e4b89cc +333440d5 +10650d38 +58a6a982 +58ca7e87 +13cd0697 +232809ed +bd840d0f +1100da42 +38508800 +771a1642 +d7717a47 +bc33ba2c +cf54e294 +a285b185 +2ed6ee9b +e915f032 +2025a6db +8e862e24 +96eb1060 +9827765c +02b32b98 +adb5c476 +ca6213c9 +d57d404f +51546964 +65e71023 +b063fe4e +dad8b3db +4a73e400 +c5d94b65 +83eaa0e0 +905a7b53 +de788080 +4c855e25 +2c9830bd +8af97d79 +272d244a +2603521e +859e1d36 +72791039 +b3ee24fe +abc41c67 +0d71b822 +6d0ceb43 +d03de95e +1ef76781 +48783b80 +7b31f518 +1a31a0e8 +b7e9dd4b +30da786a +cecb37cf +341322e5 +ce9f4996 +fb47f7d0 +b1d13717 +3fb8a9a7 +e37e0228 +dd17c91c +1646cf1d +f4725fdf +6a061171 +98af366b +052a2083 +1e0d238e +3b3bf2a2 +8dbba1ce +892fc718 +005f6097 +33c0cc8d +0878b655 +68d09113 +3c43a549 +12807cb3 +34e8cf3d +0b323616 +153d848d +c97befcf +13b6fed0 +7e17f920 +e05b1305 +b98694b1 +ecbb5a5c +a1197891 +6419de89 +52ffbd0c +ae843bfd +5ca889bb +ca9fc7b4 +ee98eed4 +071e949e +d6f8e965 +65ee8faa +74f7472e +19dc63af +9a26b596 +a578e02e +6b8d0fd6 +10fe679e +2c1222d0 +cebe3da8 +cd82408a +e54b8399 +c32bb6da +0c489a16 +34aa8ece +f1d57af7 +50ef37c2 +84381448 +010e36f1 +8fe8dfe4 +4a3f7953 +dfd82d9b +7d73dd56 +d83f5a10 +a7078efc +484189a1 +f483d069 +435c3859 +d125aecd +c23b2b9e +68eda0d0 +d1b59691 +0e57238b +7c8c0c03 +645d9349 +4098d6ac +003f419b +478fe7f6 +2fa542f3 +2b032f79 +2cbec47f +12d978b8 +11e9ef25 +2a329a21 +bd24ac03 +e00f49da +05e89637 +ff2375f9 +e2ae765d +edc59ebe +6ee9fd65 +78b2fb6f +44e04519 +5cf913a1 +0e3e14a7 +9c28ed49 +16c47b7d +f5a5e9d4 +25d46809 +89ae5da6 +829a8bcb +1a02db2d +b917b34f +49bd9fb7 +a336644e +53fc0f21 +cd856971 +7c1aa849 +9bd70a98 +ee96fc95 +df65428e +637f263a +21fc6ea0 +0611a1af +f4e8f032 +e22844b2 +3273f1ee +645f6a5a +c906fb15 +8ac69fb0 +184635e7 +f95bfbb3 +b66067d8 +c740bca1 +614f2543 +3e25fde3 +04f0a0fb +8ff58dd3 +7de0495b +796aae85 +93aa4d81 +c634c9aa +9d7dd0ad +ce31dbea +92d78a73 +2784d8df +c57b763c +fcd210eb +c7cac1c4 +02391f51 +2f41ea3c +999a54eb +81789123 +f7b63909 +c9ceed41 +fb95c669 +1fd38a03 +ad4b77ff +24f88ea0 +acd63214 +92eb3174 +149eea9f +33405363 +db002ea8 +933d61bf +ca5bc989 +d27bb610 +50bb5f20 +086446f0 +5a50b771 +268a0825 +8d8386d4 +ebe4edfa +91788211 +7f0790b8 +7e45a604 +49b1e15c +fd2eb00d +a763a2ac +2c4ab411 +e0759955 +cedcacac +4266970d +edc14e06 +4bccfea1 +3db0424c +3b823e59 +c80c0855 +d4636800 +bbee4bea +0fffb4b1 +14b7568f +2260448d +b954d064 +6e452d04 +94708009 +96f32d88 +6b744014 +43701d0f +fa7b4b22 +77bb016d +8af3494c +c257d9f4 +f10f60c4 +f7564807 +22a198d9 +bba9a339 +b6d802d2 +d9b5f132 +23ef2401 +62c5c26e +23005a99 +a8d6c8b0 +847d5737 +cebee428 +d7e4eede +554bd1ff +2f5180fc +244c0ec2 +0d1c21d3 +bc7f5764 +bd19fe92 +f89db90f +8c7412f7 +48c323a8 +8b3d7db2 +45d3b3c8 +9df940f1 +5faf0585 +d14555f7 +ccec842f +622d2ce8 +efded18f +24d63acf +64094ddd +910ade79 +115fb26b +5336cae5 +77b96efa +c024e760 +a377b99e +2041209a +6199c6fa +76ed1dd5 +b844b308 +bb86f1da +c2b008c5 +3ea86ae4 +5b478069 +59c2633b +79359a6c +9486af17 +3d8e2b79 +d8a48efa +59ed2f60 +fc248c55 +356f7e0c +eacb18f6 +95c6b43e +a0569682 +f148b03b +7eb22712 +f7ae16fe +fdd14ae2 +e6cf47df +9f39ec1f +8248eb23 +88caff19 +cba72ec7 +5c4ee42c +9201d724 +fa33d039 +424c24ac +55a2a6b1 +a23dcba0 +73e60e15 +184dfa53 +87777475 +64d413a1 +5bb8027a +d65a2dd6 +d22cca26 +c0788a71 +70168f62 +9263753e +3cab1e66 +72ae71bd +85481426 +6455af46 +45a3782e +502bedec +2b2f6a90 +39c6a6b5 +e945cc9a +c46e7a6f +332f8364 +16da655e +58357e2f +dc7cd51f +83e01bf1 +aec3baa9 +04e51b4a +c56b0117 +fd22e418 +d80ff8ff +1f6c471f +ad81dbe0 +d627c43e +80b25c0d +21d601df +a9d15bf1 +145f2f75 +9c348e36 +e2772539 +26dd42ac +34e62402 +01a0648b +8962afa9 +dcab504e +381d8ea3 +0f09a700 +04885e0b +dfa7ce18 +90825897 +8018e37d +2d9eb888 +f8b1330d +74e971ba +be7504db +d12c9593 +506b8f15 +c4cdaf5a +47f0b0d2 +e489c1e0 +8755b699 +34c3a840 +930c5680 +26c306dd +5dc0c13c +534511c4 +5c7d8ff6 +e55f823c +288455b0 +66767e4b +eece23d4 +4724f2c8 +b7942dde +df1c11ee +29bad92f +8994dca3 +27d31a3b +88af0782 +7ae8338d +260d6a74 +98bb788f +2289f682 +737c1470 +ea4345d8 +67802c30 +6d1bcf74 +ed23b64d +b30d5393 +365d1d63 +f2336534 +0ac5c1a6 +4fd25998 +e95d4630 +8f113de9 +615e3e4e +71269a66 +bdecd9fd +6f6caad7 +a89fefff +c0dcd56e +548bf07a +cca28e3d +fd09bb1b +6ef2aa66 +dc0d65af +99b1c7f1 +236df6e5 +11a7ae61 +d7bd8733 +9d0a64b3 +47d2b0a5 +3b7a0f0e +02cf9876 +f7b9956b +2730ec9c +95d14a00 +6abc79b0 +efbb5fb4 +02342845 +a2edc244 +25c5f247 +de29631e +81f1f12a +f1397040 +fe3a8624 +237370b5 +cbda6ee3 +b0922cc7 +e38b5735 +e97e9e53 +70654e99 +c8454cab +021f3c35 +2b9362b9 +53e06f71 +2eb5869b +012e0126 +79bc99b4 +d37f98ac +39a7290a +396df967 +4d0c7db6 +ec8fe644 +75cdab88 +52a05003 +1757640a +96759526 +e6d0b609 +c81d20a1 +303c197b +a366c0ca +db47ece6 +d0871e18 +159e905e +f254048d +c1a6669f +69085bd0 +2fbf2e7a +b2896a41 +8b9ad909 +213fa071 +2e6ca0f0 +4b078021 +ee6c8c23 +11ec74e4 +d94d0a1b +1fd630bb +4079e3e2 +6a50850c +1417521f +70e66e63 +292ab5d7 +322bc855 +39ecd705 +ae45b212 +698ea994 +c3ae85bb +be01b114 +a06031ef +a72e728a +1af0afd8 +98a1498a +890610b3 +7e5fff77 +3a3780fe +6f84a9c9 +90ba4a32 +77f2f2e5 +99c31d4a +8cce4736 +71ae8ace +5d4f34a3 +dbf8d845 +4cd4cd15 +468b8835 +a828bf0c +9970467e +443666b1 +90123821 +bcdcf8fa +c15b73ac +ffb0bd11 +e36f6eeb +b323581a +49dc1a80 +33430e23 +b3c5ca87 +8be6e8e0 +c99ca9d6 +46bf55fe +bd8dcf8f +a5881fe9 +75173be3 +28a8906c +7eef46ee +eabcac60 +056ac35c +e211eb6b +66e344ba +0a4787b1 +9b953c56 +692f4de5 +1e1f4c64 +40933f2f +3f7d0844 +ab5e44b3 +8fa47210 +f336432c +90ad2a9e +2c8c83b4 +45ffb426 +050aec9a +a3829614 +0b2171e0 +aa653ce3 +c530a5ab +2403714c +bafad80a +5e469e4a +0d00ad2e +8a679709 +cd690793 +8e5fc57c +71f3d24b +74972720 +a07196a2 +99a1431e +9db1c427 +09c825b5 +95a04d25 +1aff2d87 +f90e3411 +83471565 +6e3d442c +36e97f3a +3cc84046 +c2b2b3f5 +ba1947d0 +eb29354e +7befd969 +8c49f7b9 +aed5a45d +30576b40 +8da968cd +af74f993 +35823fda +59de90c8 +9ca0b7fb +0de7e3d7 +ba4559ea +11f8270b +476ce478 +474ee3e3 +9bce50ef +2a7fa4bc +d2fc8695 +b2705826 +450383ed +74964023 +f586f263 +bdb4178e +572bef58 +8446bff8 +157695d9 +17369e26 +1c79c988 +02ec2911 +578a14a1 +2bf592d7 +e8fa131d +dcddb172 +6ef2fe94 +b00d1501 +5a5ff593 +e28682c3 +c40d0733 +6b5531ad +515eef18 +32138dac +5d076085 +30356fb1 +91dfee2e +43bd7284 +6c890a10 +5dc4cc4d +6f67f7e5 +5426b176 +73cef274 +e5b25273 +7ed93a63 +8e433f86 +90308960 +58c8748e +4d3cbd76 +7ff4b9af +a4b38ecc +97a96e5a +71947b86 +8edd83fd +b602eddb +6eacece1 +a7b0be35 +dd72e8c6 +75eb0ab9 +b5b41c62 +1aa7234a +f6316f35 +210c632d +c449cf49 +1701e1d8 +8ee58029 +01bdc7f0 +88a32828 +ad876a43 +f94ad0d8 +b605e025 +83a8fa4e +0bab1155 +ad30ed0b +4b0ad917 +398e1819 +30a8067b +34eb0f96 +fdb50970 +2c993e23 +496224ea +85f5bf39 +a55127b0 +48a5334b +98427538 +61059204 +51a1ba8e +aa92a9ec +29042d0c +af1e24ee +fbf74047 +5e25fa67 +540fe858 +e123608d +88290645 +e7637bdc +7f27a8d3 +9d427ddf +7fb9f9c5 +790f7e66 +d91d4f43 +523078c5 +097916d2 +342bec23 +1f047e79 +e2c7d8fb +b64ac9a3 +f463435f +5e53347d +695a85e0 +60018c36 +cdccaa4a +9ede0a40 +cbea9d17 +950a41a7 +fa1513f3 +ce44ec37 +c4a9c2c1 +d459136b +f0e6d718 +c57275f1 +cf1e87d9 +74fa4c24 +928fec4e +55870860 +3cc14b5b +0f8b497f +328c0325 +5e265c7d +a17519ab +f388c511 +da89f77a +0496d5c7 +42a04a35 +ca11895c +5846bc71 +13f58cbf +a6cc32c5 +c9587ee7 +545c5287 +b1ba39d7 +15795d8e +1c746f18 +069d54e6 +ab9b70d4 +d4f062b9 +9804030f +866e2110 +37102ed8 +e039dc50 +8b57b943 +7017aaba +47c40151 +6a25e5bb +a027dac1 +41d6f01f +14728af4 +239b957d +8f363e8c +1adc7742 +b35f900b +67eaaabf +a80263d5 +a293bc0f +42e213cf +2f8cdec2 +4eb6fa53 +15e1524a +d60096f4 +9d372a2e +bcafa3fb +d0ecd5e2 +2d8004c4 +c2594e29 +10934eea +0dd08f6f +bb87fbf5 +a3188fdd +d406ed6f +9097a699 +e346a5fd +48bc3864 +ab32166e +a1f7e30b +e5b0dedc +4cbb2c0e +19b57a8c +066663fa +00148a74 +4c020e70 +6dd570f4 +1b636f9b +6470acd8 +43ad6a52 +c6b00883 +eded476a +c77c40e3 +af48fb08 +e673c4fb +5a70ec82 +f05c7f76 +9418ec47 +f9239e58 +eb89ae82 +61610e17 +3dd0c426 +2b036e4c +63f8d4e4 +5d977fa7 +38522d18 +b72e2ed1 +4bbacdd4 +432ff8c1 +1a821b32 +d0484442 +5ed3ec1c +15c00914 +99bce3c4 +0cfae832 +fff95cb4 +80306e2a +1efd7f38 +79c84135 +21d13ddc +21bc63e0 +55b0912e +ddf8ef77 +df88f877 +88f7097f +9dd3c4fc +18b27f91 +c86b2d8d +bc9e2c3f +b2de8002 +0c59920e +0f3c25dd +792674a8 +9f63d649 +666432c5 +7ebe08b3 +dc1726bb +111fd16e +4aef7162 +5d18b92c +5a4e7529 +862a1294 +bb6aa417 +62780ccd +398802bf +a5873bcb +bd16453c +1c637694 +ddf34c45 +4bd49689 +82c33bb4 +03c15597 +fe69ee4a +d69361cf +68040b80 +8302b068 +b7508dce +bc2aea05 +8a48553d +892ca2f7 +4385bbd8 +e058fc3c +993bbe39 +cf7e6997 +5e64bdd3 +b6956a1b +fef6fc8c +ee9e2d79 +41831fec +7b7af951 +03689820 +942817f5 +ac6fa568 +3f598f1f +fb9ab580 +3b34d563 +be3b6a18 +2494313b +6147a35d +2acc1a0e +3f0ffc77 +4bea9b89 +bccf5891 +cd9dbee4 +59c2f2a1 +6773f5b1 +b7ebbc9e +c9205aff +713c0f91 +fc83d197 +e1266b28 +eee1546d +6a8a1217 +aa8c1539 +f5359d0c +3470b40d +79302b52 +41de735a +c870a67f +6783e03c +ba64df94 +29ffa33c +d3658d99 +a889401d +1e41aecd +9ef94bf8 +fc39fe56 +5f0a3857 +12c46593 +5037b88e +99ab3e96 +403e8b23 +1eee82a0 +4530b12c +67363f44 +84b83c16 +838c936d +33f1d084 +f7df66e3 +b9f2c3d4 +ca008db9 +a684a111 +e3818eb2 +c725873a +2273663d +dd1e882e +6b80d7c0 +5134adab +477de29b +53adb653 +5bb03b00 +3f4419b9 +2b8f3e48 +2f6383d6 +fe109641 +f55a4e08 +bae8ddd2 +46a2cf53 +bb40d3b4 +2c802917 +fe431481 +bc2e311b +6770694a +e159e1de +984b1bd2 +2ac5d4c1 +95e13fd4 +d52980aa +e78177cf +7ca9a99d +60a2cdee +09adf3e4 +db44bc96 +b97d785f +01638aca +093ca40b +69b028e3 +12970416 +bde9e399 +d44e8253 +10f163e6 +9187a4f9 +85954fc4 +eec92c7a +50c09a82 +d2c64403 +0e08eb0e +c01cf7e0 +8d7b3c67 +e773e626 +e6eab848 +67799c69 +404fa9e4 +c978d3e9 +179121ae +2e4b14c7 +d0699d8c +10c6bc1e +883c3589 +15295acc +861daaf7 +308b652a +b4e79720 +07950225 +f715d8cc +ed790185 +80702622 +67af58c5 +2b85cc69 +e200a84e +b33f4466 +0e960dcf +76dfd93b +3b3ce734 +1bb7dd38 +43a795a8 +21a3ef2b +9c1b40b2 +c56a75c1 +b3d4c34f +a78bd8da diff --git a/models/rank/dcn/data/sample_data/vocab/C4.txt b/models/rank/dcn/data/sample_data/vocab/C4.txt new file mode 100644 index 0000000000000000000000000000000000000000..ed778fd9ca3eb6c3c22410e0ef9594bf26359303 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C4.txt @@ -0,0 +1,1965 @@ +2e31cf94 +26aac878 +a4b13072 +07abc9f3 +da3462da +0aa96788 +bbf460ff +bf9e41b6 +800845b3 +1e0ec6a2 +c64ef081 +200b020d +97ce69e9 +46ec0a38 +ece2faed +ab75352d +b30488a9 +a9d25980 +bb714275 +d2f72457 +6d8e8c37 +79aaad8a +a7894c94 +728d8e1d +bf26826f +fab4c8e6 +0d0ae4e6 +a8ec061f +68637816 +a9b5f0f3 +6a14f9b9 +f623717e +2e3970d3 +45e7b9c6 +65d481a6 +6bb5a9c4 +5c5e2f2f +17f1ba18 +1bf52f2f +8b3b6b2e +e4005c97 +800261f1 +c2d5cdf1 +35ef0160 +5d077156 +de785a3d +75cf45d4 +5fd7e960 +0a4711b4 +562bbed5 +fcdc5174 +95f28cf4 +81e71114 +7ea693a9 +a7f56562 +765c507f +3dc1afeb +43bcdfb8 +9bbf6db9 +d7660276 +bf1c5fc8 +bde8476c +d4e22528 +419729f4 +6c74d7a4 +41c583c9 +c2d204f0 +37718639 +57cd1f7b +2ce13ec9 +f00be896 +2e4c7112 +beeacfa1 +ebc3fea2 +0c2cae44 +cc5a9904 +da88deee +abe0875c +ecbdadad +0580defb +2c3cb82a +8c66cb26 +6d56089b +f752dab0 +33a72095 +1a55b47b +2f2d24fe +7a26412a +9a0487cc +4ab0c6e1 +748540db +397ce063 +cb705317 +dab52c65 +37d833ce +db01fc03 +69bb6a95 +d2941349 +d74ca86d +fadd820a +62a6a4d6 +3ca2c63f +6b9bd703 +a9be8183 +d1038a37 +d8660950 +54cbeeca +a4c00986 +496a28d9 +fd143ae6 +5f7bee64 +2d3b257b +8cc7b33b +d88e08aa +868a33b2 +a54c061b +3fb81b62 +6bd9c814 +d16679b9 +83c88500 +8d8188a0 +9ddc492e +4ca5b93b +397511a3 +8eb9aec7 +428cff52 +b034af31 +d13a0547 +ef6ae422 +07f72e07 +ed346961 +9a6888fb +1584a843 +06b65969 +62e53fd1 +a9cb248d +cbd09844 +88d7a4fa +a1644c3d +8368ab98 +fb3a6ea6 +6fbea887 +8a68706a +f92cb03a +7eac96d7 +ac18055c +f7263320 +e5e453f3 +aa5c12ed +7b8d93e0 +5a115a36 +726af275 +66e2fea5 +00cf6715 +02bea2eb +34dbb2cd +dde6f934 +aaa00ab7 +9cde7791 +3fee2b13 +fc932c4b +b696e406 +b4495b71 +780558c9 +8438921f +b125f81c +a6436ded +8e9c10ae +b14544e3 +907e4345 +caee1d0c +7c7935a7 +1ac60e6a +70fbc093 +0b77ee62 +175a314e +fdeabd46 +2ad596ff +a91445c2 +08c4403f +71f59793 +9e05157c +23fb4c3f +d63f2e09 +940c70a2 +7017661b +410e2607 +65866ff6 +dc8a4678 +a5cb361a +5b017cc6 +ee1bb254 +f8c98289 +54b2d6b3 +fc5aec6c +bdc79ef0 +c18be181 +39547932 +a44d75e2 +43dd5c5a +a52b75e1 +7d0ca3f1 +f11f709b +fb3c4833 +859489e4 +8617eea2 +84019174 +8467828d +32f39e3d +afe92929 +20716e3a +7e42e0aa +5d5ca56d +a2c2c98b +971b9e1f +0a5a0e77 +6c5d0648 +27d8fdb5 +2e17d6f6 +211597c6 +0a5de462 +d691bb7d +c57d3796 +7d953bb9 +32e70271 +e53b75cf +6f0ed6cb +e9370452 +53aa3ec9 +96cc0f03 +10a8cee8 +c9fa2fbd +93ee47dd +64f93c71 +68ed35d1 +1d9255ba +8a48d514 +a3b26a06 +7cb07a1c +90a05518 +f3608b1e +8c806a40 +d04115f6 +3e2bfbda +2a35d8c7 +ad5ffc6b +4559bc04 +b10dae38 +5349d668 +b733e495 +1cf477ac +4654fcab +90b089a9 +c37e7225 +df51e19a +86205315 +6c16053c +ae18383d +fd4c1a23 +22504558 +452d0b5c +5024ec42 +f55645df +b742bcc4 +98b100e5 +934c781b +c1800226 +30e21ad2 +6c48d226 +491a7c8a +0f7d010f +f6164b8d +0d0471a8 +6a79eb33 +a094fdfb +fe72cef1 +8a8d0597 +befb3a98 +18931141 +79b6bcfc +04e2444d +6267c936 +ec142e08 +ada604fa +0d02fead +ded6a29a +746afb58 +62eb4eb9 +0ad2ad70 +82b259b6 +e96617b3 +811c603b +8a3c46b4 +b7ab56a2 +a21a58c6 +5d0afaff +4e68109b +72ca9f69 +c874c3e3 +85f5cdf6 +4d3fb9a7 +a8c1440e +f4eea829 +ecb0d7f8 +8ae4eb4c +1f320590 +ff441594 +f16599ee +8f667b75 +bd179186 +dd248fab +7ec57f46 +dae73f1c +b457564b +7ccee479 +cc936fd0 +327400cc +f013f935 +d27e1744 +fdaff3de +36f384e5 +d152dd75 +05cb1209 +ef4fd7f1 +1233b8ac +e713408b +745c2d1e +47db54eb +fa63e799 +9fe64608 +8b75ff29 +f921f21a +a0b6c65f +6a11ea31 +6f52a2db +d87eb438 +10d51044 +6321bf30 +4f447b84 +84ce1573 +137b22f3 +f56b7dd5 +cfc23926 +e71d441e +a19a89a7 +6ccb34a9 +8e745cb4 +7e911e7f +5739bc45 +5a66b2e0 +9c083410 +41505292 +27dea862 +079955f5 +ebcce931 +d3e92866 +aa0b8fd6 +a59b22bc +7ab86f88 +705aac57 +d5ed7272 +b3615b6f +61c3fcec +3e9ad633 +140dc137 +acc1e89e +01df5b81 +9c92db7d +849a9637 +27d7b676 +a349b61f +8fd92cf7 +85bbe3d4 +a7ac9d32 +64337d7e +d0c7032a +36a05f39 +71d76203 +cf9d2c81 +96ba22aa +99f80b6a +a145d0d7 +e517f033 +9ce24ab2 +745c6c18 +bdbb8503 +36fe83c1 +84a30d9c +da13cca9 +26ac5cc6 +86fe73ef +718f932c +25af3149 +1d134ad6 +e5b87686 +e900583c +c771bf5c +30d9fc77 +beeea64d +e2159af3 +acd57dc9 +f158407d +37dff460 +25865f0f +b7aaf07f +03138509 +7f00f8e1 +21289e5c +620fad99 +1fbb595c +dc64cb2c +3a007444 +7c566b4e +cd2ad5f0 +4183399e +07fcd133 +9dde01fd +ec520fcc +bef1728d +a374d428 +2945ec5d +8554d277 +ae78390d +2df0cf77 +9ad1d177 +94ea135f +097de257 +aecea748 +34261634 +b5d0a0c3 +0c31dcbd +5db066fb +d0435d12 +5a6bc533 +01e2d043 +1b6b396f +f705a113 +b5862d87 +c9e71a54 +9b096029 +3480babf +d0c86811 +b165bd11 +d45e432f +3beb8147 +59e43b2f +4f0ab304 +d3a36822 +c3582109 +87abc25f +f7469be2 +08a40877 +39452c42 +ddd25918 +4e9262c1 +059679d3 +859c2873 +1d87490d +695e9665 +0e5acd1d +149d562b +26cb8980 +8835bc51 +1b1bbb94 +1bd4a9cc +a089e42f +2181fc9c +fb36ec7d +85dd697c +88d9df28 +3c7f9843 +e03d937c +b7b53a5e +d3f49387 +66d81227 +cbcac95d +2cd2fd5a +2f0d1024 +a3cc9eaa +5400db8b +c694bf03 +c1dcebcb +2c2de8b3 +608fe68f +e257e34b +d3c8a2de +fed4d11a +65f694a1 +5fb2af39 +4c3716da +0271af42 +bf85f943 +95f6a680 +ebc42d91 +338188f0 +e1ad6dd1 +3b49800b +b0dbe2c2 +7b7cd677 +dbff86cf +b5f7c643 +f05677b6 +5928edab +1a5a748e +40ba66d9 +0fe3165a +dd665070 +d420f43b +23c9c12c +21817e80 +4afa7420 +ea25cfe7 +35818b64 +b9c629a9 +e5320740 +7fb641bc +64cdf833 +9f94f6ac +7973d61f +039346f1 +2a57f2fe +ac975db6 +0a3d1a50 +14936ab6 +5cc8f91d +8817de80 +e8b383b6 +9e9e557e +cb4efbc9 +b503a661 +6a724007 +d98f5768 +01a3b3e6 +adef24d7 +dad66aab +06ce4c4a +151438cd +7f8d6a7f +09f22e1e +899dc6ac +99d22d4b +d4fc654d +807db0cb +499ac831 +6cb7ac02 +81c1155a +1e05994e +b3205f72 +0139f0cc +cc1a0a91 +8e586a8d +7ce39f04 +6ffc8f28 +b1155a69 +b1c1e580 +3298f58b +5a9257d6 +4962b7b8 +2b643690 +19fca40f +50674731 +830ef509 +b6549ba4 +5df43724 +62b4602e +b6e624e7 +b2e9811a +bb192af3 +bbf3c209 +415e1074 +09f7d6db +b531cb1f +c31e0677 +65b2bfc7 +7ada4047 +73ad28a8 +7f358a34 +018d7b56 +112bd4d1 +9bc7c818 +ab90c1da +7b72fe70 +56e59721 +2dd6c68d +09003f7b +bc952269 +379a7ea8 +b0a4d1e3 +4c2a19b4 +f09d399b +8b661ccb +29f9a9e6 +bf59c9a4 +94fb8c54 +d369058a +1a4b1eb1 +f1d3d4bf +b0793367 +b8a1d5a8 +03ce2803 +2f4614b5 +169ffff5 +003ceb8c +0a1e415a +19884508 +bdc301e2 +61187f24 +07c30eed +f6f30123 +36028f8a +ddb90d33 +87aa334e +61b76e4e +7bbfd67a +ec23eec3 +db34ea49 +28625509 +c62785ab +a7ddf150 +90c72fb4 +c2ae9c00 +cc2ba95a +b248863d +7f262f82 +2be241e1 +c3fecae9 +f9aabca3 +be100ff9 +d2fe9681 +10e91261 +c1cc8edf +1a23ad1a +7967fcf5 +46deb7c4 +5761eec8 +7a862506 +d8643573 +3bee9ada +5974d6bc +7031bb66 +5ef5cf67 +1032c319 +1fd32458 +603a65d2 +cbdd012d +db2cc97b +c24f736f +6c02aa53 +6b6247cc +f07af706 +b40012b1 +660082f3 +faab7dcf +d298f071 +0ed59841 +5678eeef +96f776c6 +d631e57b +8f04f14e +fe6e7431 +1296af9d +b0ed6de7 +78916ad5 +e2833138 +93caa69d +c6fdc148 +b6330cc4 +500c52be +b2268c1c +e8063698 +aafa41b8 +b024e21f +948cb95a +a4456f7e +c1130a48 +750448d2 +6850950a +d8e6aa86 +8638e8ae +524639ce +b562027f +917bdb89 +a7ad003e +2192038e +6ad68ce1 +60db469b +bb7d6eea +116167fd +5711a6aa +e0a2ecca +8e302e2c +5cb843c4 +acec7b79 +1d25bf0c +b025b0a6 +da123b4d +84b037c2 +0ea8f0bc +1c499678 +2c508449 +c5455c5f +5ef4890d +5139c88e +de1dc0c1 +82584656 +70853bbd +891853d4 +12100c35 +b931030b +0b2f068a +dc0a11c7 +927b3924 +106df148 +0481f0ba +c1b10ea4 +dea812a4 +61a229f4 +666aef97 +f089159e +98c00efa +81e01c09 +96febccd +69101c95 +e5b2a31b +e4fd0a5b +e15addd5 +470b58e3 +048ae0ae +81b1d519 +8f98628f +824f5618 +5c5707c1 +be5c30df +6d8b3d83 +5c39400d +b4b00886 +8d4208cd +36375a46 +992f92cd +91455f13 +df8fbf53 +1c83391e +902872c9 +4b80d357 +650cc93b +eb1fd928 +bb729a93 +c9145374 +771e2523 +8faf5407 +f0da0308 +38aca36b +89755d05 +be13fbd1 +ae1a39d6 +da11631c +456b4d8c +22684a15 +0e833929 +ca97f951 +bedf102b +d502349a +209d0d06 +c5daf919 +c9d7eaf9 +ffc12480 +b0f95598 +14977b92 +3223d3ec +691b0a82 +39cd8dfe +65481888 +4801a450 +2b30dc64 +06f7386c +1d97d7a2 +43c8dd6c +b12693c7 +f96986ce +8934d14a +81f090b4 +96302ef8 +16fe249c +d285863e +39b2a715 +ce15223f +a19a116e +e3801c1b +c0d96a67 +cd08b588 +e5d4c5ff +b95e4218 +3604fb1e +39b8b662 +52566d96 +985021a4 +a8bbb26b +1e1acac0 +9d6607ae +c60bb04c +8ae8b275 +8d0c7214 +fa033aeb +2e946ee2 +8eb681c0 +5bddd663 +37984208 +8b48e628 +f85c9252 +a0604a2b +96dc7a08 +ecd34703 +14bfebf4 +3801b780 +e96bd736 +07f84acf +60d5f5a7 +cb55c02a +b6951e6b +8c97a28c +06148e59 +ec0cbaec +ebcc64f3 +31248f9f +529d73fd +4b8137fe +20af9140 +d34ebbaa +b247c1ec +b3e2674e +7775ae9a +85e9525f +3db62e06 +b2a9214d +58be6964 +c7533df5 +b6471837 +6a3f2218 +001cfd57 +d8d4c93b +928f610c +bf840629 +54ac6611 +67ca8dc5 +8bff9688 +3db5e097 +425b95ac +e3ed620f +1c88fa00 +d05c497e +91bfe327 +b3dbc908 +aa5b3c1b +eab838bb +aa8227bf +628afd69 +a793f053 +b5784755 +9b17f367 +bd4581c3 +de11c602 +8908db00 +b0c884f0 +8d164e53 +90fc8956 +ff852091 +f75d8f51 +70734f2f +78a5bd6a +1d4137e7 +92c42d51 +221fafeb +dd99ca75 +ed371518 +d445635f +7e5d5281 +a3661869 +826ec973 +e566ddbe +8bcf4b56 +caa98880 +36df1f08 +f34203e3 +67dd8a70 +3fa4cf0e +21a523a8 +8803e357 +8100472a +c15ec51c +cc89d489 +d3a2acfa +90cd598c +119cf591 +0c268e6b +7be07df9 +4f9f86f7 +28964865 +d589819f +66180dd2 +64712dc5 +0dac8445 +13cc7f10 +cf069647 +e5ab1c0f +770e7839 +015d2650 +6fe3d88b +962e2053 +8e6c17b2 +a18759b0 +19a8fcdb +bb0a192f +a3115372 +ceb863d3 +b4d02e53 +a4cf0025 +959a9ad0 +06d22039 +e6f5cc23 +f6f3f70f +515c2bcc +f98d05fa +bf596fe6 +c31ff1cf +3bece18f +43ccd97e +a170deb0 +4e0c8817 +953f038f +fb1d7926 +3670ab58 +819b7ce8 +8049c529 +4564467c +4de28b82 +7a5fc78c +88887d97 +fed15caf +8a2b280f +d51317a5 +39ab344b +7a739d42 +e230cfa2 +15c4817d +46534650 +c686f482 +dec55681 +f9f6536b +61f87be2 +19ae4fbd +38262be5 +3aec9877 +2d618c4e +113b853d +5c4d808b +591ce327 +bb9802c1 +7106a279 +b160944f +0a552b97 +5dbf0cc5 +b180f466 +9ff76ed7 +e494a63d +490b4f17 +2b9be9e0 +5fab3057 +77a160bd +0317a84a +4c942c6d +061a659f +868c2a8b +d87200db +b5e67941 +69a5b7b7 +e161fae2 +eee0e446 +04daee9a +e5aa2f47 +ca55061c +cfbf40a1 +ea483df3 +9581b80f +95e5d0b6 +1502bcf9 +69040d07 +4b09bd8d +3b5eac6d +7db2c9d5 +9e2401c7 +9028f543 +29cd1ae1 +3663749b +37f5949d +f5da12b7 +ae574c8f +560f248f +ecb7ef0c +5ad7dd0e +fa2aceeb +33585d7e +73e48f47 +a1833656 +82a61820 +30b862e7 +bc5f5426 +ebe677ec +5b392af8 +4518a475 +7c47cc94 +828df116 +90044821 +862b5ba0 +c2be1131 +ee36060f +8a5020e9 +f4323577 +f4a59cf4 +c1246581 +66265d86 +41793c01 +ba02f1aa +97faaf60 +3668803d +02e957f5 +19664c72 +8f1819ac +e1b6e14d +56c0bd2f +515db406 +c8cf221f +a42fe8cb +2788fed8 +aa400bde +07fcc899 +29285e46 +dfe0c979 +5fd8c451 +8c131b96 +a9c1f26a +3cdc525d +79dd5901 +944cd645 +9c6d05a0 +73391cc9 +faeb53d1 +a2fc2c1b +55c67188 +59f0bbca +31709caf +03206413 +a3048ee7 +878b088b +ddfd0b31 +d392d940 +9cc94cae +473f609b +80019584 +be54e449 +66ca6f9c +d14e01dc +be42d44a +290e326f +f5a1d625 +285a096b +328f9af8 +031bba14 +173df572 +9437973f +98cbf0d9 +9bebbb37 +35b598a9 +f4f4fb94 +3e84bddd +8149bb03 +75509a22 +ebdba02b +34ba6c91 +5ec469f9 +9e5965b7 +924dcc0b +45c4fdf6 +b368bad6 +bb2756c4 +680a1c2a +7eb9a0ca +9f10f3b2 +a09fab49 +7bfb40c0 +ec4dbfc1 +f1bf4afc +61d17b28 +9b90d9a2 +c91fccd0 +fd9ad406 +55cf9503 +f6dcfdcf +068d1303 +fceee742 +1655a41f +c9fd810e +2a173a8a +99c30e24 +03e9d473 +4b972461 +8aeb71bb +7790bfab +f24d4506 +10ee14f5 +0b02a688 +4eadb673 +69dc1bd6 +8dbf6682 +1b9f91ce +b1231540 +b83e6ee1 +6acfb8f9 +7c4b21bc +a8925441 +aa7c1231 +b39b48aa +612ccfd4 +bdcfffba +d2677fc7 +5fe7b4d5 +641e8692 +4a8085c5 +c2fcecf6 +d96b5614 +398a0889 +1548e7da +67b6a1f2 +8b3e76d0 +3bc43aaf +e7fe9af5 +c2ef9737 +1e5e2162 +38f19f3f +a0bbf881 +d0e94460 +fa30ea43 +3bb2ac36 +037a02c0 +501c4bfd +04f5acf2 +a3bb605a +1aa27b29 +a3f149af +116c7f59 +d2cb670a +60bac0fd +c36d4980 +cbb4c12e +4d85ccf2 +695eb72b +35d9e6fe +c6eaa22d +a6286a8c +65723153 +6917d100 +f4f9caca +07d8cef8 +e6affb81 +dafdc657 +327970ed +b34313f2 +610b81ba +0aafb8b9 +3cf772ba +da47dd29 +1601be24 +3dfa00aa +a9d3b1b0 +9afe3039 +92b79a55 +12146618 +d00d0f35 +0676a23d +faaba315 +dabaa4f7 +2a3fbbb1 +b89fd40f +4733f0c2 +df074db9 +01a6363e +5aa21c10 +5f83dbdb +780d0d73 +cdbf4896 +c0186801 +f2159098 +2276df82 +45b357c1 +7736081b +b373ad8c +878dc046 +a99706ce +9ba30a3c +0fccb71f +5b4584ea +00347586 +10d65c35 +6aa667d1 +11fba85c +94faf4f4 +86ebb3cb +01bf33b8 +19371580 +bac6c60c +ac9bd079 +91e6318a +3ad61695 +54eeda33 +0575de32 +a7970f22 +4e2622db +fbbfef37 +71c6c125 +5e820c2c +96606633 +85a4691c +6600e614 +0b3852c2 +2849adaa +26d1c179 +4144f892 +0bc13f44 +ab1eede1 +afd1732a +999276e2 +8082ebf2 +854ccc79 +170ac369 +b6d4a742 +0267c387 +59b89765 +30029de7 +cf596c87 +00b3f0d8 +bc9fc40e +0594a503 +20d5b575 +13194a12 +10fcd416 +06b1cf6e +14f195ab +f9aff643 +1a978569 +7e5bf711 +6faba5fa +3315ecc7 +0d8c5f24 +2ac9344f +e98d8698 +e5a801dd +c7043c4b +d6b6e0bf +8c3ca4dd +0ab0cda9 +9cb0327f +80d8555a +d3f71b89 +5957096a +68ac9e60 +81008c67 +dc2aae02 +b7ad4efd +101bc0d0 +9a1fdd48 +e27fb4c6 +00e32fae +5f3e1806 +d2352e66 +f0ee1171 +15801a38 +3c150a80 +6b67ba92 +1d812a04 +df9c9d2c +5f851af2 +d49c74eb +cf2f0a5b +c24ec7b4 +a68ba4c2 +4aeb6732 +b04202d7 +dec9341a +89fbf73e +d6c23de6 +bee72785 +19b7e27c +8c95fd86 +8acc70df +8a49d676 +656a79e3 +e3d0459f +3536f0a0 +1b966f3f +5516165a +83778e6d +8b7d76a3 +ce71785b +f8bef0a6 +2755e7fd +533ef85a +e155cbf6 +a09c594e +4ff691a6 +9bf32005 +a093e90b +65f36fbb +430e4260 +67d4b901 +66b3876d +44a40b37 +bebc99aa +6d01028b +73fbdef0 +c4f19e8d +db9c39b1 +6ae61a42 +62169fb6 +899a7abd +88e439d9 +3bee5b97 +5029cbc2 +cb3a592b +2a648b12 +20f4bade +c9add53e +3da4685b +b2565f71 +c7577387 +48bd2f24 +e31f97bb +9ad60ebf +a3479ac2 +e36ef5a0 +dc796779 +de57dee7 +ddeef97c +f46f41df +36c4c874 +f44af879 +02d9f1aa +e44a010e +f2657c82 +45000d9c +32bebd7d +6ff41c4e +8510f416 +4967a4e4 +b244269a +759c4a2e +2a04d8c1 +f922efad +ea5f6ca5 +e17eea0f +64befbe5 +a3428239 +8fc50a0b +5fbc73c3 +d7c58073 +6e2e4e7e +81fc4ddd +abef9a16 +08087ab3 +e8cfc6e1 +65e58ae6 +b2820985 +a6791c46 +dea65486 +4c96e381 +040c8aa9 +253a9987 +6fad4c40 +b0714e74 +794a45e4 +250a1f5b +fd28c00f +51c64c6d +7dd10c27 +bdb2e9bb +f72f3e11 +867d05be +c70b09b5 +40e820d7 +bce72daa +9a9bf803 +4e1c036b +faefd679 +d0189e5a +88825148 +5dff9b29 +792bc2c0 +77a972c7 +beab5630 +1440f066 +3d294693 +e416815e +c3dd08e6 +97beb967 +1452b7c4 +63fb5989 +f3e1dcd0 +a01d631a +23929bda +baca34cf +3ce1ebcf +09e3cd5a +48e1c623 +07f0dd75 +80d23df6 +681bd079 +c619b45b +c9918a97 +6ab45cc6 +28d926b8 +88bf064b +5fae3a7d +1c180eb6 +f37ced8a +1d8a14d0 +8f2f8a38 +7a0b30d1 +ea992411 +92f88b7f +8ae9faaf +c60d2bce +3904e043 +291c308d +0c6fb000 +2b14b0ab +b4e66c7f +e3cc371a +2106cad5 +d63ceed4 +7352b613 +6d65b22f +196060ff +c0fc6d51 +7f4beed8 +2c2b7368 +6448e299 +5deac079 +a136ae32 +3401bb69 +eb45e6e4 +9078f4af +43346490 +5623d87e +10b5d63e +5000c229 +a1198d00 +b16b1b14 +ec0f612c +dd5aaf51 +d00a89cf +2f1b2c1d +d6eecd96 +a0158c0b +631a0f79 +8edb102f +02195b1d +8dcfa982 +2f91f54d +b40a5ae5 +cf3dc9c2 +13bc59b7 +54f76fbb +5ce5db23 +0c036330 +358959df +d1de383b +17a25a2e +41d91b64 +90aed9d9 +358b999c +e4477d63 +fd4d6dc3 +7dc492cd +5714e30c +ea54d21e +8681d92f +ef51c5fd +30f831be +b0f3befd +1bfb072a +d50f8f77 +2798f61a +7b81297f +ca1739c3 +e1871028 +0c6cc498 +6eabba09 +eae1a4e6 +a6c4d6a6 +bfc7247f +ad5a15d5 +c2be2cd6 +e6e1eada +fe2819ec +106063a9 +c35b84a2 +bea25674 +5a2b1097 +a92a2097 +6e91d0aa +910d0c78 +08125ec3 +a0bf113f +7d344ec1 +bc67dc86 +7d568898 +be4cb064 +51cab503 +05ae89ac +9ebf27b2 +3e3b5cdd +5e48f06d +99cbea63 +34c9c2c8 +f441464a +7646d219 +1ceec30c +8c82d5ac +60f8cfe9 +520e87c6 +e3679b95 +755bfdc0 +78f5dce1 +59dbabe4 +62cacb6d +0d696b96 +1c648235 +2e68af6b +c3b6b1ff +3f647607 +fa16b189 +4120ff84 +76bbce8c +1f2b62a4 +dc5a46d3 +13a91973 +c2f0597e +2bb01002 +01e96a8b +d8731300 +497cdc17 +fb7b61aa +467803ff +1425ca4f +6a779687 +a754f0ee +0ae08089 +f6cac145 +f25b1ce2 +ab52da0f +8820c221 +2c20fcf8 +24031442 +c5ab649a +bf0b19a8 +f2ecb6cd +251a11e7 +6f3bebc6 +e4dbea90 +fc86bde0 +97476ff9 +c312e8ea +7f1931b1 +1c5a7983 +9f43a1b5 +7e5a33a2 +e269cb85 +129fdc8a +6d5dd203 +24e3cb6b +ca94ceb5 +f97061f8 +d86c3243 +77d7145b +0bd10f79 +f9e72488 +48513177 +3517881a +6d69411c +7d5591ce +a1e6a194 +3e899880 +715dbf7b +8b0fcf84 +7fec07ee +20055f77 +493d9030 +46abb307 +794fc893 +638ff2c1 +68c542c6 +ed8dc2b9 +c95cee83 +f8b86b4d +974c2ef9 +e05db802 +d46e345f +660dd111 +f7f717d1 +329ba483 +a67afb96 +8c4b6740 +2a02f19f +dfc67ca4 +13508380 +fb148005 +4e81cc05 +4384a030 +3d513154 +e029fd83 +9db2ef85 +dec79c89 +96b59e09 +195297b9 +871d46cc +1acf0e98 +de15aafd +c5ea822b +684abf7b +38c6a2ff +0acd9a72 +1e4f76c8 +173df40d +7edcb432 +4842a03d +567c03d3 +a33c37d0 +63b9d452 +59b2577d +513c4642 +55db6044 +cc402e51 +dc56a6c8 +3908de9b +d65cfebe +0cefb95f +b5568233 +6bb27684 +3266012b +8b9e4c43 +37ee624b +fe031c1b +8fa3275d +ef102153 +d6ac1a99 +b49b8121 +8a77aa30 +352cefe6 +0720fa82 +19f38e39 +6af132a7 +7b9b4b4c +e642456d +5345e2ea +10b1d801 +84f1c38f +6898d7cb +d6f9abfb +8c1441bf +967c1441 +dd867531 +6956727c +4859631e +b66d15e3 +f492df10 +a3ce95ab +5bc95bbb +afc54bd9 +a6ed4428 +02904c2e +99944ac5 +bb466b96 +75f5605c +8b78b687 +8cd4141c +a2c4cd50 +7c15fa92 +64607668 +bcaa7baa +27e168c4 +2240ccc9 +39cc9792 +fb7f035f +29998ed1 +ab139dd1 +a6cb5175 +d3553154 +077ac770 +1f4710e9 +1f563ffa +c19bed16 +2091baca +10b2deb6 +b78cd77b +e5b0eb70 +4d444fa8 +8030f7e0 +3a3446f1 +8ead245f +4e353d3a +465f621b +3a636c38 +06f03557 +fb9d5150 +671429a1 +63412727 +8599e2a2 +34d81946 +2ec3f51f +e5cbc185 +026c0584 +ad0533ab +d46c3907 +a31ef0f4 +abd61de0 +d19f0185 +971fc9c9 +c3544e2f +4a46af6a +d6663a57 +032e9f84 +a2c5148d +36f6f194 +2c0ce193 +f8b291b6 +230aba50 +f76ce723 +3a226f79 +4b930c6a +88bd0a47 +d02ba8fa +cba37588 +a38a359c +74434d6c +6fc4f0c4 +c79b46ea +c9b7c37d +3e1101de +30d1c86c +ae4b3923 +266a1de5 +57c0f490 +2cbcee90 +231e053c +2e01ffc6 +f2ee08c0 +2fcd21f4 +12b193b5 +9810185a +f47311d9 +39febaca +ad20b269 +18fd2581 +1e10bd9f +884c047f +18c67922 +61cd98c8 +e0dd8846 +93627a01 +cb14f052 +4a8fb058 +2dbe3d18 +1258049c +517ada1d +1a0d796e +89ebd875 +68ad052c +bb43c97b +f1c7f203 +111b671c +1b40afef +9fe1748a +3a7f3731 +be3276fb +f9a7e394 +e275ed08 +1f38109e +4e0cb6db +f83b1066 +4fcad2fb +9a3cb908 +5b2a7e55 +c3c612d5 +815e3083 +cb2156cb +89b9aa94 +598807ce +9d09ea70 +b036469d +ed70b62a +d3fd4798 +a1b718fb +f2e08e7d +b724d6df +585950a5 +d84e5d81 +c57235ae +da4e4283 +9d72a4aa +bba89f78 +25dc7829 +99292b0e +c688113f +cd6faf07 +e97210a9 +c7de6ae0 +f5da3a6f +46fcaef1 +adc7cd76 +9ccd40b7 +cbbab2d5 +585ab217 +7f653a0b +7040bbcf +c5c59751 +1950acf1 +9dd430b5 +2d37c7db +55efee58 +b8e42c74 +f46db46f +b240e4bc +47d43a7e +49045e9d +fd9fe48c +3293c5f3 +49308009 +ea2b155b +9a5d2597 +1fbad044 +66f43abd +47784164 +470320bf +76b52ce1 +41f900f4 +ce7b7115 +5d8ecd6a +3ad308ed +8e5b38d8 +32a55192 +bf536db3 +8808c4b5 +04ea5408 +1df4d824 +8aea8ae9 +56659b75 +a800f41a +4fd17e73 +489e090c +f438658e +c7d47a71 +54cadf79 +d8534b2b +dcc72519 +79b0147e +42aafe6d +d1baf1d4 +d4473940 +d3e15e1a +cd9fe13e +556dd4b6 +dae87672 +4ebf2637 +7a719f12 +e8d8ef8e +392ccbb7 +ea124ac7 +610358b4 +c517a192 +0167d85c +657dc3b9 +85a5c0e5 +d98d57ff +a180116d +d7091b25 +f8abdbcc +4df3ba04 +6df7610f +6f85b167 +e53a9b5b +16c6592a +b1a3f5da +c8458f4f +9124e6be +994033a1 +6460fab0 +45a69eeb +40ed41e5 +41afcc19 +dd47ba3b +46663de6 +55699589 +65e97d66 +71c47f65 +a562e6fb +dbac10ab +8c8a4c47 +4e4c5a3d +d772d0ec +4ebf84f3 +2dfff8dc +4df3cb9c +f8f91ee1 +83d5ea21 +a63f2c9f +1b255578 +fc9fd8f9 +00bed72f +aa76e087 +d9c78f96 +e27d0414 +8c23df31 +a42c24d9 +41b7847c +3c6752bd +2fa8be0f +8203c75e +5ec783e8 +7b3460d9 +5916d5d9 +41274cd7 +9c31f3dc +8877d8ee +e26ca125 +89fb1807 +fbd91004 +c446f801 +e4188c35 +9e128e8a +ab5bc535 +81c9e43a +24d89f30 +dd416de1 +3197d543 +0cf0c892 +645fd4c0 +73fec7fb +e3b2879d +21dbbb54 +c3d6b7e4 +1b69e68d +0c8cc302 +451fd92b +0fa0d423 +466c08ee +be70c76d +5a9c9fa8 +9b3bebb3 +f26ad04e +328b42c3 +d19a4440 +51d55e9c +20eb7fc4 +0cd9d1eb +55c7c029 +eeecd0cd +5bee7f8a diff --git a/models/rank/dcn/data/sample_data/vocab/C5.txt b/models/rank/dcn/data/sample_data/vocab/C5.txt new file mode 100644 index 0000000000000000000000000000000000000000..93d3888f00ca9d40867074ebf2d529a5c6c456a6 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C5.txt @@ -0,0 +1,54 @@ +08da92ce +38ee9c99 +b0530c50 +8c837181 +492fbc44 +b4bae0ed +bf9f7f48 +2319bb7d +06afddf0 +b706ee81 +3ca0f876 +2c6b8ded +28bce97a +afcf7897 +4f8b7acc +26eb6185 +e856df70 +ffab0078 +4ea20c7d +47f98056 +f3474129 +0942e0a7 +db844843 +1524de30 +b2241560 +b974d47d +503ebb08 +5a3e1872 +db679829 +384874ce +f1d40cbe +46dadd18 +a9411994 +d9131ab2 +dd2d8e4d +4cf72387 +d3ae3ce1 +3597f508 +f7109724 +30903e74 +65be028e +27bf8a17 +3bb20e22 +f281d2a7 +d5b7606b +cadb6f23 +a93acb09 +229df405 +307e775a +43b19349 +89ff5705 +a444653d +25c83c98 +42d2cbf8 diff --git a/models/rank/dcn/data/sample_data/vocab/C6.txt b/models/rank/dcn/data/sample_data/vocab/C6.txt new file mode 100644 index 0000000000000000000000000000000000000000..67c73128c2b885ee37dab1ede607a559edc8512f --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C6.txt @@ -0,0 +1,10 @@ +7e0ccccf +f1f2de2d +c05778d5 +fe6b92e5 +c76aecf6 +6f6d9be8 +13718bbd +e3520422 +3bf701e7 +fbad5c96 diff --git a/models/rank/dcn/data/sample_data/vocab/C7.txt b/models/rank/dcn/data/sample_data/vocab/C7.txt new file mode 100644 index 0000000000000000000000000000000000000000..5335eedaaca0f062c3d7e548f0167824284adaf0 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C7.txt @@ -0,0 +1,3213 @@ +175f4be6 +ac1e51fc +2c7105eb +3e2ef4e6 +5547e1f4 +52b4e012 +6716577d +5f29da0e +e3e35adf +def296ff +d7f3ff9f +56f361f1 +33e2ab71 +b02ec8fd +6c4b228c +b28fa88b +fc38ad4a +97b87d6b +9e6949e1 +3a9c29ce +727e3bdb +05276f0a +0738547e +c349b5ec +7f2c5a6e +d5500dd5 +9853338f +94a113a4 +cdbfd303 +15ebc248 +34c90c45 +511c5ce8 +91992e62 +55b80a3b +01eaa539 +59bbdf75 +15b2e600 +aafae983 +a879efe1 +2cce877b +c1e20400 +b3e8889a +4e222d7f +8de2dfc7 +c642e324 +8f31f6ff +18671b18 +f82e389f +c75f034d +7d251743 +39895754 +23995c53 +06a7d0ff +a9fe36f4 +ab495772 +575686cf +3edc13a7 +e5c32f14 +f5d20afe +f48f6b93 +4bcc6397 +a178dc8f +ff493eb4 +63b212f8 +01a0f3f6 +4f32010d +48db53e5 +3b097cb3 +3fd38f3b +3ffb655b +a6af5059 +dd645c34 +de7995b8 +24e8ca9f +8672200c +69b885a7 +383a8b09 +49b74ebc +8e974a77 +9ea2e0f0 +dc0aae79 +d18f8f99 +7a57d343 +27cc0b50 +4642c514 +e092b976 +9ec884dc +815cb136 +a2152621 +0dab78da +99706856 +9511db4b +d135c004 +49a74e66 +4e784388 +e983795f +5c116cc3 +c2d69606 +e05f159b +d1900ca6 +baddb49d +2047fed7 +5d4c7462 +8037ee10 +15f4d8fc +9b8dbe4e +3d067f68 +65d3801d +061da6ec +9c687a4b +51a176d2 +6d490d7a +e9e7564c +28acc02a +63310cdc +ac652f55 +d6e25b09 +a3dac0df +21518109 +5e21596e +f68ba07b +81bb0302 +f1f19b87 +472a591e +3f8cc471 +0d339a25 +1ede2f0e +bdf75bb3 +61beb1aa +366a171d +4bd812ed +c7713316 +718ec8b1 +c5919aca +7307f77d +9115f277 +a44bd14e +c23eb1cf +0388fb8f +8fb5446a +3a34d722 +99ceaeb8 +6af7dea8 +15ce37bc +18568021 +f417bf96 +7bd25275 +86b4a73b +12df1262 +38a0b991 +23c51afa +9034b6f4 +a86d9649 +9a68af50 +0cc37e77 +adb6fd9f +57b4bd89 +b816804f +dc2b40a4 +d4bd463d +5cc3d947 +42f629ee +5c8931c6 +1d2ec7e0 +87cf12c3 +1318627b +431c274d +a38bdcad +e13ff1c4 +3e702f2e +fd3483f3 +46e7b789 +c52b723b +cb387efd +ed433b46 +9bc5edff +423ac2e7 +d0bdaa98 +8873d510 +7a019822 +4d9d55ae +5b07414c +f6619575 +b4ef5b52 +dc90e471 +5e4f7d2b +27c992fb +a3550aea +6d917ca9 +82cfb145 +b8645299 +51ecf77f +34ee90db +5c4e3b7f +c4efc2d5 +496b90e2 +0f26c0aa +00f44282 +88afd773 +c5252395 +7c7f8ebd +60daccf7 +21dba0b3 +c70acf1d +5f1727f9 +4d0498a5 +56fb8166 +189f2643 +606a51c5 +082d52b1 +461e4520 +58385398 +d297f888 +c69fca72 +8a32280c +cee7e902 +71a0c30f +82460b2a +9762f2be +b7471958 +ed535358 +b94b41bd +820c5119 +e05853b8 +0550a3ec +e4a69765 +c1158194 +fa44c4cf +afa309bd +812b47ef +0d5ac942 +c14e7c84 +fa9b0b5c +befcdd25 +2b1607b7 +df5c2d18 +f4995d86 +75091be4 +2da6b2cd +ab20436d +3f4c6e44 +fc2c0a2a +71ccc25b +c96de117 +36e6bd59 +7dab17c2 +5abec7dc +e30c82b2 +fb0b594b +5adcc5c0 +0b507e32 +b5346873 +3c0bbea8 +62d6c184 +e7a3c783 +2b3ce8b7 +9bf0f6d8 +0dbf2675 +7a36f8ea +2de87ccc +835761fe +8dbe18ee +f914ec7a +c0224b89 +9043dba2 +969b8e03 +cc5ed2f1 +e168afff +14956523 +e1c95382 +6eacaa38 +095d6b9e +2fef7371 +a33f91da +a097ff18 +83070dcd +af28b684 +85e1a170 +66d269da +b3a5258d +439821b4 +a2bea6d8 +9db7a15b +7ebb604b +5d7d417f +0ed4d92c +68d98d74 +ade953a9 +12e093fa +0dedf29f +c8e6227a +c4b69de7 +e4c15eea +417ee83b +7a9ee4e9 +e09c981a +96ce77ca +8ea060ec +fbef5b0e +fe4e75fa +b92ab722 +d7d892e2 +e02d15e5 +ce6020cc +9b9962ac +4b243124 +5d2bb5c5 +c644bfb4 +c23ffa25 +26904bf5 +0b0a1a1b +271555b7 +297835a6 +28cd7a0b +2395bf4a +d252d044 +632a4eba +97006d5e +fc658742 +fcb51d01 +04eff078 +8a1c9c84 +f85fe9bc +183ceacc +8a6600b0 +fae8ca82 +0ad52247 +781b6b88 +ef10547e +92ce5a7d +4dfba5b0 +4c019ab3 +9882d927 +397def4e +649c7ded +b46e01f1 +2c6cfbf3 +4feec62c +a337e95e +8ee96e41 +670e4ae1 +59434e5e +3a6d4c08 +087ff1dc +b6a34586 +44ce0dc9 +a788607f +cffe7bdc +6253811b +a85e71ff +bd6361af +112b9a9c +5fb2890d +040964e5 +753aa291 +5ce94b48 +84912e13 +85a54c46 +3bb417aa +91758491 +c722e601 +0dcdd42b +4da83d42 +81f76acc +0afeae7c +383764b0 +17b47bf9 +0c8aa424 +e717dc9a +d3ce2398 +84eefcc9 +b9c51fff +5a3586d1 +50afe1fb +3cf1ccde +1a95b4d0 +058a08aa +408f0e75 +07d03e2a +bcd25092 +9a75d128 +9f525672 +34c24f33 +ec945943 +ce8217f8 +5b051c5b +df196ec8 +519d7a9a +3249beb8 +3344da99 +2c7d33be +db6d175c +a14880c9 +3ceda19f +1971812a +830c88f3 +1c5f1bfc +b000eee9 +77e91f62 +35c6016d +5788f21d +76b637bb +29ad44e0 +16553469 +a4f02a4a +7a341aab +dfd65057 +ac7cb372 +6b34b7f2 +71ddaac7 +e45fa080 +d657f077 +24eeddcb +03817bb3 +f40a4522 +d9bcb70c +ce90adcf +1035913d +ecda0af7 +3e36122e +ed0b84e8 +361fe71f +d5e0ab97 +b2bec27c +f9c471b3 +0697a6a6 +c5cd50b9 +3cbff1a3 +678e9b5b +4e134c03 +af02c678 +88822b23 +372a0c4c +60e1c24a +53e14bd5 +9d38b00d +65449064 +049ee846 +968690bc +b00f5963 +f2a82962 +9caac933 +08e57a96 +2d3724a1 +959a03b7 +780710da +5a5b6b26 +a2468490 +1adc3003 +086ae8db +5e7fd737 +33393315 +e15d33f5 +1b2007fe +320d425f +d0e2f16a +6b277f8d +80a53d13 +363ef5da +a70b42bf +04cd1ca9 +67997a6a +199c1eb3 +241e6c1c +749f0591 +3086a9e9 +894562a9 +56f91e46 +ed67826c +19cc4a94 +3d384ecf +e1b5b276 +9140e6ca +7493059b +2823fac6 +fc9d1bd7 +5ed5f40d +45bab68d +0d273fab +b724bd80 +3aaa5b43 +cb888fb1 +1c2172ce +a90a5352 +58ca4e16 +cc8abb17 +08b9a859 +e7d1870f +745ab0bd +b9c2d157 +71458861 +52b7c976 +f819e175 +f626266a +2f93c675 +f38736bd +0515d6a2 +d4ab9344 +6fa3c1a7 +a0135c90 +968a6688 +e3082cb7 +7eb00b77 +bf9d4f90 +81f7f73c +fb6ff985 +b423dd3e +ea32d016 +675b6656 +0a07cc10 +720a6d84 +f376e33a +1bc6d75a +97169d40 +17cd3087 +d8ba4ee9 +9aba5215 +9d5117c6 +a4739bbf +0fcb1581 +a7a8c75e +fdd66c0a +1a671428 +eee2db9e +91fb7d50 +aafff5ff +1554a783 +cafcd67e +ab42cbc3 +5e4454aa +34dc2e70 +dced2023 +b2a55fc8 +89571866 +dfb6e687 +e8486fac +0a7b8169 +93d83d33 +885a157e +b2b07c38 +0be0c9a6 +3562f8da +ec258437 +e9396c09 +93b19353 +e84d3fde +ecb24b52 +a868b53e +22ff0182 +f9e7e1f7 +a51beb72 +6fe4c2c7 +136f2270 +3b4e72e9 +50a5390e +06e43bba +24bb62fb +e746fe19 +c06f9e3c +744033ad +82e199c3 +4a7e820b +1b19041f +50024640 +b56d3d42 +928efe34 +acb8e1b9 +5636dd60 +22d01a7f +1e638f87 +e807f153 +a09339e3 +95b0fb8d +d3d2b34a +f1565765 +8d8b98b5 +272fd25e +804d2f11 +354d03e6 +b796c337 +d6348309 +cc0bd899 +01c31e6c +f46926c1 +6edd3a80 +0ba783a9 +283a4abe +d7087b39 +1c287f78 +39a57971 +038c3c09 +0d59e258 +1a30bbac +b1ebef4c +7b6e81f6 +05010f39 +8c2fedb1 +4bf86524 +c437f9a8 +71f8fa56 +bf115338 +0d62424f +9a8798e6 +94224a91 +849ec99d +0f13229f +24c48926 +c895fed0 +bffbe599 +8ce2a590 +0641c280 +e5332619 +42d650fa +2d99b1f3 +2e62d414 +ceadc1bd +b4ac002c +f2530a89 +1f0cb5c0 +40e38160 +6283fd6c +ec1a1856 +a4870320 +9b364a3d +f4c7a105 +b5e1898d +0fba0dbc +0fdf56d6 +799a5703 +72c0043a +432ca5c8 +fdc48e74 +95f7bc50 +ae33f6b1 +f873b3b5 +abb4b4d7 +b7ad21e3 +48ed6f4d +66b0ce37 +820e7ca9 +1238f7e7 +b7220c9e +e76a087f +8025502e +40635b15 +5af90a82 +c714065c +c0251c88 +f1d914a9 +55fc227e +538dcead +ee4cec21 +f913fba5 +a4113d19 +424fbb9a +03bcb38d +11401ad8 +52c84489 +7ae300e8 +efdc98b7 +1fdea705 +0808742e +f3f95dc8 +65c9ee01 +36a49eb9 +bba1c324 +e300b4b3 +fd78c7c1 +1b76cf1e +6ac49c28 +a255dd63 +7a8beb53 +0c0c2a5d +7acae6b9 +bd9a3e0c +1fc0346b +7409a10e +82f666b6 +d12723dd +7fcb1ce3 +9099e7b5 +3b16ebba +01f89068 +a5cda78a +5547439e +aabe15c8 +c9255aae +7bec6ac1 +c78204a1 +fa19d92a +0b28383c +c1225605 +3527bb7c +7bbf62b0 +61f2f170 +a7709056 +de9d892c +8d156510 +d01ba955 +657bdb1a +44424751 +8fb24933 +f14f1abf +09adc20b +019bb335 +e227b3d3 +89fad423 +09ccb863 +e88f1cec +a6950954 +bcf6609d +5e06a5e6 +6f63b155 +46fff0b1 +a3d51543 +8a37465b +e465eb54 +2c34f582 +c51e7976 +7956c2ff +0df4df10 +91282309 +4637152d +5cfda1ab +7bcc368f +eeafc8da +ce4f7f55 +04eaba96 +d5c1e844 +06a10ca4 +3b1ed307 +fbf976ea +b38200e4 +adbcc874 +a5849528 +e6ca792d +3a0b5107 +3ff49afe +f606f91d +01aa47c1 +fe872bde +5d055371 +f188f978 +def688f3 +3296387a +21ac4489 +b4c1a392 +daddc43a +122c542a +14ba4967 +33656cc3 +230105cd +272d4827 +d59df9f7 +0465bdc8 +34459022 +df1c3c63 +176dc88e +bb900cf3 +4be7ed03 +fd5c0ed6 +3ba5eec4 +e39d3fea +7b26d3fe +60b63001 +a012896e +92132b65 +c62dda97 +a37d0015 +60db3a7e +08145aa3 +6be1db7c +5b3d71b3 +cd319e28 +8c327098 +4c1a8299 +79af222c +50b860ee +c8e48a82 +3b3a8277 +03a2a612 +2f61f432 +533e114c +1cb331ef +87e1825e +0d00feb3 +52f754a9 +ab6c60f2 +19c9e23a +02b42a34 +3f35b640 +516054a1 +8f801a1a +b464b526 +d2800119 +d1e50403 +166a3711 +72cf945c +2f5788d6 +ab06dceb +3f758c52 +9b0d6173 +8b9aba09 +2fdd0477 +18d476b5 +099a6236 +1874479c +93ec533b +75861c28 +5df71803 +761bbc1e +315e4292 +6b8a94e7 +94aa68fb +a655f3db +c0527891 +fd88893f +7e516c92 +05254e29 +4b115a24 +3e47364f +a464bc4c +315c76f3 +a5f981f1 +2d91eedf +4977709c +d45bbf18 +08deaad1 +608eb4f4 +9d328a41 +fd8ca9eb +124c72d9 +05782bd9 +caeaacb7 +d25406d5 +836cf3b8 +a25cceac +e575438c +d009ea70 +7d733ece +49eb0b1a +4ebdc6e2 +0889a633 +5417eef9 +16a2e9cb +3625ff87 +ba0ca6c5 +9eec359f +2489e185 +e0386b63 +1dac1752 +306a1d05 +9265028a +e3075893 +368e23c1 +51794392 +24cf8b9b +17c22666 +46352858 +d0519bab +cc8ce7f3 +79e90973 +ed54b715 +bbdb3d58 +6aff3cf5 +5270a50f +b471ac4f +32079c61 +5489c59f +d89d88cb +21d34d1e +dae33a8e +1d94dd40 +ab34a858 +ebd71761 +484b01ec +9589af59 +c7d96c76 +4af3481d +86e5b4b0 +184fb3cf +d45bf916 +f12fe6e9 +4bd57ddc +177373db +86aa3994 +c8b3d034 +ea98b75d +0d3f4163 +65e1a370 +234b2838 +4757b5b9 +18ea2c75 +691193e4 +93b64cee +b791f05d +da33ebe6 +dcd8f4dd +a3384403 +5a3fc03d +8f02eb3e +08e221ec +052969f6 +f1ff45d6 +2a9234e6 +e2942acf +60f43665 +dde8fbe1 +83b5d68f +eed87f81 +07f0c740 +75344eff +b5d27db4 +90b1c15b +140343ba +fc7be191 +e105792a +874ed57c +08155fd0 +59c03bda +68bb64a9 +e0f2cfb1 +fc8b993a +bde86fea +02dfb6ec +8b26c36f +b097f76f +08383675 +a870a74a +e798d858 +b687a92f +ffe5c96c +26a81064 +276c620c +87f71d3e +a0e559da +f4ae27b8 +7127d5fa +9ca82575 +d70f015d +38fde89e +5186ec40 +d419754f +e6c8d4cd +f27f598d +8379baa1 +83a81c7c +6b157a36 +5c43c7a6 +d5484ce5 +b43266ec +8323555d +32bdb7cc +463b5452 +e211bdcb +eef6ea32 +0452b338 +7ee86170 +178a87e0 +5b10fdbf +3447df37 +d0478358 +f839546c +4f90c59c +9e13c42a +0d15142a +78e68386 +3e42ce05 +9a4f2943 +cf3a5ef5 +34bc6d4e +5879b64f +4a055def +631d3105 +bc05fd44 +fd38440a +8b008629 +e90f312d +19680529 +f0a40c67 +4b90fefd +a7c6130a +ffb26bfc +bad6ca74 +394bde93 +caa2ce1b +00583f05 +47dcdb4b +02dabf8f +c519c54d +a40d2174 +6aa6cba4 +f36791d8 +0534d457 +5a46027e +f49c4f98 +8ce3a35f +f4b9d7ad +d3aa6bbf +201c9b7b +4b3c7cfe +f4ec3e93 +840c9106 +3bf1c027 +0e3faf03 +22009f3b +3341567d +0dd60320 +5ffd8025 +bd4eedd9 +82615655 +bcec77e9 +b45db245 +4d045f61 +e2ec9176 +f2487bdb +a7ddc5e9 +3fe8889f +eef6b4a6 +871caac6 +c147e81c +ffca8f48 +21fe8907 +82aecd2d +24562a27 +a4fea880 +cbf3e672 +66de5af0 +543d9801 +2f9aebae +d82ee34a +db8511f6 +5349e810 +6284da2d +cf4e7204 +2ecc40d7 +996f470c +7892e47d +44b5f4db +30af5eb4 +9ed4ccfa +eba9a360 +e8e4d487 +e14d6a33 +d55d70ca +3368987f +b3f805c6 +4746e653 +def4a4d4 +1ce56d6e +fee0031b +5acc7d7b +93315d47 +46067623 +7da52276 +59666442 +68e20378 +776ecf80 +5b77bea0 +bdb0698c +18ffd618 +0db090eb +b1537aa3 +7d18dd4b +5b6df03a +d161368b +d0f8c04a +90a2c015 +44abcdd2 +e700dac7 +ec2621cb +0008893e +da5b96c0 +add2820b +7537857d +10cfa4ce +e31fb017 +4eac7c46 +fc44398f +3c07cb63 +e0da76c6 +ef0d76b7 +2db80152 +cdcb58a8 +12c61956 +36df62f7 +3beeccff +60902511 +4f27f3be +c0698233 +c85d1754 +02d72eea +a4586e44 +24349845 +9f27dd12 +d84de2eb +216a1127 +78c0b2ff +bcb9266a +28f6409f +b0142235 +ac8dee1b +579e8498 +3a53b968 +12b681be +2d87b336 +6b691b66 +b9ac220a +8d452fe2 +f7bcbd6e +f2f89ef6 +64341056 +62629a0c +d50ab3e4 +9e5b069d +270fb9d7 +ef519766 +0cc91c69 +a1bd68f9 +3625d5b8 +b09434e3 +14667edb +ea259ef0 +19a30e1b +5346551f +860f4669 +6362d73a +61bed5b3 +6f208241 +0fff68f0 +2ebce834 +43f947ab +5ca19802 +db4141e4 +b72ec13d +c9f171f9 +bd4d5d08 +cd1e2562 +a247195a +98f5a60a +d9e56639 +26e81396 +970f01b2 +c3ebd8ef +6a871e6a +ac0c5c8e +bc324536 +4c3504c7 +b10db6c1 +22976346 +992f2706 +b8d2c80a +05fd9bff +78155071 +b25246ae +5aef82b1 +e4b6f85a +fba4eff1 +f929761f +be166e51 +9af6e535 +130c01bb +a1017c6f +5ccd151c +b80722d1 +d5a20cbc +3ee4221b +46388d36 +bc3882f6 +8963c187 +c03eb803 +17136be1 +ba16eb32 +d2c6a893 +00239ba4 +61ad49e0 +6d51a5b0 +01c5751b +0adaf163 +e0e691db +38ae26b9 +300886a8 +d8aca856 +6d23e366 +80330060 +19fa9bdd +b54c1364 +53b5f978 +2c62f209 +4b0cab49 +0111f837 +7e46c875 +1183f3a9 +d1a94340 +be6ddaca +6da2fbd6 +228c32d2 +64917feb +af39d293 +e6ff8cc3 +a36dc9f7 +1d7f26b5 +f4bd06d3 +07d75b52 +ada39ce1 +b7e459b8 +e3b8f237 +36a88c96 +25d97f40 +ff242002 +99609181 +d48d8f92 +2dba0f83 +64df3d3e +e1d3ed05 +f2744d04 +a3579031 +c5dce8fa +3f125956 +3598a741 +0016c23d +51700b94 +07ba4505 +4157815a +e0f3a9fe +1d6f0c12 +0b31ac6f +5fd3419b +412cb2ce +be48ad1b +24db17b4 +7a6960b8 +10ff3d28 +a9af10b0 +be8b19db +df59a42d +9c5b7db1 +fbe7539c +99cb8fdb +7c627251 +c74bf5e9 +3d63f4e6 +c48ba52f +2975580b +f2d80b52 +0b72a0e8 +0f4edcf3 +60143fb2 +6978304f +6d174d7a +b0da3612 +c70bb7c5 +97e8991a +5801d8e0 +52307c44 +70f05750 +a60279aa +925f31a7 +34737292 +19411fa1 +f5bd9017 +75550cdf +73eca724 +336b43c1 +20552046 +2b2fa660 +82a0280f +7f1d4b97 +a972360e +b89d8b78 +83be4a6a +cb984a3c +2c7bd1f3 +90679357 +3f165d33 +a0845add +e500bd33 +7e64d215 +e1250122 +d7224acb +5d627b54 +289680f1 +ff64bb9d +0b6d8b0c +9676704c +c6ce3f98 +0d43cf13 +846f2a52 +281b532b +46cf5e29 +68fbb662 +282f8d99 +a19eefac +355bbb36 +08bd9583 +13074a34 +a14c6a98 +605a00e8 +d5f2e4bd +0fc3d825 +5b18f3d9 +7a3855e9 +177c6cda +18dd2280 +fc8f52a9 +b28deb14 +58bfa98e +b892a709 +5b9ec2a7 +c70d17e2 +cde71155 +52283d1c +496612dd +a7adf5cc +8324bae5 +134011b9 +1adcf51c +fff1d454 +7f91384a +728ec517 +c151233f +4c01b45b +8f125065 +6698833c +f2cb6404 +36b796aa +ff68bab8 +860f347d +40045b28 +75ed12c9 +59696d95 +e119f971 +bb3f8e2d +1c2bde14 +7fafef37 +208249e2 +407b9c2c +c68c5cf1 +b5f54d53 +d61751c6 +8e697795 +d600c2ba +0823a1f7 +b00137a1 +fe2bda20 +75dcaaca +dad4d7f9 +8589418a +fb0e0635 +f23492bc +7580882d +297f698b +a95494e7 +28476024 +f1eb9b03 +468f29c4 +ba8bba08 +a13be9ad +b96ea7e3 +b10a99f1 +382d0109 +bc252bd0 +32da4b59 +e8a0f270 +c0a9460b +88540f9f +63e83fa0 +045eef77 +95e4914a +6354ea7b +ed70802a +01620311 +d20b4953 +ad155974 +7bbe47bf +410f6b58 +f84840a1 +40f7b9c2 +2b195774 +80de4e5b +3448acb9 +8456bc5d +d9aa9d97 +26a2de7b +20826cf3 +d5b6acf2 +42695288 +4524852e +47d9a620 +fceb837b +7f14ae96 +1c3e7071 +19d53f72 +f90789ab +293a661b +dca5a2e4 +be6ce59c +17024f49 +f84e6f4b +7e72e3e1 +ea6998f9 +37b3a046 +95e45eef +60be2adb +2db71de9 +8b752de0 +25c64e98 +d40ca917 +cb0c1a8a +1f76565a +0de33c8a +bf1d0717 +ea03829a +e885c7a5 +1dc1a765 +cee47266 +d6293852 +962ea28e +cd219a7b +87e29668 +4813a129 +9fcaf15b +5192dba2 +8d56bbe6 +74752b9b +6fb62f1a +dbc0d030 +5326a2ff +3eec36fc +8d1db846 +20481192 +fc25b411 +2505ae8d +e56a4862 +b3e225a6 +da1b1519 +01aabf93 +7669afed +e9bb803b +1d42f25b +3466f0e9 +3386c3fb +c17559d3 +866e2a5e +b8e888c2 +48032855 +346d97cf +70c46fdc +15055a89 +5af69d36 +c7fa17ac +df9c8a42 +96deb8ad +84c427f0 +5f45be7b +ba24e6c2 +38850d41 +650f5583 +d7c52953 +e814f1fc +80f9f5dc +90078967 +e3bd67d4 +1346a1ab +15b49232 +758cca13 +b430d61f +e2bbffc6 +aa1c94e4 +93b82143 +c3a38a35 +7ff7f0e7 +b8af7109 +9498fc71 +bd3ca059 +fc6b47d9 +922afcc0 +7b73c084 +d7a32f49 +896d0c90 +c3d9de60 +20e2f986 +20784db5 +45607029 +a2b7a122 +76fc09f3 +e429020b +7ee0fcbf +b751550f +7e5d650d +78dcd87f +35ff5092 +f6ce794a +3e5a89e0 +ad32de6e +fa5d9d01 +4a9d0dab +1af58b2e +b71cc18f +938d6619 +02779f6a +86946882 +3dd32b15 +5d96cba2 +7d47cc7d +56cce13b +ff207cd1 +4bd081bf +7079e499 +a296768b +dd028a70 +15f8eb35 +69bf8f43 +f5047e31 +380ff654 +1faa5ca1 +55992d5b +c3080988 +5e212158 +2019efc6 +50db917d +715bf772 +c9f2de31 +e80c2c96 +1c86e0eb +d0b243fd +a19ea455 +e824c09e +cb338fa1 +a9e572b2 +27bc044b +7840f00e +0636947d +01ea2333 +a57e209b +0950d862 +316949b7 +cc168a10 +b7106cc5 +7848490d +965ec239 +f94314d0 +736bf568 +a1eeac3d +8ad7e7bb +8818fa86 +ef77ce01 +74e550ac +744efce0 +11c75000 +a49a14cd +19be9f03 +22f0e375 +1ef3325b +ce813de3 +62ecd427 +03b3628d +e88b2a65 +85e7f6c9 +3bac37e5 +c9fe8af8 +87feb968 +97f8984c +ac2d4799 +54b86f81 +2f24b2ba +6b7b5a6c +69a21119 +f1be50b4 +8be05aad +c6b039d2 +06824fb6 +0054a97c +4a669be7 +10b54add +30067bb0 +e14874c9 +46f058e7 +d03697f9 +69079877 +45db7ec4 +2f6a74d9 +6e0566a4 +eb6d9fd1 +f20511e2 +41caf149 +bef3bee5 +301e3e06 +0f52e8d2 +e94e2844 +46e95fd4 +bf5752ee +1e3bdb1b +08a6c211 +43c04b41 +6dad974f +70b61eb4 +130e5a79 +2e021363 +ad978c4a +e72c88ea +5e8b4856 +00ed31f1 +95b7a1e7 +36bc192e +ddfd5c11 +1c11c85d +2c015dd6 +a4b4a9f7 +f8748bfc +1d794a16 +085dd100 +705feb79 +74f473d3 +d69f74b1 +4ac30148 +9f6e2821 +b793da4d +3a4f29b8 +14ad5567 +94b76214 +0dec8040 +c3d4a686 +e3fb0ef1 +00f47310 +564c0fdf +82968d75 +d96ae1f7 +39cc02c6 +d0792267 +15b50a28 +63282fe3 +559eb1e1 +d4edb6c0 +d3e02226 +8f99333a +b3ddf65a +8363bee7 +3f4ec687 +dc7659bd +278fecb5 +a64ea28c +def88231 +1e3ff2a7 +2da66872 +421b4ccc +b5043bcd +f970e59a +c4e64dcf +dff12936 +d385ea68 +b7208332 +b07a6d6c +49ea3b45 +a088b320 +9df35e84 +fed3cb1d +9e7ef243 +cc244126 +5f03e1f1 +1c52337a +c32eaa9e +15da22d0 +ac44ed7c +019f06de +df12968c +5b0479b1 +1e1ea31c +0f011b03 +d130ce5a +f744980f +d3c333c1 +a159cfab +f98e692b +ac07b602 +25b74c9b +998526ec +7817139b +c0bd6312 +98444d02 +c80423ae +1adfa886 +ba5d463e +5c16df0c +513bc7e9 +5f175e17 +33cef4a1 +2e440430 +cd8c0a8c +68e0c539 +220efc6b +1e43bd3d +dd363e61 +df533a04 +9e5d3694 +d41c6069 +dcbfc6aa +4dc8730f +b8b6e920 +678fa00c +b52bc475 +189c5ab6 +40a7d89f +f77109f8 +c0914fca +42e4941c +62fc022b +38eec06c +cd20fd78 +f1e0eec7 +8f359715 +ff3f3dda +0d51177c +3cab4fc4 +170d6d09 +6f714715 +31be8a17 +0a8f8836 +db3b7bfc +c42bfe5e +fa2eb8fb +3c5dbf5f +8826c65c +6c5b8266 +7195046d +bce85ecf +ed73f170 +052e75f4 +56274898 +0e352bf4 +5ba5b40e +e677b4da +2b99f7f4 +20a04274 +86651165 +8a9baceb +9b7f373a +815e3303 +1354087a +ac4db851 +9a2c88ab +89a13b6b +b1c676fe +d40710f9 +70a02d1e +fdfda897 +0038e65c +84c24e61 +5f2133cc +218a739b +36c0fcc5 +96152eb1 +4c5c7066 +40e2fd9f +5992d1e4 +36b21dc8 +437e46f0 +d4134c20 +197b4575 +9d8d7034 +555d7949 +a6624a99 +0da96972 +52d62090 +8b9efd53 +9f35dfeb +12343fcc +bde13382 +36862899 +e99c5f57 +38377571 +9b98e9fc +7651692b +cc2b9a62 +3514a1ad +88059e21 +d99f6c37 +65cab4e7 +2952cebf +23202016 +99737b67 +05c5e3c0 +809e67f4 +09e42cac +f4eba758 +5a91237e +4b46e434 +bd1d21e2 +6d5c16c7 +de59dbae +863329da +27a7f9e6 +7f17566a +357f5397 +2575d83f +76c12254 +26d35971 +8271e3c6 +10b653ed +b647358a +95cfaa9c +764a17a5 +a97488df +63d6c0c3 +ef1eacfd +b913131e +44fb02c7 +9a62af90 +516ce6f9 +55e0ab5a +c44012d0 +8e257943 +65242065 +08b48f3f +9bcd1771 +1b1aa9ea +709df051 +bbd3100d +2dbe7afc +3b47042e +206fb529 +c5e09334 +26f5c8bf +dd895aff +4b219154 +df7005ec +87283599 +f93c8e47 +d2bfca2c +af6e2f81 +038685fb +2f72cbb2 +64f227d9 +ee065f9d +bdaf7920 +60d4eb86 +5fbd9170 +f54b0c69 +6d8017e7 +516d14cd +f0b772eb +8ff3a569 +2829f187 +efaaa07b +bb3b7ab9 +d823e6e6 +91208258 +bd1a1b0b +0d70c5c8 +21880383 +f879f7cc +ec80180e +4ae3fa5e +741ad05c +91cb2204 +f536e44a +01b2a2e7 +78c469af +9c9d3be7 +05940d6c +0adb34fd +4488e3cd +7ff5559f +ec3a7885 +9c82fead +b4b47f1a +2a266054 +ec874408 +10bc08c3 +ae0815e6 +fe06fd10 +78737263 +44b87d93 +dd423537 +cdc0ad95 +1c4d06eb +3e579335 +9d44e906 +b593ebe0 +002fdf0c +639c285a +ed862cd5 +41e6f3d3 +3e60567c +3625547a +c9b65311 +d52bae7b +ff6b8352 +969e0f2f +2555b4d9 +19413c8b +ed8893c3 +7bd17596 +28a88aa1 +62722182 +ef9f2f1b +e7ed3eac +2a8c42b0 +8d08cf90 +9221c533 +0cf5c887 +e98ad345 +bfa1a33f +90cedade +dbb74fdd +f8077d16 +6e8d859c +f95a897b +c9ede706 +a600f4bc +b01d50d5 +8c1351a3 +75e6112a +c6d8ea00 +57707173 +15eea2bb +9e77062a +150f9628 +a9111ff3 +21f5b15a +547c7f2c +9da5eef1 +eb1a4bfa +5bc5bb8d +8d801483 +665f37b8 +6641b1eb +d252c510 +4ee00c04 +311d5143 +646b4bca +668ca1ce +08b17996 +374ea08f +45fccddd +4a230e59 +668aef36 +71fd6dcd +c4cf3750 +737174dc +a1b6fdc0 +f3da12f3 +23cf3683 +3baecfcb +a4ca1fb6 +c59871a4 +d5b22f0b +d5527617 +df1a74df +5aa59340 +ea96ac60 +b6f811dd +2cb4dce6 +6dec97db +89465d46 +1c60da66 +8c28e5b5 +72ff732c +96e0bb89 +3c88480b +1767d1c0 +afc91167 +6dee85e9 +126ebfa6 +3f472c27 +26f017be +fcf2aea6 +e910ffbc +4e98835c +9f3e4cce +ab1ad103 +313458f6 +36268542 +159f4fed +6e6e841b +1c701bf7 +be0a9688 +0932e23c +3115c52f +2be44e4e +bd6c605d +5ba7982a +cec6003a +87e287ce +2598f805 +888c40fe +f2ce13f1 +151f2ea0 +fde3abb7 +86b374da +e377834d +6a00a3da +16401b7d +e7351254 +0ec6f284 +f10cdbc0 +f2775c24 +32e43e65 +b0eae64e +668f94ca +637b5b1a +cd13dd0c +a5785c33 +e52d8b41 +df871e60 +03692f63 +ce76f037 +85b03970 +48deb408 +800354a7 +08b798dd +4a6c02fb +ad3508b1 +05c1e2a9 +752910a2 +d03756ed +9e0ed189 +622305e6 +d5630477 +410c07be +2903ead3 +319a3bc4 +987da766 +7d565721 +953b365c +1771cc97 +74456ccd +9043b403 +0e7dd402 +f6d03c1b +f593b214 +405fef77 +964d1fdd +3fbde16c +04716793 +f1167b3d +6c338953 +9fe517cb +b80f388c +476fb13b +c31847f5 +cdd4e327 +a98972ab +28fc6e4d +c6fa13fe +42cdd679 +a4bbd4f4 +390d0fe9 +f65b0103 +0d3aae8d +3ce91fbf +ca4fd8f8 +186ff29b +276a5de5 +a015ed43 +7a38dae4 +a9087a98 +1171550e +a09c9a76 +100f342c +0bdc3959 +77270b8b +1c0d3937 +28fb6c20 +17cdc396 +ea7a79db +1747b194 +8cf87048 +e2f9eb0a +1e9876db +6645e274 +b2541a33 +6909bd0c +537d79c4 +ee72596b +613433a5 +268ac29a +57a3620b +c3e9476d +d9d4299e +eb5e10b3 +cd98cc3d +86a057cd +53e253dd +52a0c096 +32b74dd9 +5c5f5aa0 +d0d29b5e +f449c697 +37044a3d +262c51d4 +cd175af1 +fba98a2e +fa1400c7 +4d10903e +c563a829 +34cbc0af +003b71c9 +7e9ea410 +d3b8f746 +65c53f25 +d2d741ca +82313a01 +25504ca6 +09f58120 +6ad82e7a +81dfece6 +842250db +7b6dbb70 +b9fb854c +9aedd0cc +7724ab49 +a56b946e +c7e847cd +de0abb66 +7fffde06 +00727e83 +62dcba95 +103c17bc +ad9fa255 +be6faea2 +0de51a54 +6574331a +ee756623 +ca025a55 +32cd8777 +b3bd1abb +07feabcf +f033ed65 +29cfae7f +89391314 +2ce919c7 +b2a27ca4 +ad720bd5 +9a16a5ac +2c561953 +0e43ec16 +4f9b38fe +54111a43 +7dfc13fc +afa3deff +c6341482 +6fd0f1e6 +ce66ff94 +00c46cd1 +d469d881 +c2052828 +4f1f0075 +c1bec383 +7ba29dd1 +ffed5bfc +19945f93 +b043878c +20183968 +6cdb3998 +0832c824 +aab60b68 +648eac94 +0df5d32d +97ceec1e +81a70a4a +b226f465 +dcfa4e1f +1fd159fd +61a3f3fb +c415ae55 +2e67d537 +368f84ee +fb5b865f +6753ba04 +e2de05d6 +ec9bddf6 +f7b97391 +15b1b6a8 +ed0714a0 +a4f7afc8 +52afb1dd +a4756aa0 +ba000501 +5b9b818d +65ae2219 +98f4456a +28620315 +c8d70ef9 +43e336b7 +de25e5cf +19167572 +dbaf11b7 +8b64e1c6 +af54cdc5 +285ee98d +66acf824 +e1aea7af +9fb3e8f3 +b315263a +00dd27a6 +468a0854 +6a3814dd +2e0b99f0 +4c397c64 +68532a38 +0a189418 +f828f7fb +a70805e4 +8324f342 +210cec56 +f33e4fa1 +cc936bac +58a6956e +7fc96aa2 +356a3686 +c8767556 +0ceee1bb +f4710bb5 +4194f62e +80bf0b09 +2b700eac +3d6c6f30 +004876f7 +6772d022 +3a0ca13a +a8cee9fa +68e35846 +2d897be3 +845fb196 +a4d7f58c +69013617 +4f93c5a7 +94aea708 +67537fdc +9e36bb88 +06f31cbc +4bf6def0 +81b62616 +02eb3c72 +a16bb584 +adc26f48 +0676ad19 +f6d99763 +f41cadbe +e470f541 +2a9761ba +4f88b699 +a77b6a38 +f8008800 +320d5d46 +a3411929 +7a4379aa +1bd5e279 +8422994c +f01581b2 +05adf7a2 +656b7974 +ec2174ab +11d5a05b +9b11d405 +1a4bcc41 +f21bfcf6 +41e1828d +8d96084a +a477a3ab +3da890e4 +bab49c91 +66d52e53 +9d99aaa3 +8ac87f94 +8871fecc +1712036c +7c59aadb +b6005a2a +bd53d88a +a04aae5a +2d332991 +0284608a +821b1762 +35dea70d +53c2def9 +4ee46fd0 +7b466955 +4e1bdeed +795f9ed0 +aed379a6 +21e1ff13 +cb9b1a64 +b295b95b +aa239c24 +0e9645a9 +c6c200b2 +2f943ff5 +10d51d22 +b230f1da +eb8cc0b4 +04679a14 +1913ac2e +5595bfee +eb05c406 +894ba00a +447d84b9 +632a71f5 +aad8a7ac +8ebe9f8b +111121f4 +1821502d +376cbe23 +f5385f9a +257c542e +b06857f8 +3c72f31d +9963c37d +3665bfd8 +d2ed984a +6996831f +67b7679f +5536f925 +02914429 +527e32d6 +1f3230eb +ca328b68 +934229d4 +95c3fea9 +9fd51c1a +e487858a +e3768f02 +e1a192f3 +e308d460 +a10916b9 +37fec982 +e6cdbcfb +fc9ef69d +346ade38 +d833acd1 +b848dbd2 +3e6ff6cf +7a0ebef1 +c7502d84 +e702f4b9 +051659fe +1c0357f3 +d130cbd1 +9f61ea5c +53a18832 +09ad6a06 +209d1929 +a2c2ee6c +0492c809 +7bd8ddfe +f1d3558a +6a858837 +7504367d +f310fff0 +dee9c7d7 +39d672df +d1208de2 +72683681 +9ebbd31c +f01779eb +1662de8f +9ff9bbde +88eb86ef +cd846c62 +80d2263e +1e3cba9d +a90a99c5 +d9b2b2a2 +04fe0fe2 +40d4ce68 +a2f7459e +08c4540f +a916d565 +f15bee03 +e85e0eda +af8f31b5 +dad9fff7 +f79f6778 +1e41894c +1f2bade2 +cdca04f4 +7b48eb6b +11ffbf5b +ee47b323 +ce4181d1 +c7f4d077 +71b05ccb +e24d7cb8 +dc1a35f3 +7b915d39 +f74420a3 +6b406125 +c25f0f44 +940f5c4c +3d4f5cb7 +9e8dab66 +1c7fe85c +2bbbed4f +fe1695ff +1f5b6f1d +d1f88533 +1478592d +65b155e9 +309c2ca1 +63f702b3 +4ac7e86f +22ca49b1 +659ee50d +f44a6a1c +0123fa59 +dcc1b63d +cf03f39e +3ee65618 +aa6de869 +2b31dace +69c4f51b +9b6a4cc9 +9d084773 +9ffbc792 +822d177f +f1a65d92 +966736bc +56fb669f +99ebb9c4 +511ab827 +dec4c984 +3d28a1a3 +7755a201 +9905f515 +54a60f79 +ebb5e7b8 +3965ff35 +392f3c3f +5ff926ae +d70a05b0 +d3dde3a9 +3d722699 +bca35340 +3bfb1097 +77676b2e +f460b5ca +dbac9f7d +40274d95 +70daf390 +d7ccabfe +636e44e1 +bfb6fd56 +84a150ff +a0143475 +6aa33a0e +b709e7a7 +dafd0cbd +075b45e7 +eba0462b +72c50170 +7d48c0ae +7076d935 +73afe74f +860b3171 +099d72d1 +e8281e85 +45f17cc2 +6c72d836 +38142205 +78d53f07 +30787e1b +df623f3a +eabf23ff +a9b35bdb +18be0b80 +3e32c00e +0907d079 +b0130b6f +b7b3e17f +1d5e568b +f927a0df +a0f3f4b3 +3357b61c +4fb73f5f +4020111e +d9268037 +fd1a46b9 +341fa342 +0c16cbfe +86583230 +c7404d2c +03bcb2df +1e12a4d5 +b272de30 +2b322b66 +eb385583 +8e2c2068 +1b6b8747 +f6ddbdf9 +0dce61ea +62e09dff +d4ba3a12 +ead731f4 +a4695845 +38eb9cf4 +883cecab +e0218d0b +515fbe62 +7952c21f +2ae656cc +4b6ca883 +ab33723a +39adc19d +b0e3882e +6ed7a87f +04f80d3f +dda1fed2 +511a53a9 +adb39613 +ddc1d62e +d8a43e61 +fda682d3 +1f2924d9 +e8cdfd91 +65570340 +ccbac4d9 +9d88c00e +6933dec1 +3b8b9179 +2314fade +6a83ca1a +501069e9 +1c77dc98 +5e074626 +c685df7b +db9df920 +4ac9db9e +21c0ea1a +53370944 +945ff49e +709a6b80 +c480abf1 +d686b3b3 +e512e19a +16487bff +05fe176a +2fe9af09 +293d71dc +5732a3f8 +c4939891 +9dbcad7a +4597ba5c +720a37fe +33cca6fa +88627e29 +484f647e +963d99df +9304dcc4 +5392de9d +a431136b +04277bf9 +efe2d2a2 +69014bf0 +5c65a92c +1760a525 +4ad03979 +e6e845d1 +e4b9f8b4 +1a64627c +45a6f2f6 +6f113338 +7f9907fe +c86e8c6b +14483af0 +493a39f7 +841f6a9d +22b76649 +a1612bc9 +11754474 +96386eea +a26e0679 +b77d7b90 +cd29414e +4a92ca0f +73064a3a +54a5ff49 +78cc57bf +40e21c71 +2e802650 +9d547ce0 +3833f734 +866a07e5 +e7698644 +512573b7 +31479de9 +834a2d0f +e938c592 +fe4dce68 +3a24b646 +611a1d9d +5668f2e7 +b933b82d +1271124e +de9167c0 +93ed8904 +01fef71a +a4a8fd5a +e66aab59 +f74ed3c0 +023184e0 +2aef1419 +fda88ae2 +c92058fb +ea1366e6 +1d6dfac9 +fda1a50f +107bdf69 +650921b9 +7ba8db6f +6c5e14ec +5ce3f5af +e96bb299 +d9a747fe +5b0a6891 +a36861b9 +28639f10 +63e91d1a +22a1dbd1 +2b9b2aa3 +d5f62b87 +7415122a +9326fe51 +6990f900 +387b156c +b5ae52c2 +45e063a0 +d356c7e6 +4eb50e0e +5a08ef7b +34800de8 +89376183 +f9aa2b92 +66232500 +d31bbcd9 +5f585823 +6d0ca8d7 +094fc6a1 +274b6720 +8e26f624 +253e47fb +b1ff5115 +4655cd35 +ee247b1b +79fdcba2 +fb95450f +a6d9bf82 +b920f7a4 +fcf0132a +5e104492 +8ebf84b6 +0036f8a0 +8336c0bd +8f89a2e1 +68b6fb29 +0d21cab2 +875679ca +fab6d109 +57b8da1d +80f99b7e +ce3ca1b0 +388390e6 +ace07b3a +f35ba0ab +e4912d2c +1540d583 +23cbab1b +17f619bc +6643174f +be19a3cc +f4752ad1 +8048b460 +9962ddf1 +d3c9e746 +4f33db5c +b388a7a9 +13a0a6d2 +0720c358 +2220ee44 +23db6a7d +8dd700bc +c34c3067 +ce1b0bb1 +8de03920 +5e64ce5f +8418b5d7 +ff129f93 +49042125 +b9bcbd5a +ca280131 +867c8cfe +3abbad17 +7f656efc +51f248f7 +1919941b +9da73374 +0c41b6a1 +d0f6a382 +55951b61 +ce396c2c +c9a51835 +d8a67747 +543f351f +6a862553 +10e3c01f +858cd058 +1cebe213 +e131dc73 +7d56a723 +3c2cc096 +01549dc2 +af84702c +45740e73 +fb901dae +5c5e7cd3 +b4b7b907 +31488ae6 +7925e09b +f653f22d +b7dc9c31 +7c85f226 +480f877d +b1f455fe +1f8a5e2a +b84dcfdb +d9a9e04e +5add3f47 +73dc4f54 +4a5f8682 +a398d4c8 +1151bc34 +7de93965 +01b4b465 +b2325088 +156d77f8 +d9f4e70f +ebb19a5e +1dcabd2a +8ec9af25 +2e95f057 +5ad722b4 +795c2d33 +86528389 +f1a4971b +ee30c9a0 +1ed993f4 +dbdaacd4 +a20faac1 +6c9b7105 +6828817a +a6a575e6 +95402f9a +dfc6e241 +e0835d8c +daf51ef3 +1363aa92 +82af59e9 +a54c550f +78c1db80 +fd1f42c5 +72334595 +fe19892c +46dbd380 +88002ee1 +a093294b +2ff0088e +376f3f5c +eecc2a17 +86e54348 +26817995 +b3b280b5 +4148ab9f +5e92008d +6df0a1b5 +2dd1fb40 +0f8518dc +76d84582 +6855ef53 +a3202a0a +504dd6d1 +6530f87a +f61d4346 +7fdd4afb +a84a4da1 +09636619 +64105c44 +69db5ac9 +ac93ddc6 +e6a5c204 +50b436c9 +283d5555 +50631f06 +e4c8cb25 +50370160 +0f59d328 +51f67be2 +2c46d30a +360616eb +e3e366c8 +3c38cb28 +d594a1c3 +48bc161d +cef82434 +aeabbe50 +5d87968e +a7456855 +0d15d3e4 +8ff6f5af +dcdd8d42 +ab86a6e1 +03db5ecd +da67c68a +a01a8ffd +7cb373df +12e47959 +404415c2 +01ad6a22 +e2510ced +b8a6d129 +3023ecc5 +4bbbd783 +f4ec8b1c +681352e5 +b87f4a4a +a24c8c8e +d5141a06 +ca400082 +b5448ded +29ed3d08 +22fd02f3 +bc7e9cb5 +ddeb3836 +203ce26c +2ad73baf +510593ac +677d4d01 +01348ea8 +4284b2c3 +1468c1c9 +683d3783 +ce80bb26 +d1d5852c +d712eae6 +c88e8d4f +a361412b +46d96a2f +eb4aa055 +9acd7628 +18794ae8 +afa7711d +bc7822a2 +76242a0a +24e993b3 +4aeed845 +2f720426 +e05d4b01 +b449b553 +ddecb707 +6a955f37 +cd628e53 +f6ae482a +ca4c27ef +cdf61bd0 +8f8a62c3 +2773eaab +f10470f2 +ee805808 +a8f97d40 +65fa47c9 +22fd2464 +bcb858e8 +9bbfbb90 +9023c343 +9971a939 +6e158752 +6cd97108 +2e6e298f +cb07389f +398e408c +80162d04 +3f093f78 +a2084f28 +484cb3fb +fb5440b6 +b7c924a4 +78f06ef9 +c37cc98c +4ee3a75a +d7ea84dc +d9f2b5d2 +24d4f466 +9862df9c +03dda6cf +aa3a12d0 +7cc1c832 +25dbc3bd +aa0ddc3c +9fc5abd8 +34a36cd9 +43f40ff9 +81744249 +95667a0f +5784bc71 +f610c0f7 +8caa4e5e +5d017240 +8f572b5e +0f772d97 +db5f2402 +af3851d3 +869243b9 +33811062 +ea95ef5e +a30fb220 +679d9384 +f896f38f +86d1cd0a +54bbde6b +579c293b +81b3c14e +880b3651 +33b15f2c +8108ba36 +ba65d0b4 +e2dcd9b1 +83b75ed2 +3477c94d +e46971ac +7c0cb2a3 +c6ad90de +c6f906ef +90178ba3 +ea8d581d +66ea8ad1 +7c88f89e +a97f437d +d10e063e +1327309b +b6913117 +029d716d +4660f8df +de822e2a +d69b60fc +6f57a6a4 +bc75d75f +95bb412b +8960a01e +9e67150a +6479b792 +f403f840 +7b01d9a0 +e02f2a89 +b38649b2 +ad17b5ad +45307bb0 +2045039f +e5d6e12c +9557b824 +fb2108e5 +0ed4baad +98feabd3 +f48ecf39 +b2ee0739 +fc19bfad +1d081801 +d3f2ae29 +024a4c3d +87b20ec6 +6da4fad5 +c52b5f8e +2b89e85e +1c63b114 +01074d39 +97cb803a +cb901c0b +63985851 +96e3d003 +c8b9d4a6 +9318e07c +71c23d74 +dcab49d9 +ab6399dc +cec38daa +74d5c608 +49fc605a +c18696ea +15fe4a4e +42226b85 +c37c44f9 +4a45f6c5 +a0fe1603 +ad82323c +bd2770d1 +7fbc51ec +4e94fd7f +88fd1aaf +583bc341 +fa760480 +22b00980 +81821353 +632ab46b +603ed8a5 +0433a7db +2c356176 +1c11202a +bc6b8a36 +2c4fd9a4 +8ce00b40 +f20f34e3 +73e7ce67 +a61aeaec +e773d3a8 +ccee292f +bbfdb5e8 +8327af33 +9be69d87 +c577035a +74506e62 +919b847a +43ee8cf6 +2d7ba5c7 +29861d62 +67c7761c +00c0cf3e +780bcb50 +e6a1e2ea +7a15bf06 +4aa938fc +1de2c2da +e5b7557e +ef9ac0c5 +61f42546 +788ff59f +f9cc53d7 +c8897aa6 +f00bddf8 +e0cbca17 +e83cac32 +403864c5 +762d27e5 +1f70796e +24a360aa +82a0b3e0 +7841e8c6 +8352926f +fa2da417 +c62d54af +b0de5825 +a7565058 +87add1a3 +ea60fe71 +f29947a2 +b1eaad65 +6a2e21be +0108813d +4f4c953d +a49e5f93 +66118c34 +9a17f584 +0f95c4c5 +02b9c867 +71a4bb78 +b93919cc +7b665f22 +7b460ca9 +cc8be72b +5c4783a5 +7a889b50 +02ad17bd +e2e78404 +e5848c97 +bd08bed4 +3a7402e7 +fd9d6ea5 +3cc924c0 +5aa098bf +be65d029 +3f0b24b0 +124131fa +bb578fab +99298973 +be8e8a31 +f2d6912f +fcbb6a11 +ec50554d +b4ecbce4 +119d04bb +15204412 +56c3bcdd +26d9ea7d +339dbe2a +2e097cf0 +6951cde4 +407438c8 +b3083335 +5e3afe32 +ef73f0b4 +7622471a +f505e07b +4d6f4495 +707ec18a +b67de336 +675e81f6 +a5a83bdd +9a81f9dd +ae70da65 +3b549cb8 +daf0b56a +4a990549 +282b88fc +23d26ff3 +8afc6cba +2e7e4d26 +ac5d8d16 +fd92532f +6de90931 +5039cc1d +76931f79 +166e4822 +c5d2950a +64c40353 +b2b7e021 +c39628fc +05638cc7 +066186ba +e3808c56 +042827b7 +7de67dda +d8bd8f84 +6f441cf5 +aab5f469 +269d5991 +e1c5f21d +1a4ee5ec +2bbd9003 +41cde2fc +f305ed62 +35a5c393 +de87ff87 +fb056459 +f500e1cb +040a84da +af0809a5 +88964150 +195ce981 +1452be55 +bf279e29 +cb5d6844 +168be022 +35f92e2c +db045b48 +879ccac6 +affecfe1 +b9e744cb +d6c6af4e +635b4f70 +e307ab03 +85f287b3 +0649d59a +50016374 +9c8ed289 +d9dbcb72 +56acedd9 +3015bd7a +9606a33d +bb37b5c3 +e675cfd6 +e62245eb +fb82cfe5 +b1c33ffe +6d389dca +c1e7a56a +71b9440e +2e8a689b +91a8a30b +798ee394 +2f1a67ee +29cfd71f +f258c0eb +2c1c829d +5282678c +76b42115 +d88cfb4d +1e4be8d7 +41f01e8e +89b08e39 +380ff345 +0ac20149 +7227c706 +5bd6584c +d6ee7377 +7e2503a1 +ae1dfa39 +0bc1953a +aa0d873c +63e71e46 +7083ddcc +55fcaa41 +b7ac0822 +6e895c0a +1ae85837 +fdd404ad +c52dd224 +17c5d911 +912c6d03 +19114224 +bd6afa2b +b13433e4 +020941fb +9163310a +d2dbdfe6 +fd0b1667 +5ce839a9 diff --git a/models/rank/dcn/data/sample_data/vocab/C8.txt b/models/rank/dcn/data/sample_data/vocab/C8.txt new file mode 100644 index 0000000000000000000000000000000000000000..61c11ee5c5aabab0f917ffd6e76d39c82ddc90e5 --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C8.txt @@ -0,0 +1,81 @@ +f504a6f4 +0b153874 +7b6fecd5 +235697d5 +64523cfa +316074ea +0017bc7c +afc9ca6a +a6d156f4 +13037314 +d7c4a8f5 +e350fe4f +931c3bf7 +361384ce +6a698541 +43383eb4 +73b7901e +cb66451f +f0e5818a +0fb392dd +4671807e +da1ed842 +51d76abe +5b392875 +e602701d +f0298c3c +a25968f2 +67b76963 +cbe011a6 +1296137f +d3334ebc +f1aa21a3 +23eefdc2 +322e63df +a674580f +d1b66f7a +a8d6f709 +66c1ef42 +813607cc +966033bc +e7945bc1 +77b89023 +73ba467e +169d7cc1 +8bedcc53 +9d01afb9 +bb170c38 +233428af +07a0b7e5 +560f93f8 +9c376700 +d1aaef6c +71f9a260 +449116d5 +c5e75280 +ba7cbdc6 +25611aba +56563555 +cb69809d +25239412 +093a9651 +a61cc0ef +062b5529 +c7453af1 +b621aeb8 +45f7c2dd +49dd1874 +8ee20c61 +62c159ed +c8ddd494 +1f89b562 +0b5a4776 +37e4aa92 +985e3fcb +efaa8b67 +66f29b89 +6c41e35e +5b9f3341 +271b0642 +a04b3fa3 +e6210023 diff --git a/models/rank/dcn/data/sample_data/vocab/C9.txt b/models/rank/dcn/data/sample_data/vocab/C9.txt new file mode 100644 index 0000000000000000000000000000000000000000..eddb3ff906a2aa4c5177be414452c9defbb1496b --- /dev/null +++ b/models/rank/dcn/data/sample_data/vocab/C9.txt @@ -0,0 +1,3 @@ +7cc72ec2 +a18233ea +a73ee510 diff --git a/models/rank/dcn/model.py b/models/rank/dcn/model.py index 67447fedefd180649bb018a3ea23aea216c9a2b4..89113a315284845f094857a879d70156956d3065 100755 --- a/models/rank/dcn/model.py +++ b/models/rank/dcn/model.py @@ -122,7 +122,7 @@ class Model(ModelBase): return fluid.layers.reduce_sum(fluid.layers.square(w)) def train_net(self): - self.model._init_slots() + self._init_slots() self.init_network() self.net_input = self._create_embedding_input() @@ -163,6 +163,5 @@ class Model(ModelBase): optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True) return optimizer - def infer_net(self, parameter_list): - self.model._init_slots() - self.deepfm_net() + def infer_net(self): + self.train_net() diff --git a/models/rank/deepfm/config.yaml b/models/rank/deepfm/config.yaml index 21c6039ca65d092c899de560f6f47ff350cb14e7..956b65b0c13f9242e8c84156dcfc535cf7fffae7 100755 --- a/models/rank/deepfm/config.yaml +++ b/models/rank/deepfm/config.yaml @@ -22,8 +22,8 @@ train: reader: batch_size: 2 - train_data_path: "{workspace}/data/slot_train_data" - feat_dict_name: "{workspace}/data/feat_dict_10.pkl2" + train_data_path: "{workspace}/data/sample_data/train" + feat_dict_name: "{workspace}/data/sample_data/feat_dict_10.pkl2" sparse_slots: "label feat_idx" dense_slots: "feat_value:39" diff --git a/models/rank/deepfm/data/sample_data/feat_dict_10.pkl2 b/models/rank/deepfm/data/sample_data/feat_dict_10.pkl2 new file mode 100644 index 0000000000000000000000000000000000000000..962d552ab2a094b01c1223b8359dc594aa5bbef5 Binary files /dev/null and b/models/rank/deepfm/data/sample_data/feat_dict_10.pkl2 differ diff --git a/models/rank/deepfm/data/sample_data/train/sample_train.txt b/models/rank/deepfm/data/sample_data/train/sample_train.txt new file mode 100644 index 0000000000000000000000000000000000000000..4b0308e17f74efa4272e1871e86d03c236b1945a --- /dev/null +++ b/models/rank/deepfm/data/sample_data/train/sample_train.txt @@ -0,0 +1,100 @@ +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:655161 feat_idx:0 feat_idx:1075467 feat_idx:314332 feat_idx:615411 feat_idx:733564 feat_idx:795081 feat_idx:148475 feat_idx:123424 feat_idx:582322 feat_idx:0 feat_idx:1082305 feat_idx:288355 feat_idx:328646 feat_idx:756244 feat_idx:13161 feat_idx:134834 feat_idx:734534 feat_idx:1047606 feat_idx:626828 feat_idx:0 feat_idx:476211 feat_idx:819217 feat_idx:502861 feat_idx:767167 feat_value:0.00017316017316 feat_value:1.55232499476e-05 feat_value:7.62951094835e-05 feat_value:0.0 feat_value:5.96732496653e-05 feat_value:9.27994580512e-06 feat_value:0.000266377794747 feat_value:0.000330742516951 feat_value:0.00623729280816 feat_value:0.0217391304348 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:328856 feat_idx:583609 feat_idx:356189 feat_idx:314332 feat_idx:404876 feat_idx:233441 feat_idx:144963 feat_idx:148475 feat_idx:954707 feat_idx:778340 feat_idx:598842 feat_idx:701804 feat_idx:223357 feat_idx:310528 feat_idx:805012 feat_idx:599055 feat_idx:683739 feat_idx:734534 feat_idx:94311 feat_idx:135625 feat_idx:0 feat_idx:476211 feat_idx:737768 feat_idx:502861 feat_idx:618666 feat_value:0.00034632034632 feat_value:1.16424374607e-05 feat_value:0.000671396963455 feat_value:0.00103199174407 feat_value:4.40424852812e-06 feat_value:1.85598916102e-05 feat_value:3.55170392996e-05 feat_value:0.000330742516951 feat_value:0.000137840725042 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:125230 feat_idx:244091 feat_idx:428972 feat_idx:323226 feat_idx:314332 feat_idx:615411 feat_idx:655488 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:989454 feat_idx:789125 feat_idx:274685 feat_idx:59528 feat_idx:142028 feat_idx:791919 feat_idx:339114 feat_idx:12934 feat_idx:0 feat_idx:0 feat_idx:128761 feat_idx:925828 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.00034632034632 feat_value:1.16424374607e-05 feat_value:1.52590218967e-05 feat_value:0.0144478844169 feat_value:3.31182217752e-05 feat_value:0.000206478794164 feat_value:7.10340785992e-05 feat_value:0.000330742516951 feat_value:0.00844274440884 feat_value:0.0217391304348 feat_value:0.012987012987 feat_value:0.000748502994012 feat_value:0.00608683890166 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:695357 feat_idx:541890 feat_idx:0 feat_idx:1012660 feat_idx:314332 feat_idx:404876 feat_idx:1742 feat_idx:144963 feat_idx:148475 feat_idx:456917 feat_idx:220560 feat_idx:0 feat_idx:480237 feat_idx:59528 feat_idx:402233 feat_idx:0 feat_idx:763481 feat_idx:885529 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:476211 feat_idx:68781 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.00347720798826 feat_value:0.0 feat_value:0.0 feat_value:0.000189641760152 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:518052 feat_idx:52223 feat_idx:0 feat_idx:610088 feat_idx:314332 feat_idx:85900 feat_idx:253972 feat_idx:144963 feat_idx:148475 feat_idx:581401 feat_idx:921618 feat_idx:374454 feat_idx:576858 feat_idx:288355 feat_idx:526081 feat_idx:597631 feat_idx:763481 feat_idx:468634 feat_idx:0 feat_idx:0 feat_idx:360559 feat_idx:0 feat_idx:122096 feat_idx:604513 feat_idx:0 feat_idx:0 feat_value:0.000519480519481 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:8.63578142768e-08 feat_value:0.0 feat_value:5.32755589494e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:268086 feat_idx:844726 feat_idx:589259 feat_idx:34922 feat_idx:943087 feat_idx:831162 feat_idx:687817 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:160002 feat_idx:879363 feat_idx:979424 feat_idx:59528 feat_idx:844314 feat_idx:974289 feat_idx:197974 feat_idx:82573 feat_idx:0 feat_idx:0 feat_idx:4620 feat_idx:811639 feat_idx:441547 feat_idx:578537 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.000553726305143 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000206761087563 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:74940 feat_idx:503640 feat_idx:888356 feat_idx:507702 feat_idx:943087 feat_idx:404876 feat_idx:1081499 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:202629 feat_idx:486504 feat_idx:981942 feat_idx:59528 feat_idx:404100 feat_idx:210897 feat_idx:197974 feat_idx:821035 feat_idx:0 feat_idx:0 feat_idx:627303 feat_idx:0 feat_idx:637620 feat_idx:409520 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:3.05180437934e-05 feat_value:0.0 feat_value:0.000136790777814 feat_value:0.0 feat_value:0.0 feat_value:0.000165371258475 feat_value:6.89203625211e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:541890 feat_idx:0 feat_idx:175574 feat_idx:1022525 feat_idx:85900 feat_idx:114990 feat_idx:795081 feat_idx:148475 feat_idx:391150 feat_idx:172637 feat_idx:0 feat_idx:831202 feat_idx:59528 feat_idx:402233 feat_idx:0 feat_idx:13161 feat_idx:885529 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:68781 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:2.71656874083e-05 feat_value:3.05180437934e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.77585196498e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:585875 feat_idx:460446 feat_idx:323226 feat_idx:314332 feat_idx:615411 feat_idx:453185 feat_idx:144963 feat_idx:148475 feat_idx:995582 feat_idx:409958 feat_idx:824386 feat_idx:745363 feat_idx:223357 feat_idx:782190 feat_idx:499188 feat_idx:13161 feat_idx:826986 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:122096 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000182398186884 feat_value:6.10360875868e-05 feat_value:0.00825593395253 feat_value:0.000820831024701 feat_value:0.000577676626369 feat_value:0.000497238550194 feat_value:0.00512650901273 feat_value:0.00485888555774 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00108210469363 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:952850 feat_idx:444926 feat_idx:327161 feat_idx:314332 feat_idx:0 feat_idx:48165 feat_idx:144963 feat_idx:148475 feat_idx:408072 feat_idx:220560 feat_idx:313350 feat_idx:480237 feat_idx:59528 feat_idx:767941 feat_idx:274209 feat_idx:587215 feat_idx:49542 feat_idx:0 feat_idx:0 feat_idx:918027 feat_idx:0 feat_idx:122096 feat_idx:210681 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000147470874502 feat_value:0.0 feat_value:0.00103199174407 feat_value:0.00145672679013 feat_value:4.87197154769e-05 feat_value:1.77585196498e-05 feat_value:0.000330742516951 feat_value:0.000103380543782 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:323969 feat_idx:1007141 feat_idx:1053419 feat_idx:314332 feat_idx:615411 feat_idx:926319 feat_idx:144963 feat_idx:31348 feat_idx:754940 feat_idx:35969 feat_idx:469428 feat_idx:394416 feat_idx:223357 feat_idx:878804 feat_idx:9647 feat_idx:197974 feat_idx:316785 feat_idx:734534 feat_idx:94311 feat_idx:409871 feat_idx:0 feat_idx:476211 feat_idx:755653 feat_idx:522503 feat_idx:379855 feat_value:0.0 feat_value:1.94040624345e-05 feat_value:0.00964370183871 feat_value:0.0 feat_value:0.00245126655825 feat_value:0.0 feat_value:0.0 feat_value:0.000826856292376 feat_value:0.00223991178194 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:985125 feat_idx:0 feat_idx:0 feat_idx:360051 feat_idx:0 feat_idx:304911 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:887175 feat_idx:0 feat_idx:701330 feat_idx:59528 feat_idx:670083 feat_idx:0 feat_idx:587215 feat_idx:334296 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:0 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:3.49273123821e-05 feat_value:9.15541313802e-05 feat_value:0.0061919504644 feat_value:1.81783199053e-05 feat_value:0.000252878523189 feat_value:1.77585196498e-05 feat_value:0.00115759880933 feat_value:0.00368723939488 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000811578520222 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:685954 feat_idx:439682 feat_idx:0 feat_idx:983567 feat_idx:314332 feat_idx:404876 feat_idx:909239 feat_idx:795081 feat_idx:148475 feat_idx:36347 feat_idx:663689 feat_idx:0 feat_idx:398775 feat_idx:59528 feat_idx:996203 feat_idx:150509 feat_idx:13161 feat_idx:183924 feat_idx:0 feat_idx:0 feat_idx:379144 feat_idx:0 feat_idx:122096 feat_idx:604513 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:6.32570989578e-05 feat_value:0.0 feat_value:0.000301894834047 feat_value:0.0 feat_value:0.000137840725042 feat_value:0.0 feat_value:0.017316017316 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:181401 feat_idx:702327 feat_idx:0 feat_idx:334017 feat_idx:314332 feat_idx:0 feat_idx:191120 feat_idx:299805 feat_idx:148475 feat_idx:442554 feat_idx:480141 feat_idx:0 feat_idx:16042 feat_idx:288355 feat_idx:928072 feat_idx:0 feat_idx:599055 feat_idx:91753 feat_idx:297696 feat_idx:330429 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:590863 feat_idx:525837 feat_idx:413413 feat_value:0.0 feat_value:1.94040624345e-05 feat_value:0.000167849240864 feat_value:0.00515995872033 feat_value:0.000443101945054 feat_value:7.88795393435e-05 feat_value:3.55170392996e-05 feat_value:0.000661485033901 feat_value:0.000172300906303 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:506931 feat_idx:655161 feat_idx:0 feat_idx:49997 feat_idx:1076285 feat_idx:85900 feat_idx:79619 feat_idx:144963 feat_idx:148475 feat_idx:817613 feat_idx:933612 feat_idx:0 feat_idx:733763 feat_idx:288355 feat_idx:565066 feat_idx:310463 feat_idx:854924 feat_idx:378884 feat_idx:734534 feat_idx:1047606 feat_idx:884047 feat_idx:0 feat_idx:241528 feat_idx:40100 feat_idx:502861 feat_idx:752176 feat_value:0.0 feat_value:0.000209563874293 feat_value:0.00128175783932 feat_value:0.00412796697626 feat_value:0.000156868969634 feat_value:6.03196477333e-05 feat_value:1.77585196498e-05 feat_value:0.000661485033901 feat_value:0.000275681450084 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:328239 feat_idx:910743 feat_idx:915614 feat_idx:360051 feat_idx:615411 feat_idx:49489 feat_idx:1007823 feat_idx:148475 feat_idx:754940 feat_idx:224964 feat_idx:235573 feat_idx:226878 feat_idx:693306 feat_idx:277510 feat_idx:277345 feat_idx:197974 feat_idx:969807 feat_idx:0 feat_idx:0 feat_idx:539201 feat_idx:0 feat_idx:476211 feat_idx:650546 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.94040624345e-05 feat_value:1.52590218967e-05 feat_value:0.0185758513932 feat_value:0.000874588764088 feat_value:0.0 feat_value:0.0 feat_value:0.000165371258475 feat_value:0.0450049967263 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.00270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:211148 feat_idx:0 feat_idx:0 feat_idx:943087 feat_idx:615411 feat_idx:98894 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:683585 feat_idx:0 feat_idx:460786 feat_idx:59528 feat_idx:883086 feat_idx:0 feat_idx:587215 feat_idx:197941 feat_idx:734534 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:537421 feat_idx:24736 feat_idx:962390 feat_value:0.00017316017316 feat_value:0.00384200436203 feat_value:0.0 feat_value:0.00206398348813 feat_value:4.53378524953e-06 feat_value:4.63997290256e-06 feat_value:1.77585196498e-05 feat_value:0.000330742516951 feat_value:6.89203625211e-05 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:518052 feat_idx:894672 feat_idx:521506 feat_idx:105841 feat_idx:360051 feat_idx:108674 feat_idx:642013 feat_idx:144963 feat_idx:148475 feat_idx:165260 feat_idx:212992 feat_idx:1009370 feat_idx:775147 feat_idx:223357 feat_idx:274230 feat_idx:833849 feat_idx:13161 feat_idx:57230 feat_idx:0 feat_idx:0 feat_idx:844134 feat_idx:925828 feat_idx:122096 feat_idx:141692 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.0 feat_value:0.0 feat_value:0.000716640321776 feat_value:0.00129223245336 feat_value:5.32755589494e-05 feat_value:0.000826856292376 feat_value:0.00423860229505 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:328856 feat_idx:506639 feat_idx:78755 feat_idx:463568 feat_idx:108674 feat_idx:152478 feat_idx:888742 feat_idx:148475 feat_idx:14838 feat_idx:682657 feat_idx:993166 feat_idx:502067 feat_idx:288355 feat_idx:190674 feat_idx:472919 feat_idx:13161 feat_idx:683739 feat_idx:734534 feat_idx:1047606 feat_idx:768815 feat_idx:0 feat_idx:122096 feat_idx:1010006 feat_idx:522503 feat_idx:963757 feat_value:0.0 feat_value:0.000104781937146 feat_value:6.10360875868e-05 feat_value:0.00206398348813 feat_value:8.87758330766e-05 feat_value:2.78398374153e-05 feat_value:0.000106551117899 feat_value:0.00165371258475 feat_value:0.00286019504463 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:738089 feat_idx:606995 feat_idx:964206 feat_idx:269737 feat_idx:360051 feat_idx:85900 feat_idx:608469 feat_idx:144963 feat_idx:148475 feat_idx:307543 feat_idx:405000 feat_idx:65140 feat_idx:749745 feat_idx:218723 feat_idx:686050 feat_idx:594443 feat_idx:13161 feat_idx:96125 feat_idx:0 feat_idx:0 feat_idx:946269 feat_idx:0 feat_idx:943262 feat_idx:395579 feat_idx:0 feat_idx:0 feat_value:0.00121212121212 feat_value:0.000407485311125 feat_value:0.0 feat_value:0.0030959752322 feat_value:3.3679547568e-05 feat_value:3.47997967692e-05 feat_value:0.000124309637549 feat_value:0.00248056887713 feat_value:0.000516902718908 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:906706 feat_idx:439682 feat_idx:4257 feat_idx:430841 feat_idx:314332 feat_idx:615411 feat_idx:998076 feat_idx:66687 feat_idx:148475 feat_idx:754940 feat_idx:648531 feat_idx:779745 feat_idx:718037 feat_idx:288355 feat_idx:360204 feat_idx:944849 feat_idx:13161 feat_idx:631544 feat_idx:0 feat_idx:0 feat_idx:177363 feat_idx:0 feat_idx:122096 feat_idx:1072137 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000194040624345 feat_value:0.0 feat_value:0.0 feat_value:0.000276301826779 feat_value:8.81594851486e-05 feat_value:0.000337411873346 feat_value:0.00165371258475 feat_value:0.00492780592026 feat_value:0.0 feat_value:0.04329004329 feat_value:0.0 feat_value:0.000811578520222 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:0 feat_idx:388090 feat_idx:314332 feat_idx:615411 feat_idx:595457 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:298800 feat_idx:0 feat_idx:349549 feat_idx:59528 feat_idx:28300 feat_idx:0 feat_idx:587215 feat_idx:750233 feat_idx:832803 feat_idx:330429 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:612991 feat_idx:502861 feat_idx:691775 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.00122072175174 feat_value:0.0 feat_value:7.97946203918e-05 feat_value:0.000665836111517 feat_value:1.77585196498e-05 feat_value:0.000661485033901 feat_value:0.00158516833799 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:439682 feat_idx:998375 feat_idx:373577 feat_idx:314332 feat_idx:108674 feat_idx:76428 feat_idx:66687 feat_idx:148475 feat_idx:636407 feat_idx:840978 feat_idx:221841 feat_idx:110276 feat_idx:223357 feat_idx:104371 feat_idx:535541 feat_idx:599055 feat_idx:892333 feat_idx:0 feat_idx:0 feat_idx:519737 feat_idx:0 feat_idx:476211 feat_idx:26849 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.000213626306554 feat_value:0.0061919504644 feat_value:0.000307951965711 feat_value:0.000396717683169 feat_value:3.55170392996e-05 feat_value:0.000330742516951 feat_value:0.000206761087563 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000811578520222 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:507093 feat_idx:28898 feat_idx:1067105 feat_idx:314332 feat_idx:615411 feat_idx:875540 feat_idx:144963 feat_idx:148475 feat_idx:801559 feat_idx:965246 feat_idx:93410 feat_idx:648840 feat_idx:59528 feat_idx:63243 feat_idx:1041736 feat_idx:763481 feat_idx:206486 feat_idx:0 feat_idx:0 feat_idx:623203 feat_idx:0 feat_idx:377126 feat_idx:1017627 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:4.65697498428e-05 feat_value:0.00013733119707 feat_value:0.0175438596491 feat_value:0.000508388452648 feat_value:0.0 feat_value:0.0 feat_value:0.00380353894493 feat_value:0.00441090320135 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.00229947247396 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:506931 feat_idx:195832 feat_idx:460446 feat_idx:323226 feat_idx:314332 feat_idx:615411 feat_idx:414506 feat_idx:144963 feat_idx:148475 feat_idx:127380 feat_idx:385804 feat_idx:824386 feat_idx:203621 feat_idx:59528 feat_idx:631370 feat_idx:499188 feat_idx:587215 feat_idx:855342 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:969590 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:3.05180437934e-05 feat_value:0.0 feat_value:0.000267277435187 feat_value:0.000194878861907 feat_value:1.77585196498e-05 feat_value:0.00446502397883 feat_value:0.0024466728695 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:506931 feat_idx:704711 feat_idx:701980 feat_idx:42486 feat_idx:314332 feat_idx:0 feat_idx:786460 feat_idx:144963 feat_idx:148475 feat_idx:466556 feat_idx:775018 feat_idx:404666 feat_idx:1065844 feat_idx:39086 feat_idx:992008 feat_idx:506428 feat_idx:599055 feat_idx:750233 feat_idx:256242 feat_idx:330429 feat_idx:218251 feat_idx:0 feat_idx:122096 feat_idx:221229 feat_idx:502861 feat_idx:24246 feat_value:0.0 feat_value:2.71656874083e-05 feat_value:0.000244144350347 feat_value:0.0 feat_value:0.000255835024795 feat_value:4.63997290256e-06 feat_value:3.55170392996e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:518052 feat_idx:1049859 feat_idx:0 feat_idx:1096 feat_idx:314332 feat_idx:615411 feat_idx:714816 feat_idx:795081 feat_idx:148475 feat_idx:900313 feat_idx:855314 feat_idx:0 feat_idx:603555 feat_idx:59528 feat_idx:211559 feat_idx:0 feat_idx:379814 feat_idx:311468 feat_idx:734534 feat_idx:330429 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:383498 feat_idx:917031 feat_idx:879752 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.000305180437934 feat_value:0.0165118679051 feat_value:6.68409482503e-05 feat_value:0.000215758739969 feat_value:0.000745857825292 feat_value:0.00529188027121 feat_value:0.0314276853096 feat_value:0.0 feat_value:0.0649350649351 feat_value:0.000249500998004 feat_value:0.00216420938726 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:695357 feat_idx:439682 feat_idx:433159 feat_idx:217415 feat_idx:360051 feat_idx:615411 feat_idx:235834 feat_idx:144963 feat_idx:148475 feat_idx:343946 feat_idx:489781 feat_idx:168412 feat_idx:950158 feat_idx:59528 feat_idx:419036 feat_idx:782554 feat_idx:854924 feat_idx:502656 feat_idx:0 feat_idx:0 feat_idx:1082526 feat_idx:0 feat_idx:476211 feat_idx:972567 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:8.92586871988e-05 feat_value:3.05180437934e-05 feat_value:0.00206398348813 feat_value:0.000310369984511 feat_value:0.000394397696717 feat_value:3.55170392996e-05 feat_value:0.000496113775426 feat_value:0.000827044350253 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:983083 feat_idx:555506 feat_idx:311508 feat_idx:360051 feat_idx:831162 feat_idx:662893 feat_idx:144963 feat_idx:148475 feat_idx:453404 feat_idx:437228 feat_idx:866349 feat_idx:987534 feat_idx:223357 feat_idx:872276 feat_idx:719825 feat_idx:13161 feat_idx:146364 feat_idx:0 feat_idx:0 feat_idx:1083188 feat_idx:0 feat_idx:122096 feat_idx:33938 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000314345811439 feat_value:3.05180437934e-05 feat_value:0.015479876161 feat_value:0.000186144268674 feat_value:0.000197198848359 feat_value:7.10340785992e-05 feat_value:0.00297668265255 feat_value:0.00792584168993 feat_value:0.0 feat_value:0.012987012987 feat_value:0.0 feat_value:0.00202894630055 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:638696 feat_idx:232393 feat_idx:537609 feat_idx:314332 feat_idx:85900 feat_idx:158968 feat_idx:144963 feat_idx:148475 feat_idx:411650 feat_idx:220560 feat_idx:633471 feat_idx:480237 feat_idx:39086 feat_idx:611928 feat_idx:584121 feat_idx:13161 feat_idx:747604 feat_idx:0 feat_idx:0 feat_idx:204145 feat_idx:0 feat_idx:476211 feat_idx:485685 feat_idx:0 feat_idx:0 feat_value:0.000519480519481 feat_value:1.16424374607e-05 feat_value:6.10360875868e-05 feat_value:0.0134158926729 feat_value:9.672075199e-06 feat_value:6.49596206358e-05 feat_value:5.32755589494e-05 feat_value:0.00578799404663 feat_value:0.000930424894035 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00175842012715 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:518052 feat_idx:245713 feat_idx:964221 feat_idx:976933 feat_idx:360051 feat_idx:404876 feat_idx:469669 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:496768 feat_idx:978607 feat_idx:788967 feat_idx:59528 feat_idx:717827 feat_idx:227446 feat_idx:13161 feat_idx:251726 feat_idx:0 feat_idx:0 feat_idx:2400 feat_idx:0 feat_idx:476211 feat_idx:942610 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.00108662749633 feat_value:0.0 feat_value:0.0030959752322 feat_value:0.000315983242439 feat_value:5.56796748307e-05 feat_value:0.000106551117899 feat_value:0.000496113775426 feat_value:0.00337709776353 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:181401 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:314332 feat_idx:404876 feat_idx:286011 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:966589 feat_idx:824386 feat_idx:429895 feat_idx:863222 feat_idx:406685 feat_idx:499188 feat_idx:197974 feat_idx:251433 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:321110 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.000213994663778 feat_value:0.0 feat_value:0.0 feat_value:0.00611873656359 feat_value:0.00334263758227 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:0 feat_idx:268086 feat_idx:83142 feat_idx:288162 feat_idx:1060646 feat_idx:360051 feat_idx:615411 feat_idx:714816 feat_idx:144963 feat_idx:148475 feat_idx:138291 feat_idx:855314 feat_idx:165496 feat_idx:603555 feat_idx:59528 feat_idx:224690 feat_idx:316295 feat_idx:854924 feat_idx:257823 feat_idx:0 feat_idx:0 feat_idx:704548 feat_idx:0 feat_idx:122096 feat_idx:782694 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:1.16424374607e-05 feat_value:1.52590218967e-05 feat_value:0.0 feat_value:6.16163004865e-05 feat_value:6.95995935384e-06 feat_value:0.000284136314397 feat_value:0.00181908384323 feat_value:0.00172300906303 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.000249500998004 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:563443 feat_idx:51995 feat_idx:49997 feat_idx:314332 feat_idx:0 feat_idx:595457 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:188162 feat_idx:721984 feat_idx:349549 feat_idx:199920 feat_idx:180762 feat_idx:310463 feat_idx:197974 feat_idx:319863 feat_idx:734534 feat_idx:330429 feat_idx:467968 feat_idx:0 feat_idx:122096 feat_idx:40100 feat_idx:502861 feat_idx:777305 feat_value:0.000692640692641 feat_value:1.16424374607e-05 feat_value:0.000839246204318 feat_value:0.00825593395253 feat_value:3.70906812319e-05 feat_value:3.01598238666e-05 feat_value:7.10340785992e-05 feat_value:0.0019844551017 feat_value:0.000447982356387 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00108210469363 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:281207 feat_idx:430926 feat_idx:909211 feat_idx:314332 feat_idx:0 feat_idx:928918 feat_idx:144963 feat_idx:148475 feat_idx:904134 feat_idx:535335 feat_idx:327558 feat_idx:639245 feat_idx:223357 feat_idx:18380 feat_idx:471487 feat_idx:13161 feat_idx:188469 feat_idx:0 feat_idx:0 feat_idx:500616 feat_idx:0 feat_idx:122096 feat_idx:657898 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:0.00101677287157 feat_value:1.52590218967e-05 feat_value:0.00103199174407 feat_value:2.15894535692e-07 feat_value:2.31998645128e-06 feat_value:0.000106551117899 feat_value:0.000165371258475 feat_value:3.44601812606e-05 feat_value:0.0217391304348 feat_value:0.012987012987 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:87449 feat_idx:691591 feat_idx:466372 feat_idx:360051 feat_idx:108674 feat_idx:537959 feat_idx:144963 feat_idx:148475 feat_idx:882632 feat_idx:1037965 feat_idx:783604 feat_idx:521533 feat_idx:59528 feat_idx:185313 feat_idx:972394 feat_idx:339114 feat_idx:644343 feat_idx:603603 feat_idx:330429 feat_idx:722203 feat_idx:925828 feat_idx:377126 feat_idx:221229 feat_idx:343446 feat_idx:24246 feat_value:0.0 feat_value:0.000504505623297 feat_value:1.52590218967e-05 feat_value:0.0030959752322 feat_value:7.26701007139e-05 feat_value:4.40797425743e-05 feat_value:0.000461721510895 feat_value:0.00281131139408 feat_value:0.0163685860988 feat_value:0.0 feat_value:0.038961038961 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:87868 feat_idx:585875 feat_idx:143202 feat_idx:105841 feat_idx:314332 feat_idx:615411 feat_idx:685294 feat_idx:795081 feat_idx:148475 feat_idx:754940 feat_idx:853239 feat_idx:1062322 feat_idx:529712 feat_idx:223357 feat_idx:715789 feat_idx:334774 feat_idx:197974 feat_idx:339749 feat_idx:0 feat_idx:0 feat_idx:540979 feat_idx:0 feat_idx:122096 feat_idx:141692 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0010041254855 feat_value:0.0 feat_value:0.0 feat_value:0.000165371258475 feat_value:0.00251559323202 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:154881 feat_idx:664380 feat_idx:0 feat_idx:470673 feat_idx:314332 feat_idx:108674 feat_idx:610634 feat_idx:144963 feat_idx:148475 feat_idx:125722 feat_idx:153800 feat_idx:0 feat_idx:297062 feat_idx:223357 feat_idx:712970 feat_idx:124318 feat_idx:13161 feat_idx:521259 feat_idx:734534 feat_idx:330429 feat_idx:0 feat_idx:969590 feat_idx:217677 feat_idx:643925 feat_idx:24736 feat_idx:941404 feat_value:0.00103896103896 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:3.95087000316e-05 feat_value:9.27994580512e-05 feat_value:0.000461721510895 feat_value:0.00545725152968 feat_value:0.00248113305076 feat_value:0.0217391304348 feat_value:0.012987012987 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:245713 feat_idx:987054 feat_idx:399764 feat_idx:360051 feat_idx:615411 feat_idx:684605 feat_idx:144963 feat_idx:148475 feat_idx:874792 feat_idx:107682 feat_idx:879950 feat_idx:321212 feat_idx:288355 feat_idx:369087 feat_idx:762311 feat_idx:13161 feat_idx:879575 feat_idx:0 feat_idx:0 feat_idx:1086254 feat_idx:0 feat_idx:122096 feat_idx:942610 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:4.57770656901e-05 feat_value:0.0123839009288 feat_value:0.000315551453367 feat_value:0.000225038685774 feat_value:3.55170392996e-05 feat_value:0.00347279642798 feat_value:0.00310141631345 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00162315704044 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:506931 feat_idx:714652 feat_idx:0 feat_idx:213479 feat_idx:314332 feat_idx:0 feat_idx:432079 feat_idx:144963 feat_idx:148475 feat_idx:666980 feat_idx:405740 feat_idx:0 feat_idx:705197 feat_idx:288355 feat_idx:104862 feat_idx:0 feat_idx:339114 feat_idx:679030 feat_idx:734534 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:1057480 feat_idx:343446 feat_idx:502409 feat_value:0.00138528138528 feat_value:1.16424374607e-05 feat_value:0.00022888532845 feat_value:0.0206398348813 feat_value:4.96557432092e-06 feat_value:5.56796748307e-05 feat_value:0.000142068157198 feat_value:0.00380353894493 feat_value:0.000827044350253 feat_value:0.0434782608696 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00270526173407 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:83142 feat_idx:460446 feat_idx:323226 feat_idx:360051 feat_idx:108674 feat_idx:714816 feat_idx:795081 feat_idx:148475 feat_idx:900313 feat_idx:855314 feat_idx:824386 feat_idx:603555 feat_idx:59528 feat_idx:95559 feat_idx:499188 feat_idx:339114 feat_idx:882666 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:122096 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000159113311963 feat_value:3.05180437934e-05 feat_value:0.00412796697626 feat_value:0.000134675011365 feat_value:0.000345677981241 feat_value:0.00113654525759 feat_value:0.00793782040681 feat_value:0.00478996519522 feat_value:0.0 feat_value:0.025974025974 feat_value:0.00149700598802 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:507093 feat_idx:968965 feat_idx:115714 feat_idx:314332 feat_idx:108674 feat_idx:585814 feat_idx:144963 feat_idx:148475 feat_idx:1067472 feat_idx:905164 feat_idx:292795 feat_idx:1053010 feat_idx:223357 feat_idx:460894 feat_idx:592287 feat_idx:339114 feat_idx:1024304 feat_idx:0 feat_idx:0 feat_idx:1006115 feat_idx:0 feat_idx:122096 feat_idx:831861 feat_idx:0 feat_idx:0 feat_value:0.0152380952381 feat_value:0.00124962162078 feat_value:0.0 feat_value:0.00412796697626 feat_value:2.15894535692e-07 feat_value:9.27994580512e-06 feat_value:0.00158050824883 feat_value:0.00661485033901 feat_value:0.00303249595093 feat_value:0.0652173913043 feat_value:0.017316017316 feat_value:0.00299401197605 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:160536 feat_idx:572549 feat_idx:314332 feat_idx:0 feat_idx:984584 feat_idx:144963 feat_idx:148475 feat_idx:120200 feat_idx:190379 feat_idx:768743 feat_idx:628725 feat_idx:288355 feat_idx:967940 feat_idx:824472 feat_idx:854924 feat_idx:575938 feat_idx:568485 feat_idx:330429 feat_idx:469863 feat_idx:0 feat_idx:122096 feat_idx:26849 feat_idx:502861 feat_idx:9838 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.000274662394141 feat_value:0.00515995872033 feat_value:7.26701007139e-05 feat_value:0.000185598916102 feat_value:0.000674823746692 feat_value:0.000826856292376 feat_value:0.00327371721975 feat_value:0.0 feat_value:0.021645021645 feat_value:0.0 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:506931 feat_idx:439682 feat_idx:462322 feat_idx:892535 feat_idx:314332 feat_idx:615411 feat_idx:183327 feat_idx:66687 feat_idx:31348 feat_idx:754940 feat_idx:780959 feat_idx:1076845 feat_idx:127420 feat_idx:59528 feat_idx:1034303 feat_idx:3336 feat_idx:587215 feat_idx:786401 feat_idx:0 feat_idx:0 feat_idx:273839 feat_idx:0 feat_idx:476211 feat_idx:841950 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000116424374607 feat_value:0.0 feat_value:0.0 feat_value:0.00487394867997 feat_value:0.00488589146639 feat_value:0.0 feat_value:0.000330742516951 feat_value:0.00327371721975 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:268086 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:943087 feat_idx:615411 feat_idx:646596 feat_idx:144963 feat_idx:148475 feat_idx:320091 feat_idx:786096 feat_idx:824386 feat_idx:708545 feat_idx:863222 feat_idx:406685 feat_idx:499188 feat_idx:599055 feat_idx:251433 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:969590 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.000211317571535 feat_value:4.63997290256e-05 feat_value:1.77585196498e-05 feat_value:0.00115759880933 feat_value:0.000689203625211 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:585875 feat_idx:1083253 feat_idx:105841 feat_idx:314332 feat_idx:615411 feat_idx:183043 feat_idx:66687 feat_idx:148475 feat_idx:754940 feat_idx:785290 feat_idx:78319 feat_idx:769776 feat_idx:223357 feat_idx:715789 feat_idx:30992 feat_idx:854924 feat_idx:339749 feat_idx:0 feat_idx:0 feat_idx:87470 feat_idx:0 feat_idx:122096 feat_idx:141692 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000135828437042 feat_value:0.0 feat_value:0.00103199174407 feat_value:0.000404802254423 feat_value:0.0 feat_value:0.0 feat_value:0.00611873656359 feat_value:0.00062028326269 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:34199 feat_idx:460446 feat_idx:323226 feat_idx:360051 feat_idx:615411 feat_idx:617010 feat_idx:1041627 feat_idx:148475 feat_idx:754940 feat_idx:224964 feat_idx:824386 feat_idx:226878 feat_idx:288355 feat_idx:303932 feat_idx:499188 feat_idx:13161 feat_idx:628988 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:122096 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:3.49273123821e-05 feat_value:9.15541313802e-05 feat_value:0.015479876161 feat_value:0.000872775249989 feat_value:0.0011762331308 feat_value:0.000124309637549 feat_value:0.00694559285596 feat_value:0.0124056652538 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:664380 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:108674 feat_idx:248083 feat_idx:144963 feat_idx:148475 feat_idx:804470 feat_idx:868888 feat_idx:0 feat_idx:797434 feat_idx:59528 feat_idx:747120 feat_idx:0 feat_idx:13161 feat_idx:521259 feat_idx:495815 feat_idx:330429 feat_idx:0 feat_idx:11923 feat_idx:407810 feat_idx:566713 feat_idx:24736 feat_idx:915104 feat_value:0.00536796536797 feat_value:7.7616249738e-05 feat_value:3.05180437934e-05 feat_value:0.0113519091847 feat_value:1.25218830701e-05 feat_value:5.33596883794e-05 feat_value:0.000550514109144 feat_value:0.00380353894493 feat_value:0.00223991178194 feat_value:0.0434782608696 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00148789395374 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:439682 feat_idx:661250 feat_idx:819482 feat_idx:314332 feat_idx:404876 feat_idx:173004 feat_idx:795081 feat_idx:148475 feat_idx:133411 feat_idx:790823 feat_idx:853868 feat_idx:963286 feat_idx:223357 feat_idx:961787 feat_idx:355708 feat_idx:13161 feat_idx:618619 feat_idx:0 feat_idx:0 feat_idx:542491 feat_idx:0 feat_idx:377126 feat_idx:320543 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:0.00925573778126 feat_value:0.000198367284657 feat_value:0.00412796697626 feat_value:1.72715628554e-06 feat_value:9.27994580512e-06 feat_value:0.00122533785584 feat_value:0.000496113775426 feat_value:0.0209862503877 feat_value:0.0217391304348 feat_value:0.047619047619 feat_value:0.0 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:695357 feat_idx:881707 feat_idx:387392 feat_idx:38631 feat_idx:314332 feat_idx:0 feat_idx:608594 feat_idx:144963 feat_idx:148475 feat_idx:756085 feat_idx:879727 feat_idx:1083007 feat_idx:253536 feat_idx:223357 feat_idx:462961 feat_idx:367591 feat_idx:13161 feat_idx:144331 feat_idx:0 feat_idx:0 feat_idx:853418 feat_idx:0 feat_idx:122096 feat_idx:783958 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000748996809972 feat_value:0.0 feat_value:0.0 feat_value:7.01225451928e-05 feat_value:1.39199187077e-05 feat_value:0.000514997069844 feat_value:0.000992227550852 feat_value:0.00255005341328 feat_value:0.0 feat_value:0.038961038961 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:87449 feat_idx:536408 feat_idx:619856 feat_idx:729041 feat_idx:615411 feat_idx:689549 feat_idx:1041627 feat_idx:148475 feat_idx:754940 feat_idx:42362 feat_idx:181047 feat_idx:385295 feat_idx:223357 feat_idx:751650 feat_idx:367088 feat_idx:339114 feat_idx:644343 feat_idx:809973 feat_idx:330429 feat_idx:28648 feat_idx:0 feat_idx:217677 feat_idx:305383 feat_idx:343446 feat_idx:1083427 feat_value:0.0 feat_value:8.53778747118e-05 feat_value:0.000122072175174 feat_value:0.00928792569659 feat_value:6.50274341504e-05 feat_value:7.19195799897e-05 feat_value:5.32755589494e-05 feat_value:0.00115759880933 feat_value:0.00117164616286 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00121736778033 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:506931 feat_idx:439682 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:108674 feat_idx:713567 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:963705 feat_idx:0 feat_idx:599643 feat_idx:59528 feat_idx:967283 feat_idx:0 feat_idx:587215 feat_idx:434748 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:925828 feat_idx:476211 feat_idx:753350 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:0.000128066812068 feat_value:0.0 feat_value:0.0030959752322 feat_value:5.00875322806e-06 feat_value:7.19195799897e-05 feat_value:1.77585196498e-05 feat_value:0.000496113775426 feat_value:0.000103380543782 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:432429 feat_idx:319665 feat_idx:183269 feat_idx:85674 feat_idx:463568 feat_idx:0 feat_idx:130525 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:392441 feat_idx:1050223 feat_idx:862081 feat_idx:288355 feat_idx:484086 feat_idx:1077738 feat_idx:339114 feat_idx:934587 feat_idx:734534 feat_idx:94311 feat_idx:548757 feat_idx:0 feat_idx:321110 feat_idx:686449 feat_idx:474802 feat_idx:789529 feat_value:0.0 feat_value:3.49273123821e-05 feat_value:3.05180437934e-05 feat_value:0.0030959752322 feat_value:0.000119994182938 feat_value:0.0 feat_value:0.0 feat_value:0.000496113775426 feat_value:0.000447982356387 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:702327 feat_idx:0 feat_idx:217102 feat_idx:314332 feat_idx:85900 feat_idx:331250 feat_idx:888742 feat_idx:148475 feat_idx:197667 feat_idx:872960 feat_idx:0 feat_idx:925332 feat_idx:223357 feat_idx:57227 feat_idx:0 feat_idx:339114 feat_idx:91753 feat_idx:305875 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:476211 feat_idx:117207 feat_idx:502861 feat_idx:866455 feat_value:0.0 feat_value:1.94040624345e-05 feat_value:0.000335698481727 feat_value:0.0030959752322 feat_value:0.000202379537758 feat_value:0.00056143672121 feat_value:0.000106551117899 feat_value:0.000992227550852 feat_value:0.00630621317068 feat_value:0.0 feat_value:0.004329004329 feat_value:0.000998003992016 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:849120 feat_idx:982375 feat_idx:949507 feat_idx:82312 feat_idx:314332 feat_idx:615411 feat_idx:641839 feat_idx:66687 feat_idx:148475 feat_idx:351286 feat_idx:1067936 feat_idx:1021395 feat_idx:423678 feat_idx:288355 feat_idx:491071 feat_idx:210032 feat_idx:13161 feat_idx:384630 feat_idx:661313 feat_idx:330429 feat_idx:466643 feat_idx:0 feat_idx:407810 feat_idx:818126 feat_idx:35064 feat_idx:312157 feat_value:0.0 feat_value:0.00022508712424 feat_value:0.000244144350347 feat_value:0.00722394220846 feat_value:7.32314265067e-05 feat_value:0.000167039024492 feat_value:3.55170392996e-05 feat_value:0.00115759880933 feat_value:0.00327371721975 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000946841606925 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:518052 feat_idx:702327 feat_idx:0 feat_idx:450730 feat_idx:314332 feat_idx:615411 feat_idx:491223 feat_idx:27549 feat_idx:148475 feat_idx:24666 feat_idx:283209 feat_idx:0 feat_idx:91978 feat_idx:59528 feat_idx:89255 feat_idx:282181 feat_idx:13161 feat_idx:91753 feat_idx:633602 feat_idx:94311 feat_idx:0 feat_idx:0 feat_idx:377126 feat_idx:26849 feat_idx:502861 feat_idx:989849 feat_value:0.00103896103896 feat_value:1.16424374607e-05 feat_value:0.000427252613107 feat_value:0.0 feat_value:1.33854612129e-06 feat_value:0.0 feat_value:0.000106551117899 feat_value:0.0 feat_value:0.0 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:181401 feat_idx:704711 feat_idx:1084300 feat_idx:958176 feat_idx:314332 feat_idx:615411 feat_idx:809683 feat_idx:536544 feat_idx:148475 feat_idx:197667 feat_idx:23597 feat_idx:771551 feat_idx:444756 feat_idx:59528 feat_idx:28300 feat_idx:351738 feat_idx:339114 feat_idx:750233 feat_idx:734534 feat_idx:330429 feat_idx:5418 feat_idx:0 feat_idx:476211 feat_idx:221229 feat_idx:1007264 feat_idx:24246 feat_value:0.0 feat_value:8.53778747118e-05 feat_value:0.00013733119707 feat_value:0.0030959752322 feat_value:0.000622380767493 feat_value:0.00313894166858 feat_value:5.32755589494e-05 feat_value:0.000165371258475 feat_value:0.0124745856163 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:746729 feat_idx:742925 feat_idx:205831 feat_idx:912022 feat_idx:0 feat_idx:653684 feat_idx:144963 feat_idx:148475 feat_idx:891197 feat_idx:122292 feat_idx:282954 feat_idx:561978 feat_idx:223357 feat_idx:222724 feat_idx:538143 feat_idx:599055 feat_idx:706003 feat_idx:729650 feat_idx:1047606 feat_idx:475068 feat_idx:0 feat_idx:122096 feat_idx:744639 feat_idx:530010 feat_idx:785927 feat_value:0.0 feat_value:8.14970622249e-05 feat_value:0.00018310826276 feat_value:0.00825593395253 feat_value:0.000387098902496 feat_value:0.000102079403856 feat_value:3.55170392996e-05 feat_value:0.0019844551017 feat_value:0.00196423033185 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00108210469363 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:201945 feat_idx:631742 feat_idx:306726 feat_idx:186386 feat_idx:314332 feat_idx:615411 feat_idx:337962 feat_idx:989504 feat_idx:31348 feat_idx:1068694 feat_idx:746192 feat_idx:359807 feat_idx:597620 feat_idx:59528 feat_idx:834098 feat_idx:463498 feat_idx:13161 feat_idx:144824 feat_idx:734534 feat_idx:1047606 feat_idx:447900 feat_idx:0 feat_idx:476211 feat_idx:421203 feat_idx:24736 feat_idx:272262 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:3.05180437934e-05 feat_value:0.0 feat_value:0.00767176914691 feat_value:0.0 feat_value:0.0 feat_value:0.000496113775426 feat_value:6.89203625211e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:894961 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:615411 feat_idx:927764 feat_idx:144963 feat_idx:148475 feat_idx:967242 feat_idx:1062285 feat_idx:0 feat_idx:736367 feat_idx:59528 feat_idx:562438 feat_idx:0 feat_idx:587215 feat_idx:896897 feat_idx:960559 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:377126 feat_idx:428982 feat_idx:525837 feat_idx:697480 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.000305180437934 feat_value:0.0 feat_value:0.000190505338295 feat_value:0.00198358841584 feat_value:0.0 feat_value:0.000661485033901 feat_value:0.017988214618 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:506931 feat_idx:889703 feat_idx:428972 feat_idx:323226 feat_idx:314332 feat_idx:108674 feat_idx:731191 feat_idx:66687 feat_idx:31348 feat_idx:754940 feat_idx:639052 feat_idx:789125 feat_idx:318898 feat_idx:223357 feat_idx:275810 feat_idx:791919 feat_idx:189960 feat_idx:990004 feat_idx:0 feat_idx:0 feat_idx:128761 feat_idx:0 feat_idx:441547 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000228967936727 feat_value:3.05180437934e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:3.44601812606e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:0 feat_idx:8 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:12 feat_idx:0 feat_idx:695357 feat_idx:702327 feat_idx:112382 feat_idx:364273 feat_idx:314332 feat_idx:615411 feat_idx:680585 feat_idx:144963 feat_idx:31348 feat_idx:776916 feat_idx:972993 feat_idx:307964 feat_idx:509894 feat_idx:59528 feat_idx:89255 feat_idx:498076 feat_idx:854924 feat_idx:91753 feat_idx:734534 feat_idx:94311 feat_idx:797195 feat_idx:0 feat_idx:377126 feat_idx:520021 feat_idx:522503 feat_idx:516793 feat_value:0.0 feat_value:0.000306584186465 feat_value:7.62951094835e-05 feat_value:0.0 feat_value:0.00199486550979 feat_value:0.0 feat_value:0.0 feat_value:0.00115759880933 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:711611 feat_idx:461913 feat_idx:1019942 feat_idx:360051 feat_idx:615411 feat_idx:1055981 feat_idx:948645 feat_idx:148475 feat_idx:754940 feat_idx:380775 feat_idx:858292 feat_idx:571110 feat_idx:288355 feat_idx:122497 feat_idx:986082 feat_idx:13161 feat_idx:87215 feat_idx:734534 feat_idx:94311 feat_idx:675199 feat_idx:0 feat_idx:122096 feat_idx:294199 feat_idx:522503 feat_idx:87571 feat_value:0.00675324675325 feat_value:4.26889373559e-05 feat_value:0.000640878919661 feat_value:0.0330237358101 feat_value:1.16583049274e-06 feat_value:7.65595528922e-05 feat_value:0.000692582266342 feat_value:0.00396891020341 feat_value:0.00110272580034 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00432841877452 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:72868 feat_idx:17848 feat_idx:314332 feat_idx:615411 feat_idx:363835 feat_idx:144963 feat_idx:31348 feat_idx:1069123 feat_idx:258719 feat_idx:753245 feat_idx:820316 feat_idx:39086 feat_idx:992008 feat_idx:325584 feat_idx:13161 feat_idx:750233 feat_idx:321110 feat_idx:94311 feat_idx:644181 feat_idx:0 feat_idx:476211 feat_idx:221229 feat_idx:502861 feat_idx:952230 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.000839246204318 feat_value:0.00515995872033 feat_value:0.000625101038643 feat_value:0.0 feat_value:0.0 feat_value:0.000826856292376 feat_value:3.44601812606e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:31161 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:85900 feat_idx:834217 feat_idx:760883 feat_idx:148475 feat_idx:697060 feat_idx:390104 feat_idx:0 feat_idx:916053 feat_idx:59528 feat_idx:608516 feat_idx:0 feat_idx:587215 feat_idx:473726 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:476211 feat_idx:0 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:1.55232499476e-05 feat_value:7.62951094835e-05 feat_value:0.00825593395253 feat_value:3.02252349969e-07 feat_value:1.85598916102e-05 feat_value:1.77585196498e-05 feat_value:0.0013229700678 feat_value:0.000275681450084 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00108210469363 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:746729 feat_idx:0 feat_idx:415419 feat_idx:314332 feat_idx:85900 feat_idx:341613 feat_idx:341430 feat_idx:148475 feat_idx:219803 feat_idx:273068 feat_idx:0 feat_idx:427647 feat_idx:59528 feat_idx:86971 feat_idx:85678 feat_idx:13161 feat_idx:706003 feat_idx:970598 feat_idx:94311 feat_idx:378304 feat_idx:0 feat_idx:476211 feat_idx:26849 feat_idx:502861 feat_idx:1082916 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.000106813153277 feat_value:0.0030959752322 feat_value:0.000435545636305 feat_value:0.000155439092236 feat_value:0.000106551117899 feat_value:0.000496113775426 feat_value:0.00196423033185 feat_value:0.0 feat_value:0.012987012987 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:0 feat_idx:695357 feat_idx:655161 feat_idx:410781 feat_idx:572549 feat_idx:314332 feat_idx:615411 feat_idx:438251 feat_idx:1017442 feat_idx:148475 feat_idx:754940 feat_idx:939988 feat_idx:175321 feat_idx:940584 feat_idx:223357 feat_idx:400890 feat_idx:229140 feat_idx:13161 feat_idx:512136 feat_idx:734534 feat_idx:94311 feat_idx:59009 feat_idx:0 feat_idx:122096 feat_idx:26849 feat_idx:502861 feat_idx:602609 feat_value:0.00121212121212 feat_value:1.55232499476e-05 feat_value:0.000610360875868 feat_value:0.0 feat_value:6.12276903223e-05 feat_value:5.33596883794e-05 feat_value:0.00261050238852 feat_value:0.0 feat_value:0.000241221268824 feat_value:0.0 feat_value:0.017316017316 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:181401 feat_idx:563443 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:85900 feat_idx:1086355 feat_idx:66687 feat_idx:148475 feat_idx:754940 feat_idx:294725 feat_idx:0 feat_idx:937034 feat_idx:59528 feat_idx:827972 feat_idx:0 feat_idx:197974 feat_idx:319863 feat_idx:734534 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:808702 feat_idx:502861 feat_idx:792764 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.000152590218967 feat_value:0.00206398348813 feat_value:0.000153069225806 feat_value:0.0 feat_value:0.0 feat_value:0.000330742516951 feat_value:0.000103380543782 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:962300 feat_idx:623087 feat_idx:0 feat_idx:53376 feat_idx:314332 feat_idx:615411 feat_idx:264532 feat_idx:144963 feat_idx:148475 feat_idx:14838 feat_idx:682657 feat_idx:0 feat_idx:502067 feat_idx:59528 feat_idx:519185 feat_idx:0 feat_idx:854924 feat_idx:372673 feat_idx:764350 feat_idx:330429 feat_idx:0 feat_idx:925828 feat_idx:377126 feat_idx:383664 feat_idx:522503 feat_idx:14052 feat_value:0.000865800865801 feat_value:0.000209563874293 feat_value:0.0 feat_value:0.00515995872033 feat_value:1.97327605623e-05 feat_value:1.15999322564e-05 feat_value:8.8792598249e-05 feat_value:0.00115759880933 feat_value:0.000379061993866 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.000249500998004 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:244091 feat_idx:428972 feat_idx:323226 feat_idx:314332 feat_idx:615411 feat_idx:253814 feat_idx:144963 feat_idx:148475 feat_idx:367991 feat_idx:359193 feat_idx:789125 feat_idx:173541 feat_idx:59528 feat_idx:433504 feat_idx:791919 feat_idx:587215 feat_idx:884062 feat_idx:0 feat_idx:0 feat_idx:128761 feat_idx:0 feat_idx:637620 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.00022888532845 feat_value:0.00206398348813 feat_value:0.000868414180368 feat_value:0.00070759586764 feat_value:1.77585196498e-05 feat_value:0.00711096411444 feat_value:0.00785692132741 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:518052 feat_idx:631742 feat_idx:209780 feat_idx:691946 feat_idx:463568 feat_idx:404876 feat_idx:781648 feat_idx:66687 feat_idx:148475 feat_idx:294231 feat_idx:673759 feat_idx:780141 feat_idx:636360 feat_idx:223357 feat_idx:656844 feat_idx:720701 feat_idx:13161 feat_idx:284891 feat_idx:734534 feat_idx:330429 feat_idx:564494 feat_idx:0 feat_idx:122096 feat_idx:529367 feat_idx:24736 feat_idx:225414 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:6.10360875868e-05 feat_value:0.0030959752322 feat_value:7.29291741568e-05 feat_value:0.000426877507035 feat_value:0.000213102235798 feat_value:0.00760707788986 feat_value:0.00182638960681 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:87449 feat_idx:0 feat_idx:0 feat_idx:943087 feat_idx:615411 feat_idx:14123 feat_idx:128514 feat_idx:148475 feat_idx:338941 feat_idx:655530 feat_idx:0 feat_idx:945302 feat_idx:288355 feat_idx:1078572 feat_idx:0 feat_idx:587215 feat_idx:644343 feat_idx:215210 feat_idx:330429 feat_idx:0 feat_idx:0 feat_idx:217677 feat_idx:830506 feat_idx:502861 feat_idx:560344 feat_value:0.000692640692641 feat_value:1.16424374607e-05 feat_value:0.00135805294881 feat_value:0.00412796697626 feat_value:2.09849488693e-05 feat_value:1.15999322564e-05 feat_value:7.10340785992e-05 feat_value:0.00115759880933 feat_value:0.000137840725042 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:76757 feat_idx:0 feat_idx:748549 feat_idx:729041 feat_idx:404876 feat_idx:897525 feat_idx:66687 feat_idx:148475 feat_idx:809357 feat_idx:739161 feat_idx:0 feat_idx:571774 feat_idx:223357 feat_idx:726585 feat_idx:450365 feat_idx:13161 feat_idx:1064696 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:925828 feat_idx:476211 feat_idx:381001 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.00016299412445 feat_value:3.05180437934e-05 feat_value:0.00103199174407 feat_value:0.000144347086564 feat_value:2.31998645128e-06 feat_value:0.000301894834047 feat_value:0.000330742516951 feat_value:3.44601812606e-05 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:695357 feat_idx:702327 feat_idx:593344 feat_idx:1065368 feat_idx:463568 feat_idx:85900 feat_idx:669411 feat_idx:27549 feat_idx:148475 feat_idx:227359 feat_idx:1043530 feat_idx:320625 feat_idx:575561 feat_idx:223357 feat_idx:57227 feat_idx:1021160 feat_idx:854924 feat_idx:91753 feat_idx:943801 feat_idx:94311 feat_idx:758526 feat_idx:0 feat_idx:122096 feat_idx:154807 feat_idx:522503 feat_idx:406770 feat_value:0.0 feat_value:1.94040624345e-05 feat_value:1.52590218967e-05 feat_value:0.00206398348813 feat_value:0.000346985697764 feat_value:0.00038047777801 feat_value:0.000319653353696 feat_value:0.00214982636018 feat_value:0.0126468865226 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:518052 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:314332 feat_idx:108674 feat_idx:2775 feat_idx:144963 feat_idx:31348 feat_idx:892705 feat_idx:1040029 feat_idx:824386 feat_idx:524213 feat_idx:863222 feat_idx:406685 feat_idx:499188 feat_idx:599055 feat_idx:251433 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.00307174745383 feat_value:0.000329438076082 feat_value:0.0 feat_value:0.00115759880933 feat_value:0.00217099141941 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:328856 feat_idx:583609 feat_idx:356189 feat_idx:314332 feat_idx:0 feat_idx:407260 feat_idx:144963 feat_idx:148475 feat_idx:699806 feat_idx:967004 feat_idx:598842 feat_idx:676678 feat_idx:223357 feat_idx:310528 feat_idx:805012 feat_idx:599055 feat_idx:683739 feat_idx:734534 feat_idx:94311 feat_idx:135625 feat_idx:0 feat_idx:122096 feat_idx:737768 feat_idx:522503 feat_idx:618666 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.000167849240864 feat_value:0.0030959752322 feat_value:0.000698807433128 feat_value:0.00028999830641 feat_value:3.55170392996e-05 feat_value:0.000496113775426 feat_value:0.00354939866984 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:0 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:849120 feat_idx:439682 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:615411 feat_idx:443349 feat_idx:1007823 feat_idx:31348 feat_idx:754940 feat_idx:1072328 feat_idx:0 feat_idx:321212 feat_idx:59528 feat_idx:163883 feat_idx:0 feat_idx:189960 feat_idx:1040747 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:925828 feat_idx:122096 feat_idx:0 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000554956185627 feat_value:3.05180437934e-05 feat_value:0.00206398348813 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000330742516951 feat_value:6.89203625211e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:738089 feat_idx:439682 feat_idx:374405 feat_idx:984218 feat_idx:943087 feat_idx:108674 feat_idx:884166 feat_idx:144963 feat_idx:148475 feat_idx:683571 feat_idx:374802 feat_idx:530646 feat_idx:826201 feat_idx:223357 feat_idx:43619 feat_idx:1001991 feat_idx:339114 feat_idx:603612 feat_idx:0 feat_idx:0 feat_idx:60686 feat_idx:0 feat_idx:122096 feat_idx:138318 feat_idx:0 feat_idx:0 feat_value:0.00034632034632 feat_value:1.16424374607e-05 feat_value:0.0 feat_value:0.00722394220846 feat_value:1.91282558623e-05 feat_value:8.58394986973e-05 feat_value:0.000124309637549 feat_value:0.00562262278816 feat_value:0.00971777111548 feat_value:0.0217391304348 feat_value:0.017316017316 feat_value:0.00174650698603 feat_value:0.000946841606925 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:1049859 feat_idx:420263 feat_idx:271401 feat_idx:360051 feat_idx:615411 feat_idx:714816 feat_idx:144963 feat_idx:148475 feat_idx:900313 feat_idx:855314 feat_idx:74337 feat_idx:603555 feat_idx:288355 feat_idx:650698 feat_idx:322858 feat_idx:339114 feat_idx:311468 feat_idx:489978 feat_idx:330429 feat_idx:101492 feat_idx:0 feat_idx:217677 feat_idx:221229 feat_idx:917031 feat_idx:24246 feat_value:0.00034632034632 feat_value:1.55232499476e-05 feat_value:0.000915541313802 feat_value:0.077399380805 feat_value:2.63391333544e-06 feat_value:0.000280718360605 feat_value:0.00092344302179 feat_value:0.00644947908054 feat_value:0.00854612495262 feat_value:0.0217391304348 feat_value:0.034632034632 feat_value:0.000249500998004 feat_value:0.0104152576762 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:541890 feat_idx:93486 feat_idx:892417 feat_idx:314332 feat_idx:0 feat_idx:870784 feat_idx:66687 feat_idx:148475 feat_idx:1064406 feat_idx:605532 feat_idx:908441 feat_idx:411003 feat_idx:223357 feat_idx:415710 feat_idx:177994 feat_idx:13161 feat_idx:721813 feat_idx:0 feat_idx:0 feat_idx:702388 feat_idx:0 feat_idx:122096 feat_idx:68781 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:0.000143590062015 feat_value:3.05180437934e-05 feat_value:0.0433436532508 feat_value:1.41626815414e-05 feat_value:0.000102079403856 feat_value:0.000266377794747 feat_value:0.00810319166529 feat_value:0.00199869051311 feat_value:0.0217391304348 feat_value:0.038961038961 feat_value:0.0 feat_value:0.00568104964155 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:268086 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:463568 feat_idx:404876 feat_idx:679269 feat_idx:1007823 feat_idx:148475 feat_idx:754940 feat_idx:392943 feat_idx:824386 feat_idx:502022 feat_idx:863222 feat_idx:406685 feat_idx:499188 feat_idx:763481 feat_idx:251433 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.0 feat_value:0.0 feat_value:0.000644186115598 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:52223 feat_idx:0 feat_idx:610088 feat_idx:360051 feat_idx:108674 feat_idx:207287 feat_idx:144963 feat_idx:148475 feat_idx:198726 feat_idx:1050332 feat_idx:0 feat_idx:575881 feat_idx:863222 feat_idx:428650 feat_idx:56538 feat_idx:587215 feat_idx:520546 feat_idx:0 feat_idx:0 feat_idx:3328 feat_idx:0 feat_idx:321110 feat_idx:604513 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.0 feat_value:0.00103199174407 feat_value:0.00087290478671 feat_value:0.000153119105784 feat_value:1.77585196498e-05 feat_value:0.000165371258475 feat_value:3.44601812606e-05 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:506931 feat_idx:664380 feat_idx:464058 feat_idx:794391 feat_idx:314332 feat_idx:615411 feat_idx:1008575 feat_idx:144963 feat_idx:148475 feat_idx:811905 feat_idx:262025 feat_idx:792836 feat_idx:853632 feat_idx:863222 feat_idx:190922 feat_idx:989611 feat_idx:13161 feat_idx:402822 feat_idx:622170 feat_idx:94311 feat_idx:626744 feat_idx:925828 feat_idx:122096 feat_idx:423382 feat_idx:24736 feat_idx:1081226 feat_value:0.00225108225108 feat_value:6.20929997904e-05 feat_value:0.00122072175174 feat_value:0.0330237358101 feat_value:1.63216268983e-05 feat_value:0.000266798441897 feat_value:0.000266377794747 feat_value:0.00611873656359 feat_value:0.00196423033185 feat_value:0.0217391304348 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00649262816177 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:894961 feat_idx:594422 feat_idx:823711 feat_idx:360051 feat_idx:615411 feat_idx:919751 feat_idx:888742 feat_idx:148475 feat_idx:725649 feat_idx:522685 feat_idx:14144 feat_idx:242991 feat_idx:288355 feat_idx:645605 feat_idx:99736 feat_idx:379814 feat_idx:896897 feat_idx:734534 feat_idx:330429 feat_idx:710067 feat_idx:0 feat_idx:407810 feat_idx:474780 feat_idx:525837 feat_idx:815828 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.0013885709926 feat_value:0.00412796697626 feat_value:1.26514197916e-05 feat_value:0.000510397019281 feat_value:0.000621548187743 feat_value:0.000661485033901 feat_value:0.0022743719632 feat_value:0.0 feat_value:0.021645021645 feat_value:0.000249500998004 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:0 feat_idx:268086 feat_idx:704711 feat_idx:539260 feat_idx:133619 feat_idx:943087 feat_idx:108674 feat_idx:277955 feat_idx:795081 feat_idx:148475 feat_idx:46173 feat_idx:414978 feat_idx:796305 feat_idx:317564 feat_idx:59528 feat_idx:28300 feat_idx:252652 feat_idx:854924 feat_idx:750233 feat_idx:637425 feat_idx:330429 feat_idx:538163 feat_idx:0 feat_idx:122096 feat_idx:623412 feat_idx:917031 feat_idx:421993 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.000244133540961 feat_value:0.0 feat_value:0.0 feat_value:0.000661485033901 feat_value:0.000516902718908 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:631742 feat_idx:0 feat_idx:618078 feat_idx:314332 feat_idx:831162 feat_idx:302234 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:683585 feat_idx:0 feat_idx:460786 feat_idx:59528 feat_idx:834098 feat_idx:0 feat_idx:13161 feat_idx:144824 feat_idx:734534 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:225853 feat_idx:24736 feat_idx:83301 feat_value:0.0 feat_value:0.000217325499267 feat_value:0.0 feat_value:0.0103199174407 feat_value:0.000282821841757 feat_value:0.000227358672225 feat_value:0.000603789668093 feat_value:0.00181908384323 feat_value:0.0120266032599 feat_value:0.0 feat_value:0.038961038961 feat_value:0.0 feat_value:0.00135263086704 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:552317 feat_idx:56734 feat_idx:314332 feat_idx:615411 feat_idx:205494 feat_idx:66687 feat_idx:148475 feat_idx:721787 feat_idx:258719 feat_idx:1026950 feat_idx:820316 feat_idx:59528 feat_idx:28300 feat_idx:783420 feat_idx:13161 feat_idx:750233 feat_idx:505787 feat_idx:330429 feat_idx:515764 feat_idx:0 feat_idx:476211 feat_idx:221229 feat_idx:502861 feat_idx:24246 feat_value:0.00103896103896 feat_value:7.7616249738e-06 feat_value:0.000152590218967 feat_value:0.0061919504644 feat_value:0.0 feat_value:0.0 feat_value:0.000106551117899 feat_value:0.00148834132628 feat_value:0.000310141631345 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:294042 feat_idx:507045 feat_idx:549419 feat_idx:314332 feat_idx:0 feat_idx:1012202 feat_idx:795081 feat_idx:148475 feat_idx:68578 feat_idx:717684 feat_idx:462100 feat_idx:729242 feat_idx:59528 feat_idx:182004 feat_idx:253871 feat_idx:763481 feat_idx:256400 feat_idx:0 feat_idx:0 feat_idx:915751 feat_idx:0 feat_idx:122096 feat_idx:1030847 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:1.52590218967e-05 feat_value:0.0030959752322 feat_value:0.000125262009609 feat_value:0.0 feat_value:0.0 feat_value:0.000496113775426 feat_value:0.000310141631345 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:181401 feat_idx:439682 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:0 feat_idx:1027059 feat_idx:144963 feat_idx:148475 feat_idx:307216 feat_idx:1086145 feat_idx:0 feat_idx:784143 feat_idx:59528 feat_idx:127555 feat_idx:0 feat_idx:13161 feat_idx:757164 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:0 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:0.000100901124659 feat_value:1.52590218967e-05 feat_value:0.0144478844169 feat_value:2.41801879975e-06 feat_value:3.47997967692e-05 feat_value:0.000177585196498 feat_value:0.00578799404663 feat_value:0.00554808918295 feat_value:0.0217391304348 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00202894630055 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:849120 feat_idx:704711 feat_idx:160536 feat_idx:572549 feat_idx:360051 feat_idx:0 feat_idx:731718 feat_idx:66687 feat_idx:148475 feat_idx:31385 feat_idx:1047396 feat_idx:768743 feat_idx:258527 feat_idx:863222 feat_idx:866128 feat_idx:824472 feat_idx:599055 feat_idx:575938 feat_idx:568485 feat_idx:94311 feat_idx:469863 feat_idx:0 feat_idx:122096 feat_idx:26849 feat_idx:502861 feat_idx:9838 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.00114442664225 feat_value:0.0227038183695 feat_value:0.000255273699002 feat_value:0.000419917547682 feat_value:3.55170392996e-05 feat_value:0.00363816768646 feat_value:0.00234329232572 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00297578790748 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:447935 feat_idx:937213 feat_idx:905937 feat_idx:314332 feat_idx:404876 feat_idx:142618 feat_idx:144963 feat_idx:148475 feat_idx:750865 feat_idx:596218 feat_idx:919681 feat_idx:840670 feat_idx:59528 feat_idx:380839 feat_idx:380828 feat_idx:13161 feat_idx:197572 feat_idx:1030936 feat_idx:94311 feat_idx:827510 feat_idx:0 feat_idx:377126 feat_idx:288434 feat_idx:24736 feat_idx:933741 feat_value:0.0 feat_value:0.000504505623297 feat_value:3.05180437934e-05 feat_value:0.0237358101135 feat_value:0.000683824352351 feat_value:5.33596883794e-05 feat_value:7.10340785992e-05 feat_value:0.00396891020341 feat_value:0.000792584168993 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00311105099418 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:695357 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:314332 feat_idx:404876 feat_idx:195437 feat_idx:144963 feat_idx:148475 feat_idx:303093 feat_idx:895160 feat_idx:824386 feat_idx:332768 feat_idx:288355 feat_idx:452911 feat_idx:499188 feat_idx:339114 feat_idx:1026477 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:407810 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.00100192336124 feat_value:0.0 feat_value:0.0 feat_value:0.00529188027121 feat_value:0.0013094868879 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:0 feat_idx:8 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:268086 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:943087 feat_idx:615411 feat_idx:831536 feat_idx:144963 feat_idx:31348 feat_idx:1084149 feat_idx:472585 feat_idx:824386 feat_idx:1085274 feat_idx:863222 feat_idx:406685 feat_idx:499188 feat_idx:13161 feat_idx:251433 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:969590 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.0294215028194 feat_value:0.0 feat_value:0.0 feat_value:0.00181908384323 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:29151 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:615411 feat_idx:351823 feat_idx:144963 feat_idx:148475 feat_idx:633435 feat_idx:734591 feat_idx:0 feat_idx:346678 feat_idx:59528 feat_idx:246568 feat_idx:0 feat_idx:13161 feat_idx:669279 feat_idx:734534 feat_idx:94311 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:311968 feat_idx:1007264 feat_idx:210855 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.000976577401389 feat_value:0.0113519091847 feat_value:6.45092872648e-05 feat_value:0.00019951883481 feat_value:0.000266377794747 feat_value:0.00214982636018 feat_value:0.00796030187119 feat_value:0.0 feat_value:0.017316017316 feat_value:0.0 feat_value:0.00148789395374 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:268086 feat_idx:655161 feat_idx:160536 feat_idx:572549 feat_idx:943087 feat_idx:108674 feat_idx:179440 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:216593 feat_idx:768743 feat_idx:272886 feat_idx:288355 feat_idx:1059113 feat_idx:824472 feat_idx:599055 feat_idx:512136 feat_idx:734534 feat_idx:94311 feat_idx:469863 feat_idx:0 feat_idx:476211 feat_idx:26849 feat_idx:502861 feat_idx:507836 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:1.52590218967e-05 feat_value:0.0 feat_value:0.000125348367423 feat_value:4.63997290256e-06 feat_value:5.32755589494e-05 feat_value:0.0 feat_value:6.89203625211e-05 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:439682 feat_idx:434330 feat_idx:626900 feat_idx:360051 feat_idx:615411 feat_idx:448250 feat_idx:66687 feat_idx:31348 feat_idx:621494 feat_idx:345898 feat_idx:171523 feat_idx:728643 feat_idx:288355 feat_idx:993766 feat_idx:479691 feat_idx:599055 feat_idx:786401 feat_idx:0 feat_idx:0 feat_idx:914361 feat_idx:0 feat_idx:407810 feat_idx:253237 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000419127748585 feat_value:1.52590218967e-05 feat_value:0.00103199174407 feat_value:0.00740600297347 feat_value:0.0 feat_value:0.0 feat_value:0.000165371258475 feat_value:0.000447982356387 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:599320 feat_idx:36543 feat_idx:348417 feat_idx:314332 feat_idx:615411 feat_idx:507688 feat_idx:795081 feat_idx:148475 feat_idx:1085001 feat_idx:538920 feat_idx:698736 feat_idx:914324 feat_idx:223357 feat_idx:726559 feat_idx:327135 feat_idx:13161 feat_idx:214732 feat_idx:324501 feat_idx:1047606 feat_idx:434899 feat_idx:0 feat_idx:377126 feat_idx:221229 feat_idx:522503 feat_idx:24246 feat_value:0.0 feat_value:0.000147470874502 feat_value:0.0013733119707 feat_value:0.00206398348813 feat_value:0.00178026634132 feat_value:0.00081663523085 feat_value:0.0 feat_value:0.000826856292376 feat_value:0.00151624797546 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:0 feat_idx:417270 feat_idx:314332 feat_idx:404876 feat_idx:180197 feat_idx:144963 feat_idx:148475 feat_idx:891898 feat_idx:832883 feat_idx:0 feat_idx:406751 feat_idx:59528 feat_idx:28300 feat_idx:80459 feat_idx:587215 feat_idx:750233 feat_idx:52536 feat_idx:1047606 feat_idx:584293 feat_idx:0 feat_idx:476211 feat_idx:26849 feat_idx:502861 feat_idx:983005 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.00119020370794 feat_value:0.00103199174407 feat_value:0.000683737994537 feat_value:0.000510397019281 feat_value:1.77585196498e-05 feat_value:0.000165371258475 feat_value:3.44601812606e-05 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:506931 feat_idx:123566 feat_idx:961529 feat_idx:810019 feat_idx:314332 feat_idx:615411 feat_idx:475867 feat_idx:795081 feat_idx:148475 feat_idx:697060 feat_idx:1069621 feat_idx:370551 feat_idx:696973 feat_idx:69630 feat_idx:396064 feat_idx:95177 feat_idx:854924 feat_idx:488825 feat_idx:0 feat_idx:0 feat_idx:581782 feat_idx:0 feat_idx:476211 feat_idx:289148 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.0066672358525 feat_value:0.0 feat_value:0.00103199174407 feat_value:0.000325784854359 feat_value:4.40797425743e-05 feat_value:0.000266377794747 feat_value:0.000165371258475 feat_value:0.00299803576967 feat_value:0.0 feat_value:0.030303030303 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:995515 feat_idx:139394 feat_idx:943087 feat_idx:0 feat_idx:546815 feat_idx:144963 feat_idx:148475 feat_idx:364765 feat_idx:552750 feat_idx:920037 feat_idx:816538 feat_idx:223357 feat_idx:790588 feat_idx:560935 feat_idx:13161 feat_idx:750233 feat_idx:734534 feat_idx:1047606 feat_idx:361734 feat_idx:0 feat_idx:122096 feat_idx:434883 feat_idx:502861 feat_idx:203213 feat_value:0.0 feat_value:0.000197921436832 feat_value:4.57770656901e-05 feat_value:0.00206398348813 feat_value:0.000625316933178 feat_value:0.000874634892132 feat_value:0.000142068157198 feat_value:0.000330742516951 feat_value:0.00975223129674 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 diff --git a/models/rank/deepfm/model.py b/models/rank/deepfm/model.py index 0c87b8c869db27b055038e00fe9f6a2efbeb1e29..deb63c40f2aecc9ee6469f34338d858b09daf067 100755 --- a/models/rank/deepfm/model.py +++ b/models/rank/deepfm/model.py @@ -135,7 +135,7 @@ class Model(ModelBase): y_dnn) def train_net(self): - self.model._init_slots() + self._init_slots() self.deepfm_net() # ------------------------- Cost(logloss) -------------------------- @@ -162,6 +162,5 @@ class Model(ModelBase): optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True) return optimizer - def infer_net(self, parameter_list): - self.model._init_slots() - self.deepfm_net() + def infer_net(self): + self.train_net() diff --git a/models/rank/dnn/config.yaml b/models/rank/dnn/config.yaml index 16e0be0b8fb5535d495e9278879081b77b127fa0..ff59d9ef023da6dbaee01fda519abd9cfa75b1e3 100755 --- a/models/rank/dnn/config.yaml +++ b/models/rank/dnn/config.yaml @@ -23,7 +23,7 @@ train: reader: batch_size: 2 - train_data_path: "{workspace}/data/slot_train_data" + train_data_path: "{workspace}/data/sample_data/train" reader_debug_mode: False sparse_slots: "click 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26" dense_slots: "dense_var:13" diff --git a/models/rank/dnn/data/sample_data/train/sample_train.txt b/models/rank/dnn/data/sample_data/train/sample_train.txt new file mode 100644 index 0000000000000000000000000000000000000000..b2b2e2022a8601d60b6e47ea9665dcc314bd04b6 --- /dev/null +++ b/models/rank/dnn/data/sample_data/train/sample_train.txt @@ -0,0 +1,80 @@ +click:0 dense_feature:0.0 dense_feature:0.00497512437811 dense_feature:0.05 dense_feature:0.08 dense_feature:0.207421875 dense_feature:0.028 dense_feature:0.35 dense_feature:0.08 dense_feature:0.082 dense_feature:0.0 dense_feature:0.4 dense_feature:0.0 dense_feature:0.08 1:737395 2:210498 3:903564 4:286224 5:286835 6:906818 7:906116 8:67180 9:27346 10:51086 11:142177 12:95024 13:157883 14:873363 15:600281 16:812592 17:228085 18:35900 19:880474 20:984402 21:100885 22:26235 23:410878 24:798162 25:499868 26:306163 +click:1 dense_feature:0.0 dense_feature:0.932006633499 dense_feature:0.02 dense_feature:0.14 dense_feature:0.0395625 dense_feature:0.328 dense_feature:0.98 dense_feature:0.12 dense_feature:1.886 dense_feature:0.0 dense_feature:1.8 dense_feature:0.0 dense_feature:0.14 1:715353 2:761523 3:432904 4:892267 5:515218 6:948614 7:266726 8:67180 9:27346 10:266081 11:286126 12:789480 13:49621 14:255651 15:47663 16:79797 17:342789 18:616331 19:880474 20:984402 21:242209 22:26235 23:669531 24:26284 25:269955 26:187951 +click:0 dense_feature:0.0 dense_feature:0.00829187396352 dense_feature:0.08 dense_feature:0.06 dense_feature:0.14125 dense_feature:0.076 dense_feature:0.05 dense_feature:0.22 dense_feature:0.208 dense_feature:0.0 dense_feature:0.2 dense_feature:0.0 dense_feature:0.06 1:737395 2:952384 3:511141 4:271077 5:286835 6:948614 7:903547 8:507110 9:27346 10:56047 11:612953 12:747707 13:977426 14:671506 15:158148 16:833738 17:342789 18:427155 19:880474 20:537425 21:916237 22:26235 23:468277 24:676936 25:751788 26:363967 +click:0 dense_feature:0.0 dense_feature:0.124378109453 dense_feature:0.02 dense_feature:0.04 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.08 dense_feature:0.024 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.04 1:210127 2:286436 3:183920 4:507656 5:286835 6:906818 7:199553 8:67180 9:502607 10:708281 11:809876 12:888238 13:375164 14:202774 15:459895 16:475933 17:555571 18:847163 19:26230 20:26229 21:808836 22:191474 23:410878 24:315120 25:26224 26:26223 +click:0 dense_feature:0.1 dense_feature:0.0149253731343 dense_feature:0.34 dense_feature:0.32 dense_feature:0.016421875 dense_feature:0.098 dense_feature:0.04 dense_feature:0.96 dense_feature:0.202 dense_feature:0.1 dense_feature:0.2 dense_feature:0.0 dense_feature:0.32 1:230803 2:817085 3:539110 4:388629 5:286835 6:948614 7:586040 8:67180 9:27346 10:271155 11:176640 12:827381 13:36881 14:202774 15:397299 16:411672 17:342789 18:474060 19:880474 20:984402 21:216871 22:26235 23:761351 24:787115 25:884722 26:904135 +click:0 dense_feature:0.0 dense_feature:0.00829187396352 dense_feature:0.13 dense_feature:0.04 dense_feature:0.246203125 dense_feature:0.108 dense_feature:0.05 dense_feature:0.04 dense_feature:0.03 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.04 1:737395 2:64837 3:259267 4:336976 5:515218 6:154084 7:847938 8:67180 9:27346 10:708281 11:776766 12:964800 13:324323 14:873363 15:212708 16:637238 17:681378 18:895034 19:673458 20:984402 21:18600 22:26235 23:410878 24:787115 25:884722 26:355412 +click:0 dense_feature:0.0 dense_feature:0.028192371476 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0245625 dense_feature:0.016 dense_feature:0.04 dense_feature:0.12 dense_feature:0.016 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.0 1:737395 2:554760 3:661483 4:263696 5:938478 6:906818 7:786926 8:67180 9:27346 10:245862 11:668197 12:745676 13:432600 14:413795 15:751427 16:272410 17:342789 18:422136 19:26230 20:26229 21:452501 22:26235 23:51381 24:776636 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.00497512437811 dense_feature:1.95 dense_feature:0.28 dense_feature:0.092828125 dense_feature:0.57 dense_feature:0.06 dense_feature:0.4 dense_feature:0.4 dense_feature:0.0 dense_feature:0.2 dense_feature:0.0 dense_feature:0.4 1:371155 2:817085 3:773609 4:555449 5:938478 6:906818 7:166117 8:507110 9:27346 10:545822 11:316654 12:172765 13:989600 14:255651 15:792372 16:606361 17:342789 18:566554 19:880474 20:984402 21:235256 22:191474 23:700326 24:787115 25:884722 26:569095 +click:0 dense_feature:0.0 dense_feature:0.0912106135987 dense_feature:0.01 dense_feature:0.02 dense_feature:0.06625 dense_feature:0.018 dense_feature:0.05 dense_feature:0.06 dense_feature:0.098 dense_feature:0.0 dense_feature:0.4 dense_feature:0.0 dense_feature:0.04 1:230803 2:531472 3:284417 4:661677 5:938478 6:553107 7:21150 8:49466 9:27346 10:526914 11:164508 12:631773 13:882348 14:873363 15:523948 16:687081 17:342789 18:271301 19:26230 20:26229 21:647160 22:26235 23:410878 24:231695 25:26224 26:26223 +click:1 dense_feature:0.0 dense_feature:0.00663349917081 dense_feature:0.01 dense_feature:0.02 dense_feature:0.02153125 dense_feature:0.092 dense_feature:0.05 dense_feature:0.68 dense_feature:0.472 dense_feature:0.0 dense_feature:0.3 dense_feature:0.0 dense_feature:0.02 1:737395 2:532829 3:320762 4:887282 5:286835 6:25207 7:640357 8:67180 9:27346 10:695831 11:739268 12:835325 13:402539 14:873363 15:125813 16:168896 17:342789 18:374414 19:26230 20:26229 21:850229 22:26235 23:410878 24:480027 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.00497512437811 dense_feature:0.05 dense_feature:0.04 dense_feature:0.086125 dense_feature:0.098 dense_feature:0.15 dense_feature:0.06 dense_feature:0.228 dense_feature:0.0 dense_feature:0.2 dense_feature:0.0 dense_feature:0.04 1:210127 2:999497 3:646348 4:520638 5:938478 6:906818 7:438398 8:67180 9:27346 10:975902 11:532544 12:708828 13:815045 14:255651 15:896230 16:663630 17:342789 18:820094 19:687226 20:537425 21:481536 22:26235 23:761351 24:888170 25:250729 26:381125 +click:1 dense_feature:0.1 dense_feature:0.00331674958541 dense_feature:0.02 dense_feature:0.02 dense_feature:0.00078125 dense_feature:0.002 dense_feature:0.73 dense_feature:0.08 dense_feature:0.254 dense_feature:0.1 dense_feature:1.4 dense_feature:0.0 dense_feature:0.02 1:715353 2:342833 3:551901 4:73418 5:286835 6:446063 7:219517 8:67180 9:27346 10:668726 11:40711 12:921745 13:361076 14:15048 15:214564 16:400893 17:228085 18:393370 19:26230 20:26229 21:383046 22:26235 23:700326 24:369764 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.142620232172 dense_feature:0.04 dense_feature:0.1 dense_feature:0.08853125 dense_feature:0.028 dense_feature:0.01 dense_feature:0.1 dense_feature:0.028 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.1 1:737395 2:583707 3:519411 4:19103 5:286835 6:906818 7:801403 8:67180 9:27346 10:35743 11:626052 12:142351 13:988058 14:873363 15:617333 16:850339 17:276641 18:696084 19:26230 20:26229 21:121620 22:191474 23:468277 24:18340 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.00995024875622 dense_feature:0.0 dense_feature:0.22 dense_feature:0.0251875 dense_feature:0.0 dense_feature:0.0 dense_feature:0.8 dense_feature:0.182 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.84 1:737395 2:19359 3:166075 4:381832 5:286835 6:446063 7:816009 8:67180 9:27346 10:708281 11:619790 12:524128 13:826787 14:202774 15:371495 16:392894 17:644532 18:271180 19:26230 20:26229 21:349978 22:26235 23:761351 24:517170 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.0149253731343 dense_feature:0.52 dense_feature:0.1 dense_feature:6.25153125 dense_feature:0.0 dense_feature:0.0 dense_feature:0.3 dense_feature:0.03 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.1 1:230803 2:24784 3:519411 4:19103 5:843054 6:948614 7:529143 8:67180 9:502607 10:708281 11:430027 12:142351 13:529101 14:202774 15:618316 16:850339 17:644532 18:95370 19:880474 20:31181 21:121620 22:26235 23:744389 24:18340 25:269955 26:683431 +click:0 dense_feature:0.0 dense_feature:0.0480928689884 dense_feature:0.12 dense_feature:0.22 dense_feature:0.541703125 dense_feature:1.062 dense_feature:0.01 dense_feature:0.24 dense_feature:0.054 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.22 1:737395 2:378661 3:21539 4:552097 5:286835 6:553107 7:512138 8:67180 9:27346 10:708281 11:91094 12:516991 13:150114 14:873363 15:450569 16:353024 17:228085 18:539379 19:26230 20:26229 21:410733 22:26235 23:700326 24:272703 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.016583747927 dense_feature:0.06 dense_feature:0.0 dense_feature:0.209625 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.09 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 1:737395 2:750131 3:807749 4:905739 5:286835 6:906818 7:11935 8:67180 9:27346 10:708281 11:505199 12:285350 13:724106 14:255651 15:625913 16:511836 17:644532 18:102288 19:26230 20:26229 21:726818 22:179327 23:744389 24:176417 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.00663349917081 dense_feature:0.05 dense_feature:0.14 dense_feature:0.226703125 dense_feature:0.12 dense_feature:0.05 dense_feature:0.14 dense_feature:0.112 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.14 1:736218 2:690313 3:757279 4:763330 5:286835 6:553107 7:89560 8:642551 9:27346 10:128328 11:281593 12:246510 13:200341 14:255651 15:899145 16:807138 17:342789 18:659853 19:26230 20:26229 21:399608 22:26235 23:669531 24:787115 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.00829187396352 dense_feature:0.3 dense_feature:0.2 dense_feature:0.021296875 dense_feature:0.83 dense_feature:0.2 dense_feature:0.56 dense_feature:1.122 dense_feature:0.0 dense_feature:0.5 dense_feature:0.0 dense_feature:0.2 1:715353 2:283434 3:523722 4:590869 5:286835 6:948614 7:25472 8:67180 9:27346 10:340404 11:811342 12:679454 13:897590 14:813514 15:578769 16:962576 17:342789 18:267210 19:310188 20:537425 21:746185 22:179327 23:761351 24:416923 25:253255 26:249672 +click:1 dense_feature:0.05 dense_feature:0.0149253731343 dense_feature:0.03 dense_feature:0.24 dense_feature:0.0 dense_feature:0.008 dense_feature:0.4 dense_feature:0.62 dense_feature:0.82 dense_feature:0.1 dense_feature:1.4 dense_feature:0.0 dense_feature:0.08 1:715353 2:532829 3:716475 4:940968 5:286835 6:948614 7:38171 8:67180 9:27346 10:619455 11:515541 12:779426 13:711791 14:255651 15:881750 16:408550 17:342789 18:612540 19:26230 20:26229 21:23444 22:26235 23:410878 24:88425 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.00497512437811 dense_feature:0.11 dense_feature:0.08 dense_feature:0.135265625 dense_feature:0.426 dense_feature:0.06 dense_feature:0.06 dense_feature:0.42 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.08 1:737395 2:817085 3:506158 4:48876 5:286835 6:948614 7:95506 8:67180 9:27346 10:75825 11:220591 12:613471 13:159874 14:255651 15:121379 16:889290 17:681378 18:532453 19:880474 20:537425 21:717912 22:26235 23:270873 24:450199 25:884722 26:382723 +click:0 dense_feature:0.0 dense_feature:0.0829187396352 dense_feature:0.0 dense_feature:0.0 dense_feature:0.555859375 dense_feature:0.318 dense_feature:0.03 dense_feature:0.0 dense_feature:0.02 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.0 1:715353 2:465222 3:974451 4:892661 5:938478 6:948614 7:651987 8:67180 9:27346 10:708281 11:229311 12:545057 13:875629 14:149134 15:393524 16:213237 17:681378 18:540092 19:26230 20:26229 21:483290 22:26235 23:700326 24:946673 25:26224 26:26223 +click:1 dense_feature:0.05 dense_feature:0.854063018242 dense_feature:0.01 dense_feature:0.04 dense_feature:0.000171875 dense_feature:0.004 dense_feature:0.01 dense_feature:0.04 dense_feature:0.004 dense_feature:0.1 dense_feature:0.1 dense_feature:0.0 dense_feature:0.04 1:737395 2:99294 3:681584 4:398205 5:914075 6:906818 7:620358 8:67180 9:27346 10:147441 11:364583 12:535262 13:516341 14:813514 15:281303 16:714384 17:276641 18:443922 19:26230 20:26229 21:948746 22:26235 23:700326 24:928903 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.00331674958541 dense_feature:0.0 dense_feature:0.0 dense_feature:0.45190625 dense_feature:0.048 dense_feature:0.01 dense_feature:0.16 dense_feature:0.044 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.0 1:737395 2:792512 3:676584 4:995262 5:938478 6:906818 7:888723 8:67180 9:27346 10:708281 11:310529 12:951172 13:885793 14:873363 15:62698 16:672021 17:276641 18:11502 19:880474 20:984402 21:501083 22:191474 23:744389 24:398029 25:218743 26:991064 +click:0 dense_feature:0.0 dense_feature:0.00663349917081 dense_feature:0.51 dense_feature:0.0 dense_feature:0.2689375 dense_feature:0.0 dense_feature:0.0 dense_feature:0.02 dense_feature:0.006 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 1:230803 2:239052 3:323170 4:474182 5:140103 6:553107 7:757837 8:524745 9:27346 10:743444 11:883533 12:123023 13:621127 14:255651 15:570872 16:883618 17:924903 18:984920 19:964183 20:984402 21:260134 22:179327 23:410878 24:787860 25:269955 26:949924 +click:0 dense_feature:0.0 dense_feature:0.273631840796 dense_feature:0.0 dense_feature:0.0 dense_feature:0.066453125 dense_feature:0.052 dense_feature:0.04 dense_feature:0.06 dense_feature:0.01 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.0 1:737395 2:531472 3:747313 4:362684 5:843054 6:553107 7:863980 8:718499 9:27346 10:881217 11:371751 12:168971 13:290788 14:202774 15:316669 16:269663 17:342789 18:136775 19:26230 20:26229 21:76865 22:26235 23:761351 24:441421 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.116086235489 dense_feature:0.43 dense_feature:0.36 dense_feature:0.000953125 dense_feature:0.0 dense_feature:0.0 dense_feature:0.36 dense_feature:0.036 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.36 1:737395 2:24784 3:677469 4:820784 5:286835 6:553107 7:715520 8:718499 9:27346 10:708281 11:670424 12:122926 13:724619 14:873363 15:845517 16:488791 17:644532 18:183573 19:880474 20:31181 21:46761 22:26235 23:700326 24:629361 25:269955 26:862373 +click:0 dense_feature:2.55 dense_feature:0.0348258706468 dense_feature:0.01 dense_feature:0.38 dense_feature:0.001453125 dense_feature:0.046 dense_feature:1.11 dense_feature:0.44 dense_feature:2.312 dense_feature:0.2 dense_feature:1.1 dense_feature:0.0 dense_feature:0.46 1:594517 2:194636 3:496284 4:323209 5:286835 6:553107 7:259696 8:760861 9:27346 10:698046 11:478868 12:576074 13:635369 14:201966 15:926692 16:972906 17:342789 18:409802 19:26230 20:26229 21:395694 22:26235 23:410878 24:844671 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.144278606965 dense_feature:0.43 dense_feature:0.22 dense_feature:0.00309375 dense_feature:0.15 dense_feature:0.14 dense_feature:0.54 dense_feature:0.152 dense_feature:0.0 dense_feature:0.2 dense_feature:0.1 dense_feature:0.22 1:737395 2:239052 3:456744 4:736474 5:286835 6:948614 7:13277 8:67180 9:27346 10:958384 11:778183 12:497627 13:136915 14:201966 15:757961 16:747483 17:228085 18:984920 19:905920 20:537425 21:472149 22:179327 23:410878 24:709155 25:269955 26:618673 +click:0 dense_feature:0.0 dense_feature:0.0132669983416 dense_feature:0.4 dense_feature:0.3 dense_feature:0.36440625 dense_feature:1.492 dense_feature:0.07 dense_feature:0.3 dense_feature:1.048 dense_feature:0.0 dense_feature:0.3 dense_feature:0.0 dense_feature:0.3 1:737395 2:19959 3:661391 4:748753 5:286835 6:948614 7:848540 8:67180 9:27346 10:708281 11:703964 12:72024 13:336272 14:255651 15:835686 16:703858 17:342789 18:274368 19:26230 20:26229 21:765452 22:26235 23:700326 24:815200 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.0116086235489 dense_feature:0.01 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 1:210127 2:662691 3:334228 4:857003 5:286835 6:25207 7:280499 8:67180 9:502607 10:708281 11:195094 12:870026 13:783566 14:873363 15:139595 16:214259 17:555571 18:208248 19:880474 20:984402 21:471770 22:26235 23:744389 24:507551 25:383787 26:797121 +click:1 dense_feature:0.0 dense_feature:0.0348258706468 dense_feature:0.03 dense_feature:0.02 dense_feature:0.066140625 dense_feature:0.006 dense_feature:0.17 dense_feature:0.02 dense_feature:0.236 dense_feature:0.0 dense_feature:0.5 dense_feature:0.0 dense_feature:0.02 1:230803 2:999497 3:25361 4:892267 5:286835 6:906818 7:356528 8:67180 9:27346 10:5856 11:157692 12:554754 13:442501 14:255651 15:896230 16:248781 17:342789 18:820094 19:905920 20:984402 21:916436 22:26235 23:669531 24:26284 25:884722 26:187951 +click:0 dense_feature:0.0 dense_feature:4.62852404643 dense_feature:0.07 dense_feature:0.0 dense_feature:0.022671875 dense_feature:0.0 dense_feature:0.01 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.0 1:624252 2:344887 3:238747 4:308366 5:286835 6:553107 7:69291 8:67180 9:27346 10:781054 11:258240 12:546906 13:772337 14:873363 15:807640 16:525695 17:276641 18:613203 19:438655 20:984402 21:415123 22:191474 23:700326 24:729290 25:218743 26:953507 +click:0 dense_feature:0.0 dense_feature:0.00663349917081 dense_feature:0.06 dense_feature:0.02 dense_feature:0.06878125 dense_feature:0.044 dense_feature:0.01 dense_feature:0.22 dense_feature:0.044 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.02 1:737395 2:7753 3:871178 4:183530 5:286835 6:906818 7:273988 8:507110 9:27346 10:708281 11:942072 12:775997 13:612590 14:873363 15:669921 16:639940 17:681378 18:421122 19:880474 20:984402 21:410471 22:26235 23:410878 24:228420 25:269955 26:616000 +click:0 dense_feature:0.0 dense_feature:0.212271973466 dense_feature:0.02 dense_feature:0.28 dense_feature:0.113421875 dense_feature:0.06 dense_feature:0.02 dense_feature:0.28 dense_feature:0.194 dense_feature:0.0 dense_feature:0.2 dense_feature:0.0 dense_feature:0.28 1:210127 2:228963 3:692240 4:389834 5:938478 6:948614 7:125690 8:507110 9:27346 10:708281 11:549232 12:308284 13:262461 14:255651 15:629185 16:280660 17:276641 18:886164 19:26230 20:26229 21:367919 22:191474 23:700326 24:520083 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:1.01658374793 dense_feature:0.01 dense_feature:0.02 dense_feature:0.11759375 dense_feature:0.08 dense_feature:0.02 dense_feature:0.02 dense_feature:0.024 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.02 1:230803 2:7753 3:194720 4:831884 5:286835 6:553107 7:620358 8:67180 9:27346 10:843010 11:424144 12:615986 13:516341 14:813514 15:782575 16:775856 17:342789 18:421122 19:880474 20:984402 21:110090 22:191474 23:700326 24:784174 25:269955 26:101161 +click:0 dense_feature:0.0 dense_feature:0.00663349917081 dense_feature:0.59 dense_feature:0.06 dense_feature:0.04321875 dense_feature:0.192 dense_feature:0.02 dense_feature:0.08 dense_feature:0.014 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.06 1:230803 2:532829 3:26258 4:853241 5:938478 6:948614 7:877607 8:67180 9:27346 10:613723 11:246387 12:538673 13:377975 14:873363 15:659013 16:601478 17:681378 18:199271 19:26230 20:26229 21:300137 22:26235 23:410878 24:372458 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.06135986733 dense_feature:0.0 dense_feature:0.0 dense_feature:0.294671875 dense_feature:0.212 dense_feature:0.26 dense_feature:0.0 dense_feature:0.034 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.0 1:737395 2:154478 3:982044 4:501457 5:819883 6:906818 7:445051 8:67180 9:27346 10:976970 11:783630 12:609883 13:358461 14:15048 15:409791 16:756307 17:342789 18:480228 19:26230 20:26229 21:845147 22:26235 23:669531 24:124290 25:26224 26:26223 +click:1 dense_feature:0.05 dense_feature:0.537313432836 dense_feature:0.0 dense_feature:0.02 dense_feature:0.018578125 dense_feature:0.016 dense_feature:0.16 dense_feature:0.22 dense_feature:0.192 dense_feature:0.1 dense_feature:0.3 dense_feature:0.0 dense_feature:0.02 1:737395 2:194636 3:274597 4:418981 5:286835 6:553107 7:553528 8:67180 9:27346 10:901359 11:110700 12:108037 13:915461 14:255651 15:951604 16:421384 17:342789 18:728110 19:26230 20:26229 21:772733 22:191474 23:761351 24:844671 25:26224 26:26223 +click:0 dense_feature:0.1 dense_feature:0.00663349917081 dense_feature:0.16 dense_feature:0.26 dense_feature:0.00509375 dense_feature:0.122 dense_feature:0.03 dense_feature:0.94 dense_feature:0.526 dense_feature:0.1 dense_feature:0.1 dense_feature:0.0 dense_feature:1.1 1:210127 2:344887 3:343793 4:917598 5:286835 6:948614 7:220413 8:67180 9:27346 10:912799 11:370606 12:722621 13:569604 14:255651 15:499545 16:159495 17:342789 18:613203 19:305384 20:984402 21:844602 22:26235 23:410878 24:695516 25:218743 26:729263 +click:0 dense_feature:0.0 dense_feature:0.00497512437811 dense_feature:0.09 dense_feature:0.16 dense_feature:0.11221875 dense_feature:0.51 dense_feature:0.09 dense_feature:0.48 dense_feature:0.088 dense_feature:0.0 dense_feature:0.4 dense_feature:0.0 dense_feature:0.16 1:737395 2:532829 3:579624 4:980109 5:286835 6:948614 7:927736 8:67180 9:27346 10:970644 11:931289 12:377125 13:539272 14:873363 15:555779 16:405069 17:342789 18:701770 19:26230 20:26229 21:201088 22:26235 23:410878 24:113994 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.182421227197 dense_feature:0.01 dense_feature:0.02 dense_feature:0.000109375 dense_feature:0.978 dense_feature:0.01 dense_feature:0.02 dense_feature:0.062 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.02 1:478318 2:158107 3:508317 4:452336 5:286835 6:948614 7:620358 8:67180 9:27346 10:147441 11:364583 12:34025 13:516341 14:873363 15:502825 16:683439 17:681378 18:889198 19:26230 20:26229 21:234451 22:26235 23:700326 24:256238 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.469320066335 dense_feature:0.2 dense_feature:0.2 dense_feature:0.0705 dense_feature:0.102 dense_feature:0.05 dense_feature:0.22 dense_feature:0.194 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.2 1:715353 2:846239 3:573061 4:508181 5:286835 6:553107 7:892443 8:718499 9:27346 10:639370 11:866496 12:791636 13:895012 14:873363 15:362079 16:16082 17:228085 18:994402 19:880474 20:984402 21:35513 22:26235 23:669531 24:520197 25:934391 26:625657 +click:0 dense_feature:0.0 dense_feature:0.0729684908789 dense_feature:0.06 dense_feature:0.04 dense_feature:5.620296875 dense_feature:0.0 dense_feature:0.0 dense_feature:0.06 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.04 1:399845 2:239052 3:334610 4:593315 5:286835 6:948614 7:751495 8:67180 9:502607 10:111048 11:244081 12:115252 13:915518 14:873363 15:817451 16:296052 17:276641 18:984920 19:774721 20:984402 21:930636 22:26235 23:700326 24:975048 25:269955 26:266439 +click:1 dense_feature:0.05 dense_feature:0.0265339966833 dense_feature:0.07 dense_feature:0.22 dense_feature:1.5625e-05 dense_feature:0.008 dense_feature:0.04 dense_feature:0.36 dense_feature:0.088 dense_feature:0.1 dense_feature:0.3 dense_feature:0.0 dense_feature:0.08 1:737395 2:64837 3:534435 4:555449 5:286835 6:25207 7:661236 8:67180 9:27346 10:708281 11:785752 12:47348 13:524553 14:117289 15:776971 16:293528 17:681378 18:102169 19:758208 20:31181 21:27506 22:26235 23:410878 24:787115 25:884722 26:605635 +click:1 dense_feature:0.1 dense_feature:0.0464344941957 dense_feature:0.0 dense_feature:0.04 dense_feature:0.00059375 dense_feature:0.004 dense_feature:0.02 dense_feature:0.04 dense_feature:0.004 dense_feature:0.1 dense_feature:0.1 dense_feature:0.0 dense_feature:0.04 1:230803 2:7753 3:529866 4:437169 5:938478 6:948614 7:17274 8:67180 9:27346 10:461781 11:452641 12:302471 13:49621 14:873363 15:543432 16:858509 17:681378 18:402164 19:880474 20:984402 21:650184 22:191474 23:410878 24:492581 25:269955 26:217228 +click:0 dense_feature:0.55 dense_feature:0.00829187396352 dense_feature:0.03 dense_feature:0.0 dense_feature:0.0014375 dense_feature:0.004 dense_feature:0.36 dense_feature:0.0 dense_feature:0.042 dense_feature:0.1 dense_feature:0.4 dense_feature:0.0 dense_feature:0.0 1:26973 2:817085 3:961160 4:355882 5:843054 6:906818 7:417593 8:67180 9:27346 10:708281 11:402889 12:899379 13:552051 14:202774 15:532679 16:545549 17:342789 18:562805 19:880474 20:31181 21:355920 22:26235 23:700326 24:787115 25:884722 26:115004 +click:1 dense_feature:0.0 dense_feature:0.00663349917081 dense_feature:0.01 dense_feature:0.02 dense_feature:0.089296875 dense_feature:0.362 dense_feature:0.23 dense_feature:0.04 dense_feature:0.338 dense_feature:0.0 dense_feature:0.4 dense_feature:0.0 dense_feature:0.02 1:230803 2:977337 3:853759 4:880273 5:515218 6:25207 7:414263 8:437731 9:27346 10:205124 11:108170 12:676869 13:388798 14:255651 15:247232 16:172895 17:228085 18:543219 19:26230 20:26229 21:860937 22:179327 23:669531 24:959959 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.0945273631841 dense_feature:0.62 dense_feature:0.24 dense_feature:0.11840625 dense_feature:0.368 dense_feature:0.07 dense_feature:0.24 dense_feature:0.144 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.48 1:737395 2:532829 3:805087 4:186661 5:286835 6:154084 7:468059 8:718499 9:27346 10:708281 11:968875 12:8177 13:47822 14:255651 15:979316 16:956543 17:342789 18:541633 19:26230 20:26229 21:646669 22:26235 23:410878 24:184909 25:26224 26:26223 +click:0 dense_feature:0.3 dense_feature:0.00497512437811 dense_feature:0.12 dense_feature:0.12 dense_feature:0.002890625 dense_feature:0.074 dense_feature:0.06 dense_feature:0.14 dense_feature:0.074 dense_feature:0.1 dense_feature:0.1 dense_feature:0.0 dense_feature:0.74 1:737395 2:64837 3:967865 4:249418 5:938478 6:948614 7:228716 8:67180 9:27346 10:627362 11:722606 12:193782 13:348283 14:255651 15:928582 16:221557 17:342789 18:895034 19:384556 20:984402 21:475712 22:26235 23:410878 24:492875 25:884722 26:468964 +click:0 dense_feature:0.0 dense_feature:0.177446102819 dense_feature:0.01 dense_feature:0.02 dense_feature:0.041859375 dense_feature:0.0 dense_feature:0.0 dense_feature:0.16 dense_feature:0.036 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.02 1:154064 2:834620 3:25206 4:25205 5:938478 6:948614 7:134101 8:92608 9:27346 10:708281 11:505199 12:25711 13:724106 14:671506 15:42927 16:25723 17:644532 18:1957 19:26230 20:26229 21:26236 22:26235 23:744389 24:26233 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:5.61691542289 dense_feature:0.0 dense_feature:0.1 dense_feature:0.043796875 dense_feature:0.302 dense_feature:0.13 dense_feature:0.22 dense_feature:0.3 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.22 1:154184 2:19359 3:166075 4:381832 5:286835 6:906818 7:348227 8:49466 9:27346 10:645596 11:951584 12:524128 13:277250 14:255651 15:853732 16:392894 17:342789 18:619939 19:26230 20:26229 21:349978 22:26235 23:700326 24:517170 25:26224 26:26223 +click:1 dense_feature:0.0 dense_feature:0.00331674958541 dense_feature:0.0 dense_feature:0.0 dense_feature:0.093234375 dense_feature:0.022 dense_feature:0.04 dense_feature:0.02 dense_feature:0.02 dense_feature:0.0 dense_feature:0.2 dense_feature:0.0 dense_feature:0.0 1:715353 2:485136 3:386313 4:208181 5:286835 6:25207 7:227715 8:49466 9:27346 10:437476 11:733250 12:721260 13:389832 14:255651 15:47178 16:761962 17:342789 18:813169 19:26230 20:26229 21:464938 22:26235 23:410878 24:833196 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.134328358209 dense_feature:0.0 dense_feature:0.14 dense_feature:0.00015625 dense_feature:0.0 dense_feature:0.0 dense_feature:0.14 dense_feature:0.014 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.14 1:737395 2:488655 3:221719 4:442408 5:286835 6:25207 7:898902 8:718499 9:27346 10:457066 11:290973 12:533168 13:949027 14:873363 15:270294 16:934635 17:924903 18:763017 19:880474 20:31181 21:517486 22:26235 23:410878 24:588215 25:499868 26:980179 +click:1 dense_feature:0.0 dense_feature:0.00331674958541 dense_feature:0.0 dense_feature:0.0 dense_feature:0.023578125 dense_feature:0.0 dense_feature:0.04 dense_feature:0.0 dense_feature:0.046 dense_feature:0.0 dense_feature:0.3 dense_feature:0.0 dense_feature:0.0 1:737395 2:729012 3:691820 4:351286 5:938478 6:553107 7:21150 8:67180 9:27346 10:947459 11:164508 12:205079 13:882348 14:255651 15:178324 16:282716 17:342789 18:193902 19:880474 20:31181 21:604480 22:191474 23:669531 24:727223 25:499868 26:236426 +click:1 dense_feature:0.1 dense_feature:0.00331674958541 dense_feature:0.0 dense_feature:0.0 dense_feature:0.00859375 dense_feature:0.006 dense_feature:1.55 dense_feature:0.16 dense_feature:0.06 dense_feature:0.2 dense_feature:1.6 dense_feature:0.0 dense_feature:0.0 1:712372 2:235347 3:483718 4:382039 5:914075 6:906818 7:727609 8:154004 9:27346 10:116648 11:40711 12:658199 13:361076 14:15048 15:15058 16:644988 17:342789 18:544170 19:26230 20:26229 21:251535 22:26235 23:700326 24:114111 25:26224 26:26223 +click:1 dense_feature:0.25 dense_feature:0.192371475954 dense_feature:0.06 dense_feature:0.36 dense_feature:0.0 dense_feature:0.02 dense_feature:0.09 dense_feature:0.42 dense_feature:0.042 dense_feature:0.2 dense_feature:0.3 dense_feature:0.3 dense_feature:0.0 1:737395 2:288975 3:885137 4:368487 5:515218 6:906818 7:569753 8:799133 9:27346 10:635043 11:883202 12:780104 13:492605 14:873363 15:234451 16:94894 17:796504 18:653705 19:880474 20:984402 21:400692 22:26235 23:410878 24:767424 25:934391 26:958132 +click:1 dense_feature:0.15 dense_feature:0.0398009950249 dense_feature:0.02 dense_feature:0.04 dense_feature:1.5625e-05 dense_feature:0.0 dense_feature:0.06 dense_feature:0.04 dense_feature:0.026 dense_feature:0.1 dense_feature:0.3 dense_feature:0.0 dense_feature:0.0 1:715353 2:532829 3:721632 4:377785 5:286835 6:553107 7:959856 8:718499 9:27346 10:737746 11:432444 12:706936 13:169268 14:873363 15:896219 16:461005 17:342789 18:286597 19:26230 20:26229 21:602049 22:26235 23:700326 24:510447 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.00663349917081 dense_feature:0.05 dense_feature:0.08 dense_feature:0.155421875 dense_feature:0.55 dense_feature:0.08 dense_feature:0.24 dense_feature:1.73 dense_feature:0.0 dense_feature:0.3 dense_feature:0.0 dense_feature:0.08 1:737395 2:288975 3:385122 4:57409 5:286835 6:25207 7:339181 8:67180 9:27346 10:284863 11:531306 12:229544 13:32168 14:117289 15:632422 16:615549 17:342789 18:240865 19:880474 20:984402 21:253725 22:26235 23:410878 24:837371 25:934391 26:948190 +click:0 dense_feature:0.0 dense_feature:0.0398009950249 dense_feature:0.06 dense_feature:0.12 dense_feature:0.11359375 dense_feature:0.55 dense_feature:0.03 dense_feature:0.12 dense_feature:0.186 dense_feature:0.0 dense_feature:0.2 dense_feature:0.0 dense_feature:0.12 1:737395 2:158107 3:738359 4:343895 5:286835 6:948614 7:513189 8:760861 9:27346 10:741641 11:214926 12:142871 13:753229 14:873363 15:502825 16:864586 17:681378 18:889198 19:26230 20:26229 21:368414 22:191474 23:410878 24:256238 25:26224 26:26223 +click:1 dense_feature:0.25 dense_feature:0.00663349917081 dense_feature:0.03 dense_feature:0.04 dense_feature:7.8125e-05 dense_feature:0.0 dense_feature:0.48 dense_feature:0.06 dense_feature:0.004 dense_feature:0.2 dense_feature:1.3 dense_feature:0.0 dense_feature:0.0 1:737395 2:414770 3:100889 4:981572 5:286835 6:446063 7:600430 8:507110 9:27346 10:566014 11:40711 12:330691 13:361076 14:15048 15:176957 16:759140 17:342789 18:212244 19:26230 20:26229 21:688637 22:26235 23:634287 24:762432 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.00663349917081 dense_feature:0.04 dense_feature:0.02 dense_feature:0.109765625 dense_feature:0.202 dense_feature:0.13 dense_feature:0.02 dense_feature:0.078 dense_feature:0.0 dense_feature:0.1 dense_feature:0.1 dense_feature:0.02 1:737395 2:7753 3:871178 4:183530 5:286835 6:948614 7:358953 8:718499 9:27346 10:837400 11:432444 12:775997 13:169268 14:255651 15:250644 16:639940 17:342789 18:421122 19:880474 20:984402 21:410471 22:26235 23:410878 24:228420 25:269955 26:870795 +click:0 dense_feature:0.05 dense_feature:0.162520729685 dense_feature:0.28 dense_feature:0.16 dense_feature:0.001046875 dense_feature:0.028 dense_feature:1.03 dense_feature:0.84 dense_feature:0.534 dense_feature:0.1 dense_feature:2.3 dense_feature:0.0 dense_feature:0.28 1:737395 2:334074 3:108983 4:898979 5:286835 6:948614 7:600430 8:718499 9:27346 10:668726 11:40711 12:62821 13:361076 14:202774 15:722413 16:688170 17:342789 18:746785 19:957809 20:984402 21:96056 22:191474 23:410878 24:703372 25:129305 26:591537 +click:0 dense_feature:0.2 dense_feature:0.0945273631841 dense_feature:0.02 dense_feature:0.18 dense_feature:0.021078125 dense_feature:0.046 dense_feature:0.52 dense_feature:0.44 dense_feature:0.18 dense_feature:0.1 dense_feature:0.8 dense_feature:0.0 dense_feature:0.22 1:663372 2:532829 3:714247 4:673800 5:286835 6:906818 7:219517 8:67180 9:27346 10:161916 11:40711 12:441505 13:361076 14:255651 15:992961 16:137571 17:796504 18:395194 19:26230 20:26229 21:800938 22:179327 23:410878 24:719782 25:26224 26:26223 +click:1 dense_feature:0.15 dense_feature:0.24543946932 dense_feature:0.0 dense_feature:0.12 dense_feature:0.0001875 dense_feature:0.004 dense_feature:0.08 dense_feature:0.12 dense_feature:0.072 dense_feature:0.1 dense_feature:0.4 dense_feature:0.0 dense_feature:0.04 1:663372 2:70321 3:202829 4:415480 5:286835 6:553107 7:32934 8:67180 9:27346 10:1873 11:699999 12:55775 13:371214 14:873363 15:685332 16:719499 17:342789 18:135819 19:26230 20:26229 21:973542 22:852086 23:410878 24:635223 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.0679933665008 dense_feature:0.02 dense_feature:0.02 dense_feature:0.20015625 dense_feature:0.016 dense_feature:0.03 dense_feature:0.02 dense_feature:0.014 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.02 1:737395 2:229199 3:956202 4:475901 5:286835 6:948614 7:614385 8:718499 9:27346 10:171202 11:670646 12:566018 13:386065 14:873363 15:936716 16:825279 17:681378 18:758631 19:26230 20:26229 21:113534 22:26235 23:410878 24:551443 25:26224 26:26223 +click:1 dense_feature:0.05 dense_feature:0.00497512437811 dense_feature:0.04 dense_feature:0.22 dense_feature:0.015921875 dense_feature:0.022 dense_feature:0.04 dense_feature:0.4 dense_feature:0.182 dense_feature:0.1 dense_feature:0.2 dense_feature:0.0 dense_feature:0.22 1:737395 2:64837 3:751736 4:291977 5:286835 6:25207 7:377931 8:718499 9:27346 10:724396 11:433484 12:517940 13:439712 14:201966 15:628624 16:780717 17:342789 18:895034 19:880474 20:31181 21:463725 22:26235 23:410878 24:787115 25:884722 26:164940 +click:1 dense_feature:0.0 dense_feature:0.00995024875622 dense_feature:0.15 dense_feature:0.48 dense_feature:0.051375 dense_feature:0.0 dense_feature:0.0 dense_feature:0.06 dense_feature:0.556 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.5 1:737395 2:532829 3:158777 4:112926 5:286835 6:948614 7:764249 8:67180 9:27346 10:795273 11:330644 12:524443 13:78129 14:873363 15:127209 16:146094 17:342789 18:976129 19:26230 20:26229 21:901094 22:26235 23:410878 24:259263 25:26224 26:26223 +click:1 dense_feature:0.0 dense_feature:0.00497512437811 dense_feature:1.75 dense_feature:0.0 dense_feature:0.922828125 dense_feature:1.078 dense_feature:0.0 dense_feature:0.0 dense_feature:0.112 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 1:26973 2:62956 3:428206 4:935291 5:286835 6:446063 7:360307 8:437731 9:502607 10:957425 11:626052 12:641189 13:988058 14:217110 15:637914 16:293992 17:342789 18:832710 19:774721 20:537425 21:516798 22:191474 23:700326 24:204648 25:884722 26:776972 +click:1 dense_feature:1.95 dense_feature:0.00829187396352 dense_feature:0.08 dense_feature:0.1 dense_feature:0.01878125 dense_feature:0.044 dense_feature:0.42 dense_feature:0.24 dense_feature:0.358 dense_feature:0.1 dense_feature:0.2 dense_feature:0.1 dense_feature:0.26 1:737395 2:638265 3:526671 4:362576 5:938478 6:948614 7:999918 8:67180 9:27346 10:806276 11:181589 12:688684 13:367155 14:255651 15:709602 16:386859 17:228085 18:204112 19:668832 20:537425 21:541553 22:191474 23:410878 24:606704 25:49230 26:68113 +click:0 dense_feature:0.0 dense_feature:0.00331674958541 dense_feature:0.0 dense_feature:0.0 dense_feature:0.38159375 dense_feature:0.022 dense_feature:0.18 dense_feature:0.0 dense_feature:0.016 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.0 1:737395 2:841163 3:284187 4:385559 5:286835 6:446063 7:311604 8:67180 9:27346 10:38910 11:76230 12:520869 13:429321 14:255651 15:296507 16:542357 17:342789 18:377250 19:880474 20:31181 21:325494 22:26235 23:410878 24:26284 25:499868 26:467348 +click:0 dense_feature:0.0 dense_feature:0.00663349917081 dense_feature:0.08 dense_feature:0.0 dense_feature:0.077125 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.03 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 1:737395 2:238813 3:821667 4:209184 5:286835 6:906818 7:261420 8:67180 9:27346 10:748867 11:277196 12:790086 13:495408 14:873363 15:572266 16:281532 17:342789 18:99340 19:880474 20:537425 21:815896 22:26235 23:669531 24:17430 25:734238 26:251811 +click:0 dense_feature:0.0 dense_feature:0.210613598673 dense_feature:0.01 dense_feature:0.0 dense_feature:0.041375 dense_feature:0.0 dense_feature:0.0 dense_feature:0.08 dense_feature:0.026 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 1:737395 2:532829 3:559456 4:565823 5:286835 6:948614 7:48897 8:67180 9:27346 10:708281 11:214000 12:431427 13:477774 14:873363 15:637383 16:678446 17:276641 18:849284 19:26230 20:26229 21:758879 22:26235 23:410878 24:399458 25:26224 26:26223 +click:1 dense_feature:0.2 dense_feature:0.00331674958541 dense_feature:0.0 dense_feature:0.0 dense_feature:0.00440625 dense_feature:0.036 dense_feature:0.04 dense_feature:0.3 dense_feature:0.03 dense_feature:0.1 dense_feature:0.1 dense_feature:0.0 dense_feature:0.0 1:715353 2:532829 3:967094 4:707735 5:286835 6:948614 7:555710 8:154004 9:27346 10:708281 11:514992 12:158604 13:780149 14:255651 15:285282 16:149708 17:342789 18:553067 19:26230 20:26229 21:229985 22:26235 23:700326 24:777746 25:26224 26:26223 +click:1 dense_feature:0.0 dense_feature:0.00331674958541 dense_feature:0.0 dense_feature:0.0 dense_feature:0.23178125 dense_feature:0.222 dense_feature:0.06 dense_feature:0.0 dense_feature:0.408 dense_feature:0.0 dense_feature:0.2 dense_feature:0.0 dense_feature:0.0 1:715353 2:227084 3:456811 4:828682 5:286835 6:948614 7:406567 8:67180 9:27346 10:66123 11:598531 12:527138 13:731439 14:813514 15:35257 16:43339 17:342789 18:918487 19:26230 20:26229 21:580653 22:26235 23:410878 24:495283 25:26224 26:26223 +click:0 dense_feature:0.15 dense_feature:0.462686567164 dense_feature:0.08 dense_feature:0.22 dense_feature:0.00015625 dense_feature:0.022 dense_feature:0.03 dense_feature:0.52 dense_feature:0.022 dense_feature:0.1 dense_feature:0.1 dense_feature:0.0 dense_feature:0.22 1:576931 2:99294 3:263211 4:501662 5:938478 6:154084 7:128918 8:67180 9:27346 10:912799 11:801006 12:506258 13:378182 14:201966 15:150934 16:240427 17:681378 18:393279 19:26230 20:26229 21:152038 22:26235 23:700326 24:551443 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.00331674958541 dense_feature:0.0 dense_feature:0.0 dense_feature:0.181484375 dense_feature:0.06 dense_feature:0.01 dense_feature:0.0 dense_feature:0.056 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.0 1:230803 2:283434 3:367596 4:197992 5:938478 6:948614 7:268098 8:67180 9:27346 10:870993 11:632267 12:139817 13:718764 14:255651 15:884839 16:80117 17:276641 18:556463 19:880474 20:537425 21:271358 22:26235 23:410878 24:488077 25:253255 26:584828 +click:0 dense_feature:0.0 dense_feature:0.00497512437811 dense_feature:0.0 dense_feature:0.16 dense_feature:4.790078125 dense_feature:0.0 dense_feature:0.0 dense_feature:0.28 dense_feature:0.016 dense_feature:0.0 dense_feature:0.0 dense_feature:0.0 dense_feature:0.2 1:737395 2:532829 3:158777 4:112926 5:286835 6:948614 7:277312 8:67180 9:502607 10:708281 11:755513 12:524443 13:4029 14:873363 15:503814 16:146094 17:644532 18:121590 19:26230 20:26229 21:901094 22:191474 23:744389 24:259263 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:3.30845771144 dense_feature:0.0 dense_feature:0.04 dense_feature:0.022671875 dense_feature:0.062 dense_feature:0.01 dense_feature:0.4 dense_feature:0.062 dense_feature:0.0 dense_feature:0.1 dense_feature:0.0 dense_feature:0.04 1:663372 2:529436 3:511823 4:942782 5:286835 6:906818 7:190054 8:67180 9:27346 10:708281 11:32527 12:494263 13:652478 14:873363 15:616057 16:17325 17:342789 18:325238 19:26230 20:26229 21:256747 22:179327 23:410878 24:169709 25:26224 26:26223 +click:0 dense_feature:0.0 dense_feature:0.00829187396352 dense_feature:0.01 dense_feature:0.16 dense_feature:0.206765625 dense_feature:0.328 dense_feature:0.13 dense_feature:0.16 dense_feature:0.176 dense_feature:0.0 dense_feature:0.7 dense_feature:0.0 dense_feature:0.16 1:737395 2:552854 3:606082 4:267619 5:286835 6:948614 7:918889 8:67180 9:27346 10:708281 11:400024 12:972010 13:66330 14:255651 15:432931 16:650209 17:506108 18:212910 19:26230 20:26229 21:107726 22:26235 23:410878 24:718419 25:26224 26:26223 diff --git a/models/rank/dnn/model.py b/models/rank/dnn/model.py index d7ab801f38fdffbdeb0ca5259abaec37136d3fc9..644bbd7c98ec8360faa22969e245f284946947d8 100755 --- a/models/rank/dnn/model.py +++ b/models/rank/dnn/model.py @@ -24,40 +24,33 @@ class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) - def input(self): + def _init_hyper_parameters(self): + self.is_distributed = True if envs.get_trainer( + ) == "CtrTrainer" else False + self.sparse_feature_number = envs.get_global_env( + "hyper_parameters.sparse_feature_number", None, self._namespace) + self.sparse_feature_dim = envs.get_global_env( + "hyper_parameters.sparse_feature_dim", None, self._namespace) + self.learning_rate = envs.get_global_env( + "hyper_parameters.learning_rate", None, self._namespace) + + def net(self, input, is_infer=False): self.sparse_inputs = self._sparse_data_var[1:] self.dense_input = self._dense_data_var[0] self.label_input = self._sparse_data_var[0] - def net(self): - is_distributed = True if envs.get_trainer() == "CtrTrainer" else False - sparse_feature_number = envs.get_global_env( - "hyper_parameters.sparse_feature_number", None, self._namespace) - sparse_feature_dim = envs.get_global_env( - "hyper_parameters.sparse_feature_dim", None, self._namespace) - def embedding_layer(input): emb = fluid.layers.embedding( input=input, is_sparse=True, - is_distributed=is_distributed, - size=[sparse_feature_number, sparse_feature_dim], + is_distributed=self.is_distributed, + size=[self.sparse_feature_number, self.sparse_feature_dim], param_attr=fluid.ParamAttr( name="SparseFeatFactors", initializer=fluid.initializer.Uniform()), ) emb_sum = fluid.layers.sequence_pool(input=emb, pool_type='sum') return emb_sum - def fc(input, output_size): - output = fluid.layers.fc( - input=input, - size=output_size, - act='relu', - param_attr=fluid.ParamAttr( - initializer=fluid.initializer.Normal( - scale=1.0 / math.sqrt(input.shape[1])))) - return output - sparse_embed_seq = list(map(embedding_layer, self.sparse_inputs)) concated = fluid.layers.concat( sparse_embed_seq + [self.dense_input], axis=1) @@ -67,7 +60,14 @@ class Model(ModelBase): self._namespace) for size in hidden_layers: - fcs.append(fc(fcs[-1], size)) + output = fluid.layers.fc( + input=fcs[-1], + size=size, + act='relu', + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Normal( + scale=1.0 / math.sqrt(fcs[-1].shape[1])))) + fcs.append(output) predict = fluid.layers.fc( input=fcs[-1], @@ -78,13 +78,10 @@ class Model(ModelBase): self.predict = predict - def avg_loss(self): cost = fluid.layers.cross_entropy( input=self.predict, label=self.label_input) avg_cost = fluid.layers.reduce_mean(cost) self._cost = avg_cost - - def metrics(self): auc, batch_auc, _ = fluid.layers.auc(input=self.predict, label=self.label_input, num_thresholds=2**12, @@ -92,20 +89,9 @@ class Model(ModelBase): self._metrics["AUC"] = auc self._metrics["BATCH_AUC"] = batch_auc - def train_net(self): - self.model._init_slots() - self.input() - self.net() - self.avg_loss() - self.metrics() - def optimizer(self): - learning_rate = envs.get_global_env("hyper_parameters.learning_rate", - None, self._namespace) - optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True) + optimizer = fluid.optimizer.Adam(self.learning_rate, lazy_mode=True) return optimizer def infer_net(self): - self.model._init_slots() - self.input() - self.net() + pass diff --git a/models/rank/wide_deep/config.yaml b/models/rank/wide_deep/config.yaml index 3babdddb3ab777a6f48a33894bf3ef2a79311cf9..9cadddf2b16989ef9d6844f6ac40dc53b06e4309 100755 --- a/models/rank/wide_deep/config.yaml +++ b/models/rank/wide_deep/config.yaml @@ -22,7 +22,7 @@ train: reader: batch_size: 2 - train_data_path: "{workspace}/data/slot_train_data" + train_data_path: "{workspace}/data/sample_data/train" sparse_slots: "label" dense_slots: "wide_input:8 deep_input:58" diff --git a/models/rank/wide_deep/data/sample_data/train/train_data.txt b/models/rank/wide_deep/data/sample_data/train/train_data.txt new file mode 100644 index 0000000000000000000000000000000000000000..967b975d703d5aaa0a6e73e6fca74384c6e289dc --- /dev/null +++ b/models/rank/wide_deep/data/sample_data/train/train_data.txt @@ -0,0 +1,500 @@ +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:7.0 wide_input:1.0 wide_input:3.0 wide_input:203.0 wide_input:643.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:39.0 deep_input:13.0 deep_input:2174.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:4.0 wide_input:5.0 wide_input:211.0 wide_input:980.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:13.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:6.0 wide_input:3.0 wide_input:36.0 wide_input:519.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:1.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:6.0 wide_input:6.0 wide_input:101.0 wide_input:1054.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:53.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:10.0 wide_input:1.0 wide_input:204.0 wide_input:320.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:4.0 wide_input:3.0 wide_input:49.0 wide_input:531.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:6.0 wide_input:3.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:5.0 wide_input:172.0 wide_input:946.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:49.0 deep_input:5.0 deep_input:0.0 deep_input:0.0 deep_input:16.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:4.0 wide_input:6.0 wide_input:34.0 wide_input:1010.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:52.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:1 +wide_input:12.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:2.0 wide_input:42.0 wide_input:362.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:14.0 deep_input:14084.0 deep_input:0.0 deep_input:50.0 label:1 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:211.0 wide_input:819.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 deep_input:13.0 deep_input:5178.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:3.0 wide_input:85.0 wide_input:553.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:80.0 label:1 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:10.0 wide_input:1.0 wide_input:204.0 wide_input:320.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:9.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:1.0 wide_input:0.0 wide_input:203.0 wide_input:153.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:23.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:7.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:2.0 wide_input:178.0 wide_input:459.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:8.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:3.0 wide_input:195.0 wide_input:636.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:5.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:14.0 wide_input:2.0 wide_input:152.0 wide_input:438.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:34.0 deep_input:4.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:6.0 wide_input:5.0 wide_input:0.0 wide_input:35.0 wide_input:24.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:7.0 wide_input:2.0 wide_input:37.0 wide_input:357.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:1.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:3.0 wide_input:95.0 wide_input:562.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:12.0 wide_input:0.0 wide_input:4.0 wide_input:6.0 wide_input:4.0 wide_input:4.0 wide_input:49.0 wide_input:694.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:1 +wide_input:10.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:3.0 wide_input:16.0 wide_input:506.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:16.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:1 +wide_input:11.0 wide_input:5.0 wide_input:4.0 wide_input:4.0 wide_input:8.0 wide_input:6.0 wide_input:38.0 wide_input:1014.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:54.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:6.0 wide_input:2.0 wide_input:0.0 wide_input:1.0 wide_input:5.0 wide_input:2.0 wide_input:169.0 wide_input:451.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:5.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:1.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:14.0 wide_input:4.0 wide_input:97.0 wide_input:728.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:43.0 deep_input:7.0 deep_input:0.0 deep_input:2042.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:13.0 wide_input:7.0 wide_input:30.0 wide_input:1166.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:59.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:13.0 wide_input:7.0 wide_input:207.0 wide_input:1293.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:56.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:33.0 wide_input:22.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:6.0 wide_input:76.0 wide_input:1035.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:54.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:1 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:4.0 wide_input:3.0 wide_input:34.0 wide_input:517.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:39.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:80.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:5.0 wide_input:33.0 wide_input:846.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:49.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:7.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:11.0 wide_input:0.0 wide_input:177.0 wide_input:128.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:23.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:52.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:80.0 wide_input:49.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 label:0 +wide_input:9.0 wide_input:0.0 wide_input:3.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:211.0 wide_input:819.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:13.0 deep_input:0.0 deep_input:1408.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:3.0 wide_input:1.0 wide_input:1.0 wide_input:1.0 wide_input:77.0 wide_input:216.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:8.0 wide_input:0.0 wide_input:89.0 wide_input:58.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:15.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:7.0 wide_input:5.0 wide_input:102.0 wide_input:900.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:48.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:7.0 wide_input:0.0 wide_input:88.0 wide_input:57.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:21.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:1.0 wide_input:5.0 wide_input:4.0 wide_input:1.0 wide_input:0.0 wide_input:26.0 wide_input:15.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:2.0 wide_input:80.0 wide_input:385.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 label:1 +wide_input:7.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:10.0 wide_input:5.0 wide_input:176.0 wide_input:949.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:48.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:6.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:2.0 wide_input:171.0 wide_input:453.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:5.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:10.0 wide_input:6.0 wide_input:204.0 wide_input:1133.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:53.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:13.0 wide_input:0.0 wide_input:207.0 wide_input:157.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:24.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:11.0 wide_input:5.0 wide_input:4.0 wide_input:4.0 wide_input:1.0 wide_input:5.0 wide_input:26.0 wide_input:840.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:49.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:6.0 wide_input:0.0 wide_input:36.0 wide_input:25.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:1.0 wide_input:10.0 wide_input:7.0 wide_input:204.0 wide_input:1290.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:57.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:6.0 wide_input:37.0 wide_input:1013.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:53.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 label:0 +wide_input:12.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:49.0 wide_input:694.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:8.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:3.0 wide_input:4.0 wide_input:195.0 wide_input:804.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:8.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:1.0 wide_input:190.0 wide_input:306.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:29.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:4.0 wide_input:0.0 wide_input:85.0 wide_input:54.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:38.0 wide_input:1483.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:18.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:14.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:10.0 wide_input:5.0 wide_input:66.0 wide_input:869.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:47.0 deep_input:15.0 deep_input:0.0 deep_input:1902.0 deep_input:60.0 label:1 +wide_input:9.0 wide_input:0.0 wide_input:1.0 wide_input:1.0 wide_input:4.0 wide_input:5.0 wide_input:211.0 wide_input:980.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:55.0 label:1 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:5.0 wide_input:4.0 wide_input:5.0 wide_input:34.0 wide_input:847.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:47.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:13.0 wide_input:4.0 wide_input:81.0 wide_input:714.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:43.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:4.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:5.0 wide_input:143.0 wide_input:924.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:3.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:8.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:8.0 wide_input:2.0 wide_input:200.0 wide_input:480.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:26.0 wide_input:673.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:48.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:1.0 wide_input:37.0 wide_input:193.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:9.0 deep_input:5013.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:1.0 wide_input:206.0 wide_input:322.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:13.0 deep_input:2407.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:5.0 wide_input:3.0 wide_input:1.0 wide_input:0.0 wide_input:0.0 wide_input:2.0 wide_input:146.0 wide_input:433.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 deep_input:4.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:14.0 wide_input:5.0 wide_input:31.0 wide_input:845.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:48.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:10.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:4.0 wide_input:16.0 wide_input:667.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 deep_input:16.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:1 +wide_input:15.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:13.0 wide_input:1.0 wide_input:81.0 wide_input:220.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:29.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:58.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:3.0 wide_input:33.0 wide_input:516.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:1.0 wide_input:1.0 wide_input:77.0 wide_input:216.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:1.0 wide_input:6.0 wide_input:26.0 wide_input:1003.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:53.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:5.0 wide_input:4.0 wide_input:5.0 wide_input:85.0 wide_input:885.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:49.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:76.0 wide_input:45.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:10.0 wide_input:0.0 wide_input:78.0 wide_input:47.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 label:0 +wide_input:9.0 wide_input:5.0 wide_input:3.0 wide_input:4.0 wide_input:12.0 wide_input:2.0 wide_input:206.0 wide_input:485.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:12.0 wide_input:1.0 wide_input:206.0 wide_input:322.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:29.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:70.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:7.0 wide_input:0.0 wide_input:88.0 wide_input:57.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:23.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:2.0 wide_input:4.0 wide_input:10.0 wide_input:0.0 wide_input:78.0 wide_input:1504.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:79.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:1.0 wide_input:38.0 wide_input:194.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:27.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:7.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:3.0 wide_input:175.0 wide_input:618.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:0.0 wide_input:2.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:1452.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:67.0 deep_input:6.0 deep_input:0.0 deep_input:0.0 deep_input:2.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:103.0 wide_input:1527.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:18.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 label:0 +wide_input:5.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:5.0 wide_input:2.0 wide_input:155.0 wide_input:440.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:4.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:29.0 wide_input:1475.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:18.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:8.0 wide_input:6.0 wide_input:215.0 wide_input:1143.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:52.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:8.0 wide_input:5.0 wide_input:38.0 wide_input:851.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:7.0 wide_input:29.0 wide_input:1165.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:59.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:48.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:33.0 wide_input:679.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:9.0 deep_input:14344.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:0.0 wide_input:3.0 wide_input:4.0 wide_input:12.0 wide_input:6.0 wide_input:29.0 wide_input:1006.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:53.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:11.0 wide_input:5.0 wide_input:28.0 wide_input:842.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:49.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:2.0 wide_input:42.0 wide_input:362.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:6.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:1.0 wide_input:164.0 wide_input:282.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:5.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:10.0 wide_input:4.0 wide_input:1.0 wide_input:1.0 wide_input:10.0 wide_input:4.0 wide_input:16.0 wide_input:667.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:16.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:1 +wide_input:8.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:7.0 wide_input:190.0 wide_input:1280.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:57.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:3.0 wide_input:3.0 wide_input:84.0 wide_input:552.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:7.0 wide_input:1.0 wide_input:88.0 wide_input:227.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:12.0 wide_input:1.0 wide_input:29.0 wide_input:185.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:9.0 deep_input:0.0 deep_input:1573.0 deep_input:35.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:11.0 wide_input:2.0 wide_input:205.0 wide_input:484.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:6.0 wide_input:1.0 wide_input:87.0 wide_input:226.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:29.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:10.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:10.0 wide_input:5.0 wide_input:16.0 wide_input:834.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:48.0 deep_input:16.0 deep_input:0.0 deep_input:1902.0 deep_input:60.0 label:1 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:3.0 wide_input:80.0 wide_input:549.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:48.0 label:1 +wide_input:7.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:5.0 wide_input:182.0 wide_input:955.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:48.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:8.0 wide_input:2.0 wide_input:38.0 wide_input:358.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:0.0 wide_input:49.0 wide_input:1491.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:76.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:211.0 wide_input:819.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:13.0 deep_input:15024.0 deep_input:0.0 deep_input:60.0 label:1 +wide_input:12.0 wide_input:4.0 wide_input:1.0 wide_input:6.0 wide_input:10.0 wide_input:5.0 wide_input:42.0 wide_input:855.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:47.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:13.0 wide_input:0.0 wide_input:81.0 wide_input:50.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:20.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:33.0 wide_input:189.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:29.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:5.0 wide_input:3.0 wide_input:2.0 wide_input:33.0 wide_input:353.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 deep_input:9.0 deep_input:7688.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:1452.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:17.0 deep_input:6.0 deep_input:34095.0 deep_input:0.0 deep_input:32.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:6.0 wide_input:1.0 wide_input:101.0 wide_input:237.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:1.0 wide_input:2.0 wide_input:26.0 wide_input:347.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:6.0 wide_input:4.0 wide_input:36.0 wide_input:682.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:2.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:206.0 wide_input:156.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:14.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:3.0 wide_input:66.0 wide_input:540.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:15.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:8.0 wide_input:7.0 wide_input:38.0 wide_input:1173.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:56.0 deep_input:9.0 deep_input:0.0 deep_input:1887.0 deep_input:50.0 label:1 +wide_input:15.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:12.0 wide_input:1.0 wide_input:80.0 wide_input:219.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:10.0 deep_input:4064.0 deep_input:0.0 deep_input:25.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:7.0 wide_input:3.0 wide_input:37.0 wide_input:520.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:6.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:6.0 wide_input:6.0 wide_input:170.0 wide_input:1104.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:53.0 deep_input:5.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:5.0 wide_input:12.0 wide_input:7.0 wide_input:80.0 wide_input:1198.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:56.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:8.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:3.0 wide_input:5.0 wide_input:195.0 wide_input:967.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:49.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:6.0 wide_input:80.0 wide_input:1039.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:55.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:56.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:33.0 wide_input:22.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:89.0 wide_input:58.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:21.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:3.0 wide_input:211.0 wide_input:650.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:4.0 wide_input:1.0 wide_input:211.0 wide_input:326.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:10.0 wide_input:1.0 wide_input:204.0 wide_input:320.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:29.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:89.0 wide_input:58.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:4.0 wide_input:5.0 wide_input:211.0 wide_input:980.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:47.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:1.0 wide_input:0.0 wide_input:77.0 wide_input:46.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:10.0 deep_input:0.0 deep_input:1719.0 deep_input:28.0 label:0 +wide_input:7.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:175.0 wide_input:456.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:2.0 wide_input:25.0 wide_input:346.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:3.0 wide_input:84.0 wide_input:552.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:39.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:7.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:1.0 wide_input:178.0 wide_input:295.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:38.0 wide_input:27.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 deep_input:9.0 deep_input:0.0 deep_input:1762.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:3.0 wide_input:3.0 wide_input:33.0 wide_input:516.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:9.0 deep_input:4386.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:3.0 wide_input:206.0 wide_input:646.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:7.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:13.0 wide_input:5.0 wide_input:179.0 wide_input:952.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:46.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:1.0 wide_input:10.0 wide_input:3.0 wide_input:42.0 wide_input:525.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:3.0 wide_input:4.0 wide_input:33.0 wide_input:679.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:8.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:1.0 wide_input:1.0 wide_input:189.0 wide_input:305.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:27.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:80.0 wide_input:49.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:5.0 wide_input:84.0 wide_input:884.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:49.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:5.0 wide_input:3.0 wide_input:8.0 wide_input:33.0 wide_input:1322.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:61.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:12.0 wide_input:1.0 wide_input:80.0 wide_input:219.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:27.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:89.0 wide_input:58.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:8.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:4.0 wide_input:190.0 wide_input:799.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:11.0 deep_input:0.0 deep_input:1564.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:2.0 wide_input:4.0 wide_input:13.0 wide_input:0.0 wide_input:81.0 wide_input:1507.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:70.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:14.0 wide_input:2.0 wide_input:31.0 wide_input:352.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:31.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:89.0 wide_input:58.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 label:0 +wide_input:11.0 wide_input:6.0 wide_input:4.0 wide_input:4.0 wide_input:8.0 wide_input:3.0 wide_input:38.0 wide_input:521.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 label:0 +wide_input:1.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:8.0 wide_input:98.0 wide_input:1366.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:64.0 deep_input:7.0 deep_input:0.0 deep_input:2179.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:1.0 wide_input:0.0 wide_input:0.0 wide_input:4.0 wide_input:76.0 wide_input:709.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:4.0 wide_input:2.0 wide_input:1.0 wide_input:5.0 wide_input:77.0 wide_input:878.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:47.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:26.0 wide_input:347.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:2.0 wide_input:4.0 wide_input:4.0 wide_input:2.0 wide_input:211.0 wide_input:489.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:33.0 wide_input:22.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:21.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:0.0 wide_input:0.0 wide_input:6.0 wide_input:25.0 wide_input:1002.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:52.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:5.0 wide_input:33.0 wide_input:846.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:48.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:6.0 wide_input:0.0 wide_input:213.0 wide_input:163.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:23.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:5.0 wide_input:4.0 wide_input:6.0 wide_input:12.0 wide_input:0.0 wide_input:80.0 wide_input:1506.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:71.0 deep_input:10.0 deep_input:0.0 deep_input:1816.0 deep_input:2.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:33.0 wide_input:189.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:29.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:9.0 wide_input:5.0 wide_input:2.0 wide_input:4.0 wide_input:8.0 wide_input:4.0 wide_input:215.0 wide_input:823.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:3.0 wide_input:0.0 wide_input:1.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:120.0 wide_input:1542.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:68.0 deep_input:2.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:38.0 wide_input:27.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:0.0 wide_input:4.0 wide_input:5.0 wide_input:4.0 wide_input:4.0 wide_input:49.0 wide_input:694.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:4.0 wide_input:1.0 wide_input:34.0 wide_input:190.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:12.0 wide_input:4.0 wide_input:44.0 wide_input:690.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:8.0 wide_input:3.0 wide_input:89.0 wide_input:557.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:7.0 wide_input:4.0 wide_input:1.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:182.0 wide_input:625.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:39.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 label:0 +wide_input:12.0 wide_input:6.0 wide_input:4.0 wide_input:7.0 wide_input:11.0 wide_input:5.0 wide_input:43.0 wide_input:856.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:6.0 wide_input:0.0 wide_input:101.0 wide_input:1525.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:18.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:16.0 label:0 +wide_input:8.0 wide_input:6.0 wide_input:1.0 wide_input:2.0 wide_input:10.0 wide_input:0.0 wide_input:190.0 wide_input:1593.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:66.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:1.0 wide_input:38.0 wide_input:194.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:27.0 deep_input:9.0 deep_input:0.0 deep_input:1980.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:11.0 wide_input:1.0 wide_input:28.0 wide_input:184.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:6.0 wide_input:80.0 wide_input:1039.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:51.0 deep_input:10.0 deep_input:0.0 deep_input:1977.0 deep_input:40.0 label:1 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:210.0 wide_input:325.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:27.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:10.0 wide_input:1.0 wide_input:204.0 wide_input:320.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:3.0 wide_input:4.0 wide_input:4.0 wide_input:12.0 wide_input:1.0 wide_input:29.0 wide_input:185.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:27.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:33.0 wide_input:22.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:21.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:6.0 wide_input:2.0 wide_input:36.0 wide_input:356.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:38.0 wide_input:1483.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:18.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:12.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:2.0 wide_input:204.0 wide_input:483.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:65.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:4.0 wide_input:4.0 wide_input:85.0 wide_input:717.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 label:1 +wide_input:15.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:77.0 wide_input:710.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:84.0 wide_input:223.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:5.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:3.0 wide_input:157.0 wide_input:604.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:4.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:1.0 wide_input:1.0 wide_input:3.0 wide_input:77.0 wide_input:546.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:26.0 wide_input:347.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:0.0 wide_input:1.0 wide_input:6.0 wide_input:4.0 wide_input:4.0 wide_input:211.0 wide_input:819.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:0.0 wide_input:1.0 wide_input:0.0 wide_input:0.0 wide_input:6.0 wide_input:202.0 wide_input:1131.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:53.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:10.0 wide_input:2.0 wide_input:42.0 wide_input:362.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:10.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:10.0 wide_input:7.0 wide_input:16.0 wide_input:1157.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:58.0 deep_input:16.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 label:1 +wide_input:15.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:7.0 wide_input:3.0 wide_input:88.0 wide_input:556.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:0.0 wide_input:88.0 wide_input:57.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:3.0 wide_input:4.0 wide_input:210.0 wide_input:818.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:13.0 wide_input:5.0 wide_input:81.0 wide_input:882.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:47.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:1.0 wide_input:13.0 wide_input:4.0 wide_input:207.0 wide_input:816.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:41.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 label:0 +wide_input:4.0 wide_input:2.0 wide_input:2.0 wide_input:4.0 wide_input:14.0 wide_input:0.0 wide_input:138.0 wide_input:95.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:23.0 deep_input:3.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:3.0 wide_input:84.0 wide_input:552.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:4.0 wide_input:1.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:49.0 wide_input:531.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:14.0 deep_input:14084.0 deep_input:0.0 deep_input:55.0 label:1 +wide_input:12.0 wide_input:2.0 wide_input:2.0 wide_input:4.0 wide_input:10.0 wide_input:2.0 wide_input:42.0 wide_input:362.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:14.0 deep_input:7298.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:6.0 wide_input:12.0 wide_input:0.0 wide_input:29.0 wide_input:18.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:1.0 wide_input:42.0 wide_input:198.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:26.0 deep_input:14.0 deep_input:0.0 deep_input:1876.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:25.0 wide_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:6.0 wide_input:211.0 wide_input:1139.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:51.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:10.0 wide_input:4.0 wide_input:78.0 wide_input:711.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 deep_input:10.0 deep_input:0.0 deep_input:1340.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:1.0 wide_input:3.0 wide_input:26.0 wide_input:509.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:95.0 wide_input:1520.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:18.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:8.0 wide_input:3.0 wide_input:215.0 wide_input:654.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:13.0 deep_input:7298.0 deep_input:0.0 deep_input:36.0 label:1 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:33.0 wide_input:353.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:5.0 wide_input:12.0 wide_input:7.0 wide_input:29.0 wide_input:1165.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:58.0 deep_input:9.0 deep_input:15024.0 deep_input:0.0 deep_input:35.0 label:1 +wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:95.0 wide_input:1520.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:17.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:12.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:14.0 wide_input:4.0 wide_input:31.0 wide_input:678.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:44.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:3.0 wide_input:33.0 wide_input:516.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:2.0 wide_input:80.0 wide_input:385.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:7.0 wide_input:33.0 wide_input:1168.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:5.0 wide_input:2.0 wide_input:0.0 wide_input:5.0 wide_input:7.0 wide_input:6.0 wide_input:157.0 wide_input:1093.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:54.0 deep_input:4.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:4.0 wide_input:3.0 wide_input:211.0 wide_input:650.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:1 +wide_input:7.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:5.0 wide_input:178.0 wide_input:951.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:3.0 wide_input:206.0 wide_input:646.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:4.0 wide_input:204.0 wide_input:813.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:55.0 label:0 +wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:7.0 wide_input:6.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 deep_input:6.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:6.0 wide_input:2.0 wide_input:87.0 wide_input:391.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:3.0 wide_input:0.0 wide_input:1.0 wide_input:0.0 wide_input:0.0 wide_input:8.0 wide_input:120.0 wide_input:1381.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:64.0 deep_input:2.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:38.0 wide_input:1483.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:90.0 deep_input:9.0 deep_input:0.0 deep_input:2206.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:6.0 wide_input:26.0 wide_input:1003.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:54.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:13.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:7.0 wide_input:6.0 wide_input:61.0 wide_input:1029.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:53.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:29.0 wide_input:1475.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:18.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:0.0 wide_input:0.0 wide_input:1.0 wide_input:0.0 wide_input:0.0 wide_input:7.0 wide_input:0.0 wide_input:1144.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 deep_input:6.0 deep_input:0.0 deep_input:0.0 deep_input:10.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:5.0 wide_input:0.0 wide_input:35.0 wide_input:1480.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:66.0 deep_input:9.0 deep_input:1409.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:8.0 wide_input:6.0 wide_input:1.0 wide_input:4.0 wide_input:1.0 wide_input:0.0 wide_input:189.0 wide_input:1592.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:75.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:1.0 wide_input:8.0 wide_input:26.0 wide_input:1316.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:65.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:1.0 wide_input:5.0 wide_input:1.0 wide_input:4.0 wide_input:14.0 wide_input:2.0 wide_input:97.0 wide_input:397.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:35.0 deep_input:7.0 deep_input:3674.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:12.0 wide_input:4.0 wide_input:29.0 wide_input:676.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:1.0 wide_input:0.0 wide_input:77.0 wide_input:46.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:2.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:84.0 wide_input:388.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:14.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:1.0 wide_input:66.0 wide_input:210.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:15.0 deep_input:0.0 deep_input:0.0 deep_input:55.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:8.0 wide_input:7.0 wide_input:38.0 wide_input:1173.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:59.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:7.0 wide_input:1.0 wide_input:3.0 wide_input:77.0 wide_input:546.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:211.0 wide_input:819.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:1 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:4.0 wide_input:3.0 wide_input:49.0 wide_input:531.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:70.0 label:1 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:14.0 wide_input:0.0 wide_input:31.0 wide_input:20.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:23.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:3.0 wide_input:204.0 wide_input:644.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:6.0 wide_input:8.0 wide_input:4.0 wide_input:38.0 wide_input:684.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:7.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:11.0 wide_input:0.0 wide_input:177.0 wide_input:128.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:76.0 wide_input:45.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:3.0 wide_input:84.0 wide_input:552.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:10.0 deep_input:0.0 deep_input:1741.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:7.0 wide_input:26.0 wide_input:1162.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:56.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:7.0 wide_input:26.0 wide_input:1162.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:58.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:1 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:2.0 wide_input:38.0 wide_input:358.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 label:0 +wide_input:7.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:13.0 wide_input:3.0 wide_input:179.0 wide_input:622.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:40.0 deep_input:12.0 deep_input:0.0 deep_input:1977.0 deep_input:60.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:26.0 wide_input:673.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:14.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:10.0 wide_input:4.0 wide_input:66.0 wide_input:702.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:15.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:9.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:203.0 wide_input:812.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:0.0 wide_input:6.0 wide_input:4.0 wide_input:2.0 wide_input:8.0 wide_input:7.0 wide_input:12.0 wide_input:1155.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:59.0 deep_input:6.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:1.0 wide_input:0.0 wide_input:77.0 wide_input:46.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:14.0 wide_input:7.0 wide_input:82.0 wide_input:1200.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:58.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:5.0 wide_input:4.0 wide_input:35.0 wide_input:681.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:38.0 wide_input:27.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:5.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:2.0 wide_input:38.0 wide_input:358.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:8.0 wide_input:6.0 wide_input:1.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:196.0 wide_input:805.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:5.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:5.0 wide_input:153.0 wide_input:931.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 deep_input:4.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:0.0 wide_input:3.0 wide_input:4.0 wide_input:10.0 wide_input:3.0 wide_input:204.0 wide_input:644.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:4.0 wide_input:29.0 wide_input:676.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:103.0 wide_input:1527.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:17.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:12.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:7.0 wide_input:80.0 wide_input:1198.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:59.0 deep_input:10.0 deep_input:4064.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:1.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:98.0 wide_input:234.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:26.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:5.0 wide_input:4.0 wide_input:3.0 wide_input:85.0 wide_input:553.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:75.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:76.0 wide_input:45.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:8.0 wide_input:34.0 wide_input:1323.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:64.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:2.0 wide_input:204.0 wide_input:483.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:33.0 wide_input:353.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:8.0 wide_input:34.0 wide_input:1323.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:61.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:6.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:172.0 wide_input:1584.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:17.0 deep_input:5.0 deep_input:1055.0 deep_input:0.0 deep_input:24.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:5.0 wide_input:5.0 wide_input:50.0 wide_input:863.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 deep_input:14.0 deep_input:2407.0 deep_input:0.0 deep_input:98.0 label:0 +wide_input:12.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:10.0 wide_input:1.0 wide_input:42.0 wide_input:198.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:27.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:3.0 wide_input:4.0 wide_input:10.0 wide_input:1.0 wide_input:27.0 wide_input:183.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:6.0 wide_input:4.0 wide_input:36.0 wide_input:682.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:84.0 wide_input:716.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:10.0 deep_input:7298.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:4.0 wide_input:2.0 wide_input:85.0 wide_input:389.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:13.0 wide_input:0.0 wide_input:81.0 wide_input:50.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:25.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:7.0 wide_input:0.0 wide_input:88.0 wide_input:57.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 deep_input:10.0 deep_input:7298.0 deep_input:0.0 deep_input:48.0 label:1 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:0.0 wide_input:204.0 wide_input:154.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:15.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:3.0 wide_input:4.0 wide_input:84.0 wide_input:716.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 deep_input:10.0 deep_input:5178.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:7.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:12.0 wide_input:2.0 wide_input:178.0 wide_input:459.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:9.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:7.0 wide_input:204.0 wide_input:1290.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:6.0 wide_input:0.0 wide_input:36.0 wide_input:25.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:21.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:1.0 wide_input:12.0 wide_input:7.0 wide_input:44.0 wide_input:1179.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:57.0 deep_input:14.0 deep_input:15024.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:14.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:4.0 wide_input:66.0 wide_input:702.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:15.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:1 +wide_input:15.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:5.0 wide_input:89.0 wide_input:889.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:4.0 wide_input:0.0 wide_input:211.0 wide_input:161.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:5.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:5.0 wide_input:153.0 wide_input:931.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 deep_input:4.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:3.0 wide_input:204.0 wide_input:644.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:2.0 wide_input:27.0 wide_input:348.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:11.0 wide_input:1.0 wide_input:205.0 wide_input:321.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:29.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:56.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:80.0 wide_input:49.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:21.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:13.0 wide_input:1.0 wide_input:207.0 wide_input:323.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:27.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:14.0 wide_input:8.0 wide_input:31.0 wide_input:1321.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:65.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:16.0 label:0 +wide_input:9.0 wide_input:0.0 wide_input:1.0 wide_input:5.0 wide_input:12.0 wide_input:3.0 wide_input:206.0 wide_input:646.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:5.0 wide_input:0.0 wide_input:0.0 wide_input:3.0 wide_input:40.0 wide_input:523.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:39.0 deep_input:14.0 deep_input:3464.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:33.0 wide_input:22.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:3.0 wide_input:29.0 wide_input:512.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:80.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:5.0 wide_input:203.0 wide_input:973.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:48.0 deep_input:13.0 deep_input:7688.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:89.0 wide_input:58.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:21.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:14.0 wide_input:2.0 wide_input:31.0 wide_input:352.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:31.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:6.0 wide_input:29.0 wide_input:1006.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:55.0 deep_input:9.0 deep_input:4386.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:1.0 wide_input:0.0 wide_input:77.0 wide_input:46.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:26.0 wide_input:673.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:7.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:13.0 wide_input:1.0 wide_input:179.0 wide_input:296.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:26.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:7.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:5.0 wide_input:176.0 wide_input:949.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 label:0 +wide_input:7.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:175.0 wide_input:456.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:5.0 wide_input:5.0 wide_input:4.0 wide_input:86.0 wide_input:718.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:54.0 label:1 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:1.0 wide_input:206.0 wide_input:322.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:26.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:2.0 wide_input:49.0 wide_input:368.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:14.0 deep_input:7298.0 deep_input:0.0 deep_input:35.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:76.0 wide_input:45.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 label:0 +wide_input:9.0 wide_input:0.0 wide_input:1.0 wide_input:6.0 wide_input:10.0 wide_input:3.0 wide_input:204.0 wide_input:644.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:80.0 wide_input:49.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:15.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:7.0 wide_input:0.0 wide_input:88.0 wide_input:57.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:12.0 wide_input:0.0 wide_input:80.0 wide_input:1506.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:77.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:4.0 wide_input:2.0 wide_input:2.0 wide_input:4.0 wide_input:7.0 wide_input:0.0 wide_input:143.0 wide_input:99.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 deep_input:3.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:13.0 wide_input:1.0 wide_input:81.0 wide_input:220.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:29.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:6.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:8.0 wide_input:38.0 wide_input:1327.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:62.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:4.0 wide_input:3.0 wide_input:34.0 wide_input:517.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:39.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:84.0 wide_input:716.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:10.0 deep_input:0.0 deep_input:1485.0 deep_input:50.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:14.0 wide_input:2.0 wide_input:31.0 wide_input:352.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:35.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:4.0 wide_input:1.0 wide_input:99.0 wide_input:235.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:29.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:3.0 wide_input:0.0 wide_input:48.0 wide_input:1490.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:76.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:10.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:5.0 wide_input:8.0 wide_input:35.0 wide_input:1324.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:63.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:8.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:188.0 wide_input:138.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:23.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:15.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:10.0 wide_input:4.0 wide_input:78.0 wide_input:711.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:10.0 deep_input:0.0 deep_input:1887.0 deep_input:50.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:6.0 wide_input:7.0 wide_input:36.0 wide_input:1171.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:58.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:14.0 wide_input:0.0 wide_input:31.0 wide_input:1477.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:66.0 deep_input:9.0 deep_input:2050.0 deep_input:0.0 deep_input:55.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:84.0 wide_input:716.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:1.0 wide_input:1.0 wide_input:203.0 wide_input:319.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:26.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:8.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:5.0 wide_input:200.0 wide_input:971.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:47.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:0.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:1.0 wide_input:6.0 wide_input:1.0 wide_input:986.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:55.0 deep_input:6.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:14.0 wide_input:6.0 wide_input:31.0 wide_input:1008.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:53.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:4.0 wide_input:4.0 wide_input:2.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:144.0 wide_input:1558.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:17.0 deep_input:3.0 deep_input:0.0 deep_input:0.0 deep_input:48.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:2.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:33.0 wide_input:189.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:5.0 wide_input:42.0 wide_input:855.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:49.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:29.0 wide_input:18.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:8.0 wide_input:4.0 wide_input:38.0 wide_input:684.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:7.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:1.0 wide_input:178.0 wide_input:295.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:26.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:8.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:3.0 wide_input:195.0 wide_input:636.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:11.0 deep_input:7298.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:11.0 wide_input:3.0 wide_input:28.0 wide_input:511.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:9.0 deep_input:7298.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:5.0 wide_input:2.0 wide_input:35.0 wide_input:355.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:7.0 wide_input:11.0 wide_input:0.0 wide_input:79.0 wide_input:48.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:6.0 wide_input:12.0 wide_input:4.0 wide_input:206.0 wide_input:815.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 label:0 +wide_input:1.0 wide_input:2.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:91.0 wide_input:1516.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:67.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:8.0 label:0 +wide_input:8.0 wide_input:0.0 wide_input:4.0 wide_input:0.0 wide_input:0.0 wide_input:1.0 wide_input:188.0 wide_input:304.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:7.0 wide_input:3.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:7.0 wide_input:186.0 wide_input:1276.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:56.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:10.0 wide_input:2.0 wide_input:204.0 wide_input:483.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:2.0 wide_input:211.0 wide_input:489.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:8.0 wide_input:1.0 wide_input:38.0 wide_input:194.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:26.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:2.0 wide_input:211.0 wide_input:489.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:1.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:14.0 wide_input:5.0 wide_input:97.0 wide_input:895.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:46.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:7.0 wide_input:202.0 wide_input:1288.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:59.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:1.0 wide_input:1.0 wide_input:3.0 wide_input:26.0 wide_input:509.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:1.0 wide_input:6.0 wide_input:4.0 wide_input:4.0 wide_input:8.0 wide_input:8.0 wide_input:103.0 wide_input:1371.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:65.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:8.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:13.0 wide_input:3.0 wide_input:193.0 wide_input:634.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:40.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:26.0 wide_input:673.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:6.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:3.0 wide_input:1.0 wide_input:167.0 wide_input:285.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:26.0 deep_input:5.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:0.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:8.0 wide_input:3.0 wide_input:12.0 wide_input:504.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:6.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:8.0 wide_input:42.0 wide_input:1331.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:62.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:14.0 wide_input:4.0 wide_input:208.0 wide_input:817.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:43.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:9.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:211.0 wide_input:819.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:13.0 deep_input:0.0 deep_input:1564.0 deep_input:45.0 label:1 +wide_input:11.0 wide_input:3.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:29.0 wide_input:18.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:55.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:33.0 wide_input:189.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:12.0 wide_input:7.0 wide_input:80.0 wide_input:1198.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:56.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:7.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:178.0 wide_input:129.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:15.0 label:0 +wide_input:9.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:4.0 wide_input:7.0 wide_input:211.0 wide_input:1296.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:57.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:1 +wide_input:11.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:12.0 wide_input:3.0 wide_input:29.0 wide_input:512.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:39.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:4.0 wide_input:1.0 wide_input:1.0 wide_input:1.0 wide_input:77.0 wide_input:216.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:26.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:15.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:103.0 wide_input:1527.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:17.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:10.0 label:0 +wide_input:8.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:7.0 wide_input:3.0 wide_input:199.0 wide_input:640.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:4.0 wide_input:37.0 wide_input:683.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:33.0 wide_input:679.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:1.0 wide_input:0.0 wide_input:77.0 wide_input:46.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:10.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:33.0 wide_input:353.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:80.0 wide_input:49.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:23.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:0.0 wide_input:1.0 wide_input:6.0 wide_input:4.0 wide_input:5.0 wide_input:49.0 wide_input:862.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:3.0 wide_input:29.0 wide_input:512.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:14.0 wide_input:6.0 wide_input:31.0 wide_input:1008.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:54.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:4.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:5.0 wide_input:139.0 wide_input:922.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:3.0 deep_input:0.0 deep_input:2339.0 deep_input:45.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:84.0 wide_input:53.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:5.0 wide_input:80.0 wide_input:881.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:5.0 wide_input:2.0 wide_input:14.0 wide_input:3.0 wide_input:82.0 wide_input:551.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:36.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:38.0 wide_input:27.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:23.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 label:0 +wide_input:11.0 wide_input:5.0 wide_input:1.0 wide_input:4.0 wide_input:7.0 wide_input:1.0 wide_input:37.0 wide_input:193.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:29.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:77.0 wide_input:710.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:10.0 deep_input:0.0 deep_input:2415.0 deep_input:6.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:1.0 wide_input:0.0 wide_input:77.0 wide_input:46.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:16.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:2.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:38.0 wide_input:27.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:8.0 wide_input:2.0 wide_input:38.0 wide_input:358.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:210.0 wide_input:325.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:27.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:7.0 wide_input:5.0 wide_input:1.0 wide_input:6.0 wide_input:3.0 wide_input:5.0 wide_input:181.0 wide_input:954.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:4.0 wide_input:2.0 wide_input:211.0 wide_input:489.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:13.0 deep_input:7688.0 deep_input:0.0 deep_input:45.0 label:1 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:2.0 wide_input:38.0 wide_input:358.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:13.0 wide_input:4.0 wide_input:81.0 wide_input:714.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:44.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:6.0 wide_input:4.0 wide_input:87.0 wide_input:719.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:2.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:25.0 wide_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:0.0 wide_input:211.0 wide_input:161.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:55.0 label:1 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:5.0 wide_input:4.0 wide_input:6.0 wide_input:211.0 wide_input:1139.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:52.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:6.0 wide_input:0.0 wide_input:87.0 wide_input:56.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:1.0 wide_input:89.0 wide_input:228.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:11.0 wide_input:5.0 wide_input:205.0 wide_input:975.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:8.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:13.0 wide_input:2.0 wide_input:193.0 wide_input:473.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:34.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:64.0 label:0 +wide_input:5.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:6.0 wide_input:1.0 wide_input:156.0 wide_input:276.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:4.0 deep_input:0.0 deep_input:2179.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:49.0 wide_input:694.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:14.0 deep_input:0.0 deep_input:1977.0 deep_input:65.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:1.0 wide_input:26.0 wide_input:182.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:3.0 wide_input:5.0 wide_input:33.0 wide_input:846.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:5.0 wide_input:0.0 wide_input:0.0 wide_input:1.0 wide_input:76.0 wide_input:215.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:10.0 deep_input:0.0 deep_input:1887.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:2.0 wide_input:85.0 wide_input:389.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:1.0 wide_input:2.0 wide_input:8.0 wide_input:4.0 wide_input:89.0 wide_input:721.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:6.0 wide_input:0.0 wide_input:36.0 wide_input:25.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:2.0 wide_input:85.0 wide_input:389.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:10.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:5.0 wide_input:21.0 wide_input:838.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:16.0 deep_input:15024.0 deep_input:0.0 deep_input:60.0 label:1 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:7.0 wide_input:7.0 wide_input:2.0 wide_input:88.0 wide_input:392.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:31.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:2.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:113.0 wide_input:412.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:8.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:1 +wide_input:3.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:6.0 wide_input:129.0 wide_input:1072.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:52.0 deep_input:2.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:1.0 wide_input:103.0 wide_input:239.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 label:0 +wide_input:1.0 wide_input:5.0 wide_input:1.0 wide_input:2.0 wide_input:7.0 wide_input:2.0 wide_input:102.0 wide_input:402.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:14.0 wide_input:2.0 wide_input:31.0 wide_input:352.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:34.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:80.0 wide_input:49.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:6.0 wide_input:0.0 wide_input:101.0 wide_input:1525.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:17.0 deep_input:7.0 deep_input:2176.0 deep_input:0.0 deep_input:18.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:5.0 wide_input:7.0 wide_input:4.0 wide_input:2.0 wide_input:211.0 wide_input:489.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:5.0 wide_input:1.0 wide_input:35.0 wide_input:191.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:29.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:7.0 wide_input:336.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:6.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:14.0 wide_input:0.0 wide_input:31.0 wide_input:20.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:25.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:12.0 wide_input:4.0 wide_input:1.0 wide_input:1.0 wide_input:10.0 wide_input:3.0 wide_input:42.0 wide_input:525.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 deep_input:14.0 deep_input:0.0 deep_input:1408.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:6.0 wide_input:0.0 wide_input:36.0 wide_input:25.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:23.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:72.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:5.0 wide_input:4.0 wide_input:8.0 wide_input:34.0 wide_input:1323.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:63.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:10.0 wide_input:5.0 wide_input:42.0 wide_input:855.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:47.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:6.0 wide_input:1.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:25.0 wide_input:1471.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:80.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:91.0 wide_input:1516.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:17.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:3.0 wide_input:1.0 wide_input:6.0 wide_input:10.0 wide_input:3.0 wide_input:204.0 wide_input:644.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:13.0 deep_input:2174.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:7.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:8.0 wide_input:1.0 wide_input:186.0 wide_input:302.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:84.0 wide_input:223.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:27.0 deep_input:10.0 deep_input:0.0 deep_input:1980.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:2.0 wide_input:42.0 wide_input:362.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:14.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:1 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:5.0 wide_input:2.0 wide_input:35.0 wide_input:355.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:9.0 deep_input:594.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:2.0 wide_input:11.0 wide_input:2.0 wide_input:79.0 wide_input:384.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:0.0 wide_input:77.0 wide_input:46.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:23.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:5.0 wide_input:2.0 wide_input:1.0 wide_input:4.0 wide_input:77.0 wide_input:710.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:1.0 wide_input:204.0 wide_input:320.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:29.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:26.0 wide_input:673.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:2.0 wide_input:0.0 wide_input:32.0 wide_input:21.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:4.0 wide_input:78.0 wide_input:711.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:6.0 wide_input:4.0 wide_input:2.0 wide_input:4.0 wide_input:3.0 wide_input:1.0 wide_input:167.0 wide_input:285.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:27.0 deep_input:5.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:12.0 wide_input:0.0 wide_input:80.0 wide_input:49.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:11.0 wide_input:6.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:34.0 wide_input:680.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:6.0 wide_input:33.0 wide_input:1009.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:51.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:0.0 wide_input:37.0 wide_input:26.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:91.0 wide_input:1516.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:17.0 deep_input:7.0 deep_input:0.0 deep_input:0.0 deep_input:5.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:7.0 wide_input:0.0 wide_input:37.0 wide_input:26.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:19.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:5.0 wide_input:3.0 wide_input:4.0 wide_input:84.0 wide_input:716.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:55.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:7.0 wide_input:33.0 wide_input:1168.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:7.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:182.0 wide_input:792.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:42.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:6.0 wide_input:12.0 wide_input:4.0 wide_input:29.0 wide_input:676.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:8.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:7.0 wide_input:3.0 wide_input:199.0 wide_input:640.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:4.0 wide_input:1.0 wide_input:34.0 wide_input:190.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:14.0 wide_input:3.0 wide_input:82.0 wide_input:551.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:38.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:14.0 wide_input:0.0 wide_input:31.0 wide_input:20.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:23.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:2.0 wide_input:76.0 wide_input:381.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:7.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:5.0 wide_input:4.0 wide_input:183.0 wide_input:793.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:44.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:14.0 wide_input:6.0 wide_input:31.0 wide_input:1008.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:54.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:10.0 wide_input:2.0 wide_input:204.0 wide_input:483.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:32.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 label:0 +wide_input:3.0 wide_input:3.0 wide_input:4.0 wide_input:4.0 wide_input:3.0 wide_input:5.0 wide_input:125.0 wide_input:913.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:50.0 deep_input:2.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:13.0 wide_input:0.0 wide_input:207.0 wide_input:157.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:24.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:1.0 wide_input:3.0 wide_input:26.0 wide_input:509.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:37.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:14.0 wide_input:6.0 wide_input:31.0 wide_input:1008.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:52.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:14.0 wide_input:3.0 wide_input:82.0 wide_input:551.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:38.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:12.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:5.0 wide_input:49.0 wide_input:862.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:49.0 deep_input:14.0 deep_input:0.0 deep_input:1977.0 deep_input:45.0 label:1 +wide_input:9.0 wide_input:2.0 wide_input:5.0 wide_input:4.0 wide_input:13.0 wide_input:1.0 wide_input:207.0 wide_input:323.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:30.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:16.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:10.0 wide_input:7.0 wide_input:78.0 wide_input:1196.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:1 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:76.0 wide_input:45.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:33.0 wide_input:353.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:14.0 wide_input:1.0 wide_input:31.0 wide_input:187.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:30.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:8.0 wide_input:0.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:200.0 wide_input:1599.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:67.0 deep_input:11.0 deep_input:0.0 deep_input:0.0 deep_input:24.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:3.0 wide_input:5.0 wide_input:210.0 wide_input:979.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:6.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:172.0 wide_input:1584.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:17.0 deep_input:5.0 deep_input:0.0 deep_input:0.0 deep_input:6.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:6.0 wide_input:0.0 wide_input:87.0 wide_input:56.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:22.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:30.0 label:0 +wide_input:0.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:1.0 wide_input:12.0 wide_input:177.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:27.0 deep_input:6.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:11.0 wide_input:4.0 wide_input:4.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:38.0 wide_input:27.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:23.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:7.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:181.0 wide_input:462.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:15.0 wide_input:2.0 wide_input:0.0 wide_input:6.0 wide_input:3.0 wide_input:4.0 wide_input:84.0 wide_input:716.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:43.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:1.0 wide_input:7.0 wide_input:10.0 wide_input:1.0 wide_input:204.0 wide_input:320.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:28.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:11.0 wide_input:3.0 wide_input:4.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:33.0 wide_input:679.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:2.0 wide_input:4.0 wide_input:2.0 wide_input:0.0 wide_input:0.0 wide_input:6.0 wide_input:105.0 wide_input:1058.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:52.0 deep_input:8.0 deep_input:594.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:3.0 wide_input:3.0 wide_input:4.0 wide_input:1.0 wide_input:0.0 wide_input:77.0 wide_input:46.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:3.0 wide_input:2.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:8.0 wide_input:120.0 wide_input:1381.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:63.0 deep_input:2.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:2.0 wide_input:14.0 wide_input:7.0 wide_input:31.0 wide_input:1167.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:59.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 label:0 +wide_input:9.0 wide_input:0.0 wide_input:4.0 wide_input:2.0 wide_input:10.0 wide_input:4.0 wide_input:204.0 wide_input:813.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:45.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:9.0 wide_input:2.0 wide_input:0.0 wide_input:4.0 wide_input:12.0 wide_input:3.0 wide_input:206.0 wide_input:646.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:38.0 deep_input:13.0 deep_input:15024.0 deep_input:0.0 deep_input:60.0 label:1 +wide_input:11.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:8.0 wide_input:3.0 wide_input:38.0 wide_input:521.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:1.0 wide_input:1.0 wide_input:1.0 wide_input:5.0 wide_input:26.0 wide_input:840.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:46.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:7.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:4.0 wide_input:2.0 wide_input:182.0 wide_input:463.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 deep_input:12.0 deep_input:0.0 deep_input:0.0 deep_input:60.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:10.0 wide_input:2.0 wide_input:27.0 wide_input:348.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:34.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:25.0 label:0 +wide_input:9.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:3.0 wide_input:2.0 wide_input:210.0 wide_input:488.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:33.0 deep_input:13.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 +wide_input:11.0 wide_input:0.0 wide_input:4.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:26.0 wide_input:673.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:41.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:36.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:7.0 wide_input:0.0 wide_input:88.0 wide_input:57.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:4.0 wide_input:4.0 wide_input:3.0 wide_input:4.0 wide_input:8.0 wide_input:0.0 wide_input:144.0 wide_input:100.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:23.0 deep_input:3.0 deep_input:0.0 deep_input:0.0 deep_input:40.0 label:0 +wide_input:15.0 wide_input:4.0 wide_input:1.0 wide_input:4.0 wide_input:10.0 wide_input:1.0 wide_input:78.0 wide_input:217.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:26.0 deep_input:10.0 deep_input:0.0 deep_input:0.0 deep_input:35.0 label:0 +wide_input:11.0 wide_input:2.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:0.0 wide_input:25.0 wide_input:1471.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:1.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:0.0 deep_input:72.0 deep_input:9.0 deep_input:0.0 deep_input:0.0 deep_input:20.0 label:0 diff --git a/models/rank/wide_deep/model.py b/models/rank/wide_deep/model.py index a7d51d958c55f0368cdd7f9ff7baa51dd25a6f76..d798a54590d709c9f25f63638250bd12b0e62cbd 100755 --- a/models/rank/wide_deep/model.py +++ b/models/rank/wide_deep/model.py @@ -57,7 +57,7 @@ class Model(ModelBase): return l3 def train_net(self): - self.model._init_slots() + self._init_slots() wide_input = self._dense_data_var[0] deep_input = self._dense_data_var[1] label = self._sparse_data_var[0] @@ -122,6 +122,5 @@ class Model(ModelBase): optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True) return optimizer - def infer_net(self, parameter_list): - self.model._init_slots() - self.deepfm_net() + def infer_net(self): + self.train_net() diff --git a/models/rank/xdeepfm/config.yaml b/models/rank/xdeepfm/config.yaml index 5f60a141a38ab388688a24da2ea153c2b576ccaa..37b6b65b4777b7a2d497cfd1c0213c3e88fe6baa 100755 --- a/models/rank/xdeepfm/config.yaml +++ b/models/rank/xdeepfm/config.yaml @@ -22,7 +22,7 @@ train: reader: batch_size: 2 - train_data_path: "{workspace}/data/slot_train_data" + train_data_path: "{workspace}/data/sample_data/train" sparse_slots: "label feat_idx" dense_slots: "feat_value:39" diff --git a/models/rank/xdeepfm/data/sample_data/train/sample_train.txt b/models/rank/xdeepfm/data/sample_data/train/sample_train.txt new file mode 100644 index 0000000000000000000000000000000000000000..4b0308e17f74efa4272e1871e86d03c236b1945a --- /dev/null +++ b/models/rank/xdeepfm/data/sample_data/train/sample_train.txt @@ -0,0 +1,100 @@ +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:655161 feat_idx:0 feat_idx:1075467 feat_idx:314332 feat_idx:615411 feat_idx:733564 feat_idx:795081 feat_idx:148475 feat_idx:123424 feat_idx:582322 feat_idx:0 feat_idx:1082305 feat_idx:288355 feat_idx:328646 feat_idx:756244 feat_idx:13161 feat_idx:134834 feat_idx:734534 feat_idx:1047606 feat_idx:626828 feat_idx:0 feat_idx:476211 feat_idx:819217 feat_idx:502861 feat_idx:767167 feat_value:0.00017316017316 feat_value:1.55232499476e-05 feat_value:7.62951094835e-05 feat_value:0.0 feat_value:5.96732496653e-05 feat_value:9.27994580512e-06 feat_value:0.000266377794747 feat_value:0.000330742516951 feat_value:0.00623729280816 feat_value:0.0217391304348 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:328856 feat_idx:583609 feat_idx:356189 feat_idx:314332 feat_idx:404876 feat_idx:233441 feat_idx:144963 feat_idx:148475 feat_idx:954707 feat_idx:778340 feat_idx:598842 feat_idx:701804 feat_idx:223357 feat_idx:310528 feat_idx:805012 feat_idx:599055 feat_idx:683739 feat_idx:734534 feat_idx:94311 feat_idx:135625 feat_idx:0 feat_idx:476211 feat_idx:737768 feat_idx:502861 feat_idx:618666 feat_value:0.00034632034632 feat_value:1.16424374607e-05 feat_value:0.000671396963455 feat_value:0.00103199174407 feat_value:4.40424852812e-06 feat_value:1.85598916102e-05 feat_value:3.55170392996e-05 feat_value:0.000330742516951 feat_value:0.000137840725042 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:125230 feat_idx:244091 feat_idx:428972 feat_idx:323226 feat_idx:314332 feat_idx:615411 feat_idx:655488 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:989454 feat_idx:789125 feat_idx:274685 feat_idx:59528 feat_idx:142028 feat_idx:791919 feat_idx:339114 feat_idx:12934 feat_idx:0 feat_idx:0 feat_idx:128761 feat_idx:925828 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.00034632034632 feat_value:1.16424374607e-05 feat_value:1.52590218967e-05 feat_value:0.0144478844169 feat_value:3.31182217752e-05 feat_value:0.000206478794164 feat_value:7.10340785992e-05 feat_value:0.000330742516951 feat_value:0.00844274440884 feat_value:0.0217391304348 feat_value:0.012987012987 feat_value:0.000748502994012 feat_value:0.00608683890166 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:695357 feat_idx:541890 feat_idx:0 feat_idx:1012660 feat_idx:314332 feat_idx:404876 feat_idx:1742 feat_idx:144963 feat_idx:148475 feat_idx:456917 feat_idx:220560 feat_idx:0 feat_idx:480237 feat_idx:59528 feat_idx:402233 feat_idx:0 feat_idx:763481 feat_idx:885529 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:476211 feat_idx:68781 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.00347720798826 feat_value:0.0 feat_value:0.0 feat_value:0.000189641760152 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:518052 feat_idx:52223 feat_idx:0 feat_idx:610088 feat_idx:314332 feat_idx:85900 feat_idx:253972 feat_idx:144963 feat_idx:148475 feat_idx:581401 feat_idx:921618 feat_idx:374454 feat_idx:576858 feat_idx:288355 feat_idx:526081 feat_idx:597631 feat_idx:763481 feat_idx:468634 feat_idx:0 feat_idx:0 feat_idx:360559 feat_idx:0 feat_idx:122096 feat_idx:604513 feat_idx:0 feat_idx:0 feat_value:0.000519480519481 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:8.63578142768e-08 feat_value:0.0 feat_value:5.32755589494e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:268086 feat_idx:844726 feat_idx:589259 feat_idx:34922 feat_idx:943087 feat_idx:831162 feat_idx:687817 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:160002 feat_idx:879363 feat_idx:979424 feat_idx:59528 feat_idx:844314 feat_idx:974289 feat_idx:197974 feat_idx:82573 feat_idx:0 feat_idx:0 feat_idx:4620 feat_idx:811639 feat_idx:441547 feat_idx:578537 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.000553726305143 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000206761087563 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:74940 feat_idx:503640 feat_idx:888356 feat_idx:507702 feat_idx:943087 feat_idx:404876 feat_idx:1081499 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:202629 feat_idx:486504 feat_idx:981942 feat_idx:59528 feat_idx:404100 feat_idx:210897 feat_idx:197974 feat_idx:821035 feat_idx:0 feat_idx:0 feat_idx:627303 feat_idx:0 feat_idx:637620 feat_idx:409520 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:3.05180437934e-05 feat_value:0.0 feat_value:0.000136790777814 feat_value:0.0 feat_value:0.0 feat_value:0.000165371258475 feat_value:6.89203625211e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:541890 feat_idx:0 feat_idx:175574 feat_idx:1022525 feat_idx:85900 feat_idx:114990 feat_idx:795081 feat_idx:148475 feat_idx:391150 feat_idx:172637 feat_idx:0 feat_idx:831202 feat_idx:59528 feat_idx:402233 feat_idx:0 feat_idx:13161 feat_idx:885529 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:68781 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:2.71656874083e-05 feat_value:3.05180437934e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.77585196498e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:585875 feat_idx:460446 feat_idx:323226 feat_idx:314332 feat_idx:615411 feat_idx:453185 feat_idx:144963 feat_idx:148475 feat_idx:995582 feat_idx:409958 feat_idx:824386 feat_idx:745363 feat_idx:223357 feat_idx:782190 feat_idx:499188 feat_idx:13161 feat_idx:826986 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:122096 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000182398186884 feat_value:6.10360875868e-05 feat_value:0.00825593395253 feat_value:0.000820831024701 feat_value:0.000577676626369 feat_value:0.000497238550194 feat_value:0.00512650901273 feat_value:0.00485888555774 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00108210469363 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:952850 feat_idx:444926 feat_idx:327161 feat_idx:314332 feat_idx:0 feat_idx:48165 feat_idx:144963 feat_idx:148475 feat_idx:408072 feat_idx:220560 feat_idx:313350 feat_idx:480237 feat_idx:59528 feat_idx:767941 feat_idx:274209 feat_idx:587215 feat_idx:49542 feat_idx:0 feat_idx:0 feat_idx:918027 feat_idx:0 feat_idx:122096 feat_idx:210681 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000147470874502 feat_value:0.0 feat_value:0.00103199174407 feat_value:0.00145672679013 feat_value:4.87197154769e-05 feat_value:1.77585196498e-05 feat_value:0.000330742516951 feat_value:0.000103380543782 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:323969 feat_idx:1007141 feat_idx:1053419 feat_idx:314332 feat_idx:615411 feat_idx:926319 feat_idx:144963 feat_idx:31348 feat_idx:754940 feat_idx:35969 feat_idx:469428 feat_idx:394416 feat_idx:223357 feat_idx:878804 feat_idx:9647 feat_idx:197974 feat_idx:316785 feat_idx:734534 feat_idx:94311 feat_idx:409871 feat_idx:0 feat_idx:476211 feat_idx:755653 feat_idx:522503 feat_idx:379855 feat_value:0.0 feat_value:1.94040624345e-05 feat_value:0.00964370183871 feat_value:0.0 feat_value:0.00245126655825 feat_value:0.0 feat_value:0.0 feat_value:0.000826856292376 feat_value:0.00223991178194 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:985125 feat_idx:0 feat_idx:0 feat_idx:360051 feat_idx:0 feat_idx:304911 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:887175 feat_idx:0 feat_idx:701330 feat_idx:59528 feat_idx:670083 feat_idx:0 feat_idx:587215 feat_idx:334296 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:0 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:3.49273123821e-05 feat_value:9.15541313802e-05 feat_value:0.0061919504644 feat_value:1.81783199053e-05 feat_value:0.000252878523189 feat_value:1.77585196498e-05 feat_value:0.00115759880933 feat_value:0.00368723939488 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000811578520222 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:685954 feat_idx:439682 feat_idx:0 feat_idx:983567 feat_idx:314332 feat_idx:404876 feat_idx:909239 feat_idx:795081 feat_idx:148475 feat_idx:36347 feat_idx:663689 feat_idx:0 feat_idx:398775 feat_idx:59528 feat_idx:996203 feat_idx:150509 feat_idx:13161 feat_idx:183924 feat_idx:0 feat_idx:0 feat_idx:379144 feat_idx:0 feat_idx:122096 feat_idx:604513 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:6.32570989578e-05 feat_value:0.0 feat_value:0.000301894834047 feat_value:0.0 feat_value:0.000137840725042 feat_value:0.0 feat_value:0.017316017316 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:181401 feat_idx:702327 feat_idx:0 feat_idx:334017 feat_idx:314332 feat_idx:0 feat_idx:191120 feat_idx:299805 feat_idx:148475 feat_idx:442554 feat_idx:480141 feat_idx:0 feat_idx:16042 feat_idx:288355 feat_idx:928072 feat_idx:0 feat_idx:599055 feat_idx:91753 feat_idx:297696 feat_idx:330429 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:590863 feat_idx:525837 feat_idx:413413 feat_value:0.0 feat_value:1.94040624345e-05 feat_value:0.000167849240864 feat_value:0.00515995872033 feat_value:0.000443101945054 feat_value:7.88795393435e-05 feat_value:3.55170392996e-05 feat_value:0.000661485033901 feat_value:0.000172300906303 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:506931 feat_idx:655161 feat_idx:0 feat_idx:49997 feat_idx:1076285 feat_idx:85900 feat_idx:79619 feat_idx:144963 feat_idx:148475 feat_idx:817613 feat_idx:933612 feat_idx:0 feat_idx:733763 feat_idx:288355 feat_idx:565066 feat_idx:310463 feat_idx:854924 feat_idx:378884 feat_idx:734534 feat_idx:1047606 feat_idx:884047 feat_idx:0 feat_idx:241528 feat_idx:40100 feat_idx:502861 feat_idx:752176 feat_value:0.0 feat_value:0.000209563874293 feat_value:0.00128175783932 feat_value:0.00412796697626 feat_value:0.000156868969634 feat_value:6.03196477333e-05 feat_value:1.77585196498e-05 feat_value:0.000661485033901 feat_value:0.000275681450084 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:328239 feat_idx:910743 feat_idx:915614 feat_idx:360051 feat_idx:615411 feat_idx:49489 feat_idx:1007823 feat_idx:148475 feat_idx:754940 feat_idx:224964 feat_idx:235573 feat_idx:226878 feat_idx:693306 feat_idx:277510 feat_idx:277345 feat_idx:197974 feat_idx:969807 feat_idx:0 feat_idx:0 feat_idx:539201 feat_idx:0 feat_idx:476211 feat_idx:650546 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.94040624345e-05 feat_value:1.52590218967e-05 feat_value:0.0185758513932 feat_value:0.000874588764088 feat_value:0.0 feat_value:0.0 feat_value:0.000165371258475 feat_value:0.0450049967263 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.00270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:211148 feat_idx:0 feat_idx:0 feat_idx:943087 feat_idx:615411 feat_idx:98894 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:683585 feat_idx:0 feat_idx:460786 feat_idx:59528 feat_idx:883086 feat_idx:0 feat_idx:587215 feat_idx:197941 feat_idx:734534 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:537421 feat_idx:24736 feat_idx:962390 feat_value:0.00017316017316 feat_value:0.00384200436203 feat_value:0.0 feat_value:0.00206398348813 feat_value:4.53378524953e-06 feat_value:4.63997290256e-06 feat_value:1.77585196498e-05 feat_value:0.000330742516951 feat_value:6.89203625211e-05 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:518052 feat_idx:894672 feat_idx:521506 feat_idx:105841 feat_idx:360051 feat_idx:108674 feat_idx:642013 feat_idx:144963 feat_idx:148475 feat_idx:165260 feat_idx:212992 feat_idx:1009370 feat_idx:775147 feat_idx:223357 feat_idx:274230 feat_idx:833849 feat_idx:13161 feat_idx:57230 feat_idx:0 feat_idx:0 feat_idx:844134 feat_idx:925828 feat_idx:122096 feat_idx:141692 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.0 feat_value:0.0 feat_value:0.000716640321776 feat_value:0.00129223245336 feat_value:5.32755589494e-05 feat_value:0.000826856292376 feat_value:0.00423860229505 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:328856 feat_idx:506639 feat_idx:78755 feat_idx:463568 feat_idx:108674 feat_idx:152478 feat_idx:888742 feat_idx:148475 feat_idx:14838 feat_idx:682657 feat_idx:993166 feat_idx:502067 feat_idx:288355 feat_idx:190674 feat_idx:472919 feat_idx:13161 feat_idx:683739 feat_idx:734534 feat_idx:1047606 feat_idx:768815 feat_idx:0 feat_idx:122096 feat_idx:1010006 feat_idx:522503 feat_idx:963757 feat_value:0.0 feat_value:0.000104781937146 feat_value:6.10360875868e-05 feat_value:0.00206398348813 feat_value:8.87758330766e-05 feat_value:2.78398374153e-05 feat_value:0.000106551117899 feat_value:0.00165371258475 feat_value:0.00286019504463 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:738089 feat_idx:606995 feat_idx:964206 feat_idx:269737 feat_idx:360051 feat_idx:85900 feat_idx:608469 feat_idx:144963 feat_idx:148475 feat_idx:307543 feat_idx:405000 feat_idx:65140 feat_idx:749745 feat_idx:218723 feat_idx:686050 feat_idx:594443 feat_idx:13161 feat_idx:96125 feat_idx:0 feat_idx:0 feat_idx:946269 feat_idx:0 feat_idx:943262 feat_idx:395579 feat_idx:0 feat_idx:0 feat_value:0.00121212121212 feat_value:0.000407485311125 feat_value:0.0 feat_value:0.0030959752322 feat_value:3.3679547568e-05 feat_value:3.47997967692e-05 feat_value:0.000124309637549 feat_value:0.00248056887713 feat_value:0.000516902718908 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:906706 feat_idx:439682 feat_idx:4257 feat_idx:430841 feat_idx:314332 feat_idx:615411 feat_idx:998076 feat_idx:66687 feat_idx:148475 feat_idx:754940 feat_idx:648531 feat_idx:779745 feat_idx:718037 feat_idx:288355 feat_idx:360204 feat_idx:944849 feat_idx:13161 feat_idx:631544 feat_idx:0 feat_idx:0 feat_idx:177363 feat_idx:0 feat_idx:122096 feat_idx:1072137 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000194040624345 feat_value:0.0 feat_value:0.0 feat_value:0.000276301826779 feat_value:8.81594851486e-05 feat_value:0.000337411873346 feat_value:0.00165371258475 feat_value:0.00492780592026 feat_value:0.0 feat_value:0.04329004329 feat_value:0.0 feat_value:0.000811578520222 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:0 feat_idx:388090 feat_idx:314332 feat_idx:615411 feat_idx:595457 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:298800 feat_idx:0 feat_idx:349549 feat_idx:59528 feat_idx:28300 feat_idx:0 feat_idx:587215 feat_idx:750233 feat_idx:832803 feat_idx:330429 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:612991 feat_idx:502861 feat_idx:691775 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.00122072175174 feat_value:0.0 feat_value:7.97946203918e-05 feat_value:0.000665836111517 feat_value:1.77585196498e-05 feat_value:0.000661485033901 feat_value:0.00158516833799 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:439682 feat_idx:998375 feat_idx:373577 feat_idx:314332 feat_idx:108674 feat_idx:76428 feat_idx:66687 feat_idx:148475 feat_idx:636407 feat_idx:840978 feat_idx:221841 feat_idx:110276 feat_idx:223357 feat_idx:104371 feat_idx:535541 feat_idx:599055 feat_idx:892333 feat_idx:0 feat_idx:0 feat_idx:519737 feat_idx:0 feat_idx:476211 feat_idx:26849 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.000213626306554 feat_value:0.0061919504644 feat_value:0.000307951965711 feat_value:0.000396717683169 feat_value:3.55170392996e-05 feat_value:0.000330742516951 feat_value:0.000206761087563 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000811578520222 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:507093 feat_idx:28898 feat_idx:1067105 feat_idx:314332 feat_idx:615411 feat_idx:875540 feat_idx:144963 feat_idx:148475 feat_idx:801559 feat_idx:965246 feat_idx:93410 feat_idx:648840 feat_idx:59528 feat_idx:63243 feat_idx:1041736 feat_idx:763481 feat_idx:206486 feat_idx:0 feat_idx:0 feat_idx:623203 feat_idx:0 feat_idx:377126 feat_idx:1017627 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:4.65697498428e-05 feat_value:0.00013733119707 feat_value:0.0175438596491 feat_value:0.000508388452648 feat_value:0.0 feat_value:0.0 feat_value:0.00380353894493 feat_value:0.00441090320135 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.00229947247396 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:506931 feat_idx:195832 feat_idx:460446 feat_idx:323226 feat_idx:314332 feat_idx:615411 feat_idx:414506 feat_idx:144963 feat_idx:148475 feat_idx:127380 feat_idx:385804 feat_idx:824386 feat_idx:203621 feat_idx:59528 feat_idx:631370 feat_idx:499188 feat_idx:587215 feat_idx:855342 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:969590 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:3.05180437934e-05 feat_value:0.0 feat_value:0.000267277435187 feat_value:0.000194878861907 feat_value:1.77585196498e-05 feat_value:0.00446502397883 feat_value:0.0024466728695 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:506931 feat_idx:704711 feat_idx:701980 feat_idx:42486 feat_idx:314332 feat_idx:0 feat_idx:786460 feat_idx:144963 feat_idx:148475 feat_idx:466556 feat_idx:775018 feat_idx:404666 feat_idx:1065844 feat_idx:39086 feat_idx:992008 feat_idx:506428 feat_idx:599055 feat_idx:750233 feat_idx:256242 feat_idx:330429 feat_idx:218251 feat_idx:0 feat_idx:122096 feat_idx:221229 feat_idx:502861 feat_idx:24246 feat_value:0.0 feat_value:2.71656874083e-05 feat_value:0.000244144350347 feat_value:0.0 feat_value:0.000255835024795 feat_value:4.63997290256e-06 feat_value:3.55170392996e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:518052 feat_idx:1049859 feat_idx:0 feat_idx:1096 feat_idx:314332 feat_idx:615411 feat_idx:714816 feat_idx:795081 feat_idx:148475 feat_idx:900313 feat_idx:855314 feat_idx:0 feat_idx:603555 feat_idx:59528 feat_idx:211559 feat_idx:0 feat_idx:379814 feat_idx:311468 feat_idx:734534 feat_idx:330429 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:383498 feat_idx:917031 feat_idx:879752 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.000305180437934 feat_value:0.0165118679051 feat_value:6.68409482503e-05 feat_value:0.000215758739969 feat_value:0.000745857825292 feat_value:0.00529188027121 feat_value:0.0314276853096 feat_value:0.0 feat_value:0.0649350649351 feat_value:0.000249500998004 feat_value:0.00216420938726 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:695357 feat_idx:439682 feat_idx:433159 feat_idx:217415 feat_idx:360051 feat_idx:615411 feat_idx:235834 feat_idx:144963 feat_idx:148475 feat_idx:343946 feat_idx:489781 feat_idx:168412 feat_idx:950158 feat_idx:59528 feat_idx:419036 feat_idx:782554 feat_idx:854924 feat_idx:502656 feat_idx:0 feat_idx:0 feat_idx:1082526 feat_idx:0 feat_idx:476211 feat_idx:972567 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:8.92586871988e-05 feat_value:3.05180437934e-05 feat_value:0.00206398348813 feat_value:0.000310369984511 feat_value:0.000394397696717 feat_value:3.55170392996e-05 feat_value:0.000496113775426 feat_value:0.000827044350253 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:983083 feat_idx:555506 feat_idx:311508 feat_idx:360051 feat_idx:831162 feat_idx:662893 feat_idx:144963 feat_idx:148475 feat_idx:453404 feat_idx:437228 feat_idx:866349 feat_idx:987534 feat_idx:223357 feat_idx:872276 feat_idx:719825 feat_idx:13161 feat_idx:146364 feat_idx:0 feat_idx:0 feat_idx:1083188 feat_idx:0 feat_idx:122096 feat_idx:33938 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000314345811439 feat_value:3.05180437934e-05 feat_value:0.015479876161 feat_value:0.000186144268674 feat_value:0.000197198848359 feat_value:7.10340785992e-05 feat_value:0.00297668265255 feat_value:0.00792584168993 feat_value:0.0 feat_value:0.012987012987 feat_value:0.0 feat_value:0.00202894630055 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:638696 feat_idx:232393 feat_idx:537609 feat_idx:314332 feat_idx:85900 feat_idx:158968 feat_idx:144963 feat_idx:148475 feat_idx:411650 feat_idx:220560 feat_idx:633471 feat_idx:480237 feat_idx:39086 feat_idx:611928 feat_idx:584121 feat_idx:13161 feat_idx:747604 feat_idx:0 feat_idx:0 feat_idx:204145 feat_idx:0 feat_idx:476211 feat_idx:485685 feat_idx:0 feat_idx:0 feat_value:0.000519480519481 feat_value:1.16424374607e-05 feat_value:6.10360875868e-05 feat_value:0.0134158926729 feat_value:9.672075199e-06 feat_value:6.49596206358e-05 feat_value:5.32755589494e-05 feat_value:0.00578799404663 feat_value:0.000930424894035 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00175842012715 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:518052 feat_idx:245713 feat_idx:964221 feat_idx:976933 feat_idx:360051 feat_idx:404876 feat_idx:469669 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:496768 feat_idx:978607 feat_idx:788967 feat_idx:59528 feat_idx:717827 feat_idx:227446 feat_idx:13161 feat_idx:251726 feat_idx:0 feat_idx:0 feat_idx:2400 feat_idx:0 feat_idx:476211 feat_idx:942610 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.00108662749633 feat_value:0.0 feat_value:0.0030959752322 feat_value:0.000315983242439 feat_value:5.56796748307e-05 feat_value:0.000106551117899 feat_value:0.000496113775426 feat_value:0.00337709776353 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:181401 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:314332 feat_idx:404876 feat_idx:286011 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:966589 feat_idx:824386 feat_idx:429895 feat_idx:863222 feat_idx:406685 feat_idx:499188 feat_idx:197974 feat_idx:251433 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:321110 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.000213994663778 feat_value:0.0 feat_value:0.0 feat_value:0.00611873656359 feat_value:0.00334263758227 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:0 feat_idx:268086 feat_idx:83142 feat_idx:288162 feat_idx:1060646 feat_idx:360051 feat_idx:615411 feat_idx:714816 feat_idx:144963 feat_idx:148475 feat_idx:138291 feat_idx:855314 feat_idx:165496 feat_idx:603555 feat_idx:59528 feat_idx:224690 feat_idx:316295 feat_idx:854924 feat_idx:257823 feat_idx:0 feat_idx:0 feat_idx:704548 feat_idx:0 feat_idx:122096 feat_idx:782694 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:1.16424374607e-05 feat_value:1.52590218967e-05 feat_value:0.0 feat_value:6.16163004865e-05 feat_value:6.95995935384e-06 feat_value:0.000284136314397 feat_value:0.00181908384323 feat_value:0.00172300906303 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.000249500998004 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:563443 feat_idx:51995 feat_idx:49997 feat_idx:314332 feat_idx:0 feat_idx:595457 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:188162 feat_idx:721984 feat_idx:349549 feat_idx:199920 feat_idx:180762 feat_idx:310463 feat_idx:197974 feat_idx:319863 feat_idx:734534 feat_idx:330429 feat_idx:467968 feat_idx:0 feat_idx:122096 feat_idx:40100 feat_idx:502861 feat_idx:777305 feat_value:0.000692640692641 feat_value:1.16424374607e-05 feat_value:0.000839246204318 feat_value:0.00825593395253 feat_value:3.70906812319e-05 feat_value:3.01598238666e-05 feat_value:7.10340785992e-05 feat_value:0.0019844551017 feat_value:0.000447982356387 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00108210469363 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:281207 feat_idx:430926 feat_idx:909211 feat_idx:314332 feat_idx:0 feat_idx:928918 feat_idx:144963 feat_idx:148475 feat_idx:904134 feat_idx:535335 feat_idx:327558 feat_idx:639245 feat_idx:223357 feat_idx:18380 feat_idx:471487 feat_idx:13161 feat_idx:188469 feat_idx:0 feat_idx:0 feat_idx:500616 feat_idx:0 feat_idx:122096 feat_idx:657898 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:0.00101677287157 feat_value:1.52590218967e-05 feat_value:0.00103199174407 feat_value:2.15894535692e-07 feat_value:2.31998645128e-06 feat_value:0.000106551117899 feat_value:0.000165371258475 feat_value:3.44601812606e-05 feat_value:0.0217391304348 feat_value:0.012987012987 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:87449 feat_idx:691591 feat_idx:466372 feat_idx:360051 feat_idx:108674 feat_idx:537959 feat_idx:144963 feat_idx:148475 feat_idx:882632 feat_idx:1037965 feat_idx:783604 feat_idx:521533 feat_idx:59528 feat_idx:185313 feat_idx:972394 feat_idx:339114 feat_idx:644343 feat_idx:603603 feat_idx:330429 feat_idx:722203 feat_idx:925828 feat_idx:377126 feat_idx:221229 feat_idx:343446 feat_idx:24246 feat_value:0.0 feat_value:0.000504505623297 feat_value:1.52590218967e-05 feat_value:0.0030959752322 feat_value:7.26701007139e-05 feat_value:4.40797425743e-05 feat_value:0.000461721510895 feat_value:0.00281131139408 feat_value:0.0163685860988 feat_value:0.0 feat_value:0.038961038961 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:87868 feat_idx:585875 feat_idx:143202 feat_idx:105841 feat_idx:314332 feat_idx:615411 feat_idx:685294 feat_idx:795081 feat_idx:148475 feat_idx:754940 feat_idx:853239 feat_idx:1062322 feat_idx:529712 feat_idx:223357 feat_idx:715789 feat_idx:334774 feat_idx:197974 feat_idx:339749 feat_idx:0 feat_idx:0 feat_idx:540979 feat_idx:0 feat_idx:122096 feat_idx:141692 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0010041254855 feat_value:0.0 feat_value:0.0 feat_value:0.000165371258475 feat_value:0.00251559323202 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:154881 feat_idx:664380 feat_idx:0 feat_idx:470673 feat_idx:314332 feat_idx:108674 feat_idx:610634 feat_idx:144963 feat_idx:148475 feat_idx:125722 feat_idx:153800 feat_idx:0 feat_idx:297062 feat_idx:223357 feat_idx:712970 feat_idx:124318 feat_idx:13161 feat_idx:521259 feat_idx:734534 feat_idx:330429 feat_idx:0 feat_idx:969590 feat_idx:217677 feat_idx:643925 feat_idx:24736 feat_idx:941404 feat_value:0.00103896103896 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:3.95087000316e-05 feat_value:9.27994580512e-05 feat_value:0.000461721510895 feat_value:0.00545725152968 feat_value:0.00248113305076 feat_value:0.0217391304348 feat_value:0.012987012987 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:245713 feat_idx:987054 feat_idx:399764 feat_idx:360051 feat_idx:615411 feat_idx:684605 feat_idx:144963 feat_idx:148475 feat_idx:874792 feat_idx:107682 feat_idx:879950 feat_idx:321212 feat_idx:288355 feat_idx:369087 feat_idx:762311 feat_idx:13161 feat_idx:879575 feat_idx:0 feat_idx:0 feat_idx:1086254 feat_idx:0 feat_idx:122096 feat_idx:942610 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:4.57770656901e-05 feat_value:0.0123839009288 feat_value:0.000315551453367 feat_value:0.000225038685774 feat_value:3.55170392996e-05 feat_value:0.00347279642798 feat_value:0.00310141631345 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00162315704044 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:506931 feat_idx:714652 feat_idx:0 feat_idx:213479 feat_idx:314332 feat_idx:0 feat_idx:432079 feat_idx:144963 feat_idx:148475 feat_idx:666980 feat_idx:405740 feat_idx:0 feat_idx:705197 feat_idx:288355 feat_idx:104862 feat_idx:0 feat_idx:339114 feat_idx:679030 feat_idx:734534 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:1057480 feat_idx:343446 feat_idx:502409 feat_value:0.00138528138528 feat_value:1.16424374607e-05 feat_value:0.00022888532845 feat_value:0.0206398348813 feat_value:4.96557432092e-06 feat_value:5.56796748307e-05 feat_value:0.000142068157198 feat_value:0.00380353894493 feat_value:0.000827044350253 feat_value:0.0434782608696 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00270526173407 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:83142 feat_idx:460446 feat_idx:323226 feat_idx:360051 feat_idx:108674 feat_idx:714816 feat_idx:795081 feat_idx:148475 feat_idx:900313 feat_idx:855314 feat_idx:824386 feat_idx:603555 feat_idx:59528 feat_idx:95559 feat_idx:499188 feat_idx:339114 feat_idx:882666 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:122096 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000159113311963 feat_value:3.05180437934e-05 feat_value:0.00412796697626 feat_value:0.000134675011365 feat_value:0.000345677981241 feat_value:0.00113654525759 feat_value:0.00793782040681 feat_value:0.00478996519522 feat_value:0.0 feat_value:0.025974025974 feat_value:0.00149700598802 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:507093 feat_idx:968965 feat_idx:115714 feat_idx:314332 feat_idx:108674 feat_idx:585814 feat_idx:144963 feat_idx:148475 feat_idx:1067472 feat_idx:905164 feat_idx:292795 feat_idx:1053010 feat_idx:223357 feat_idx:460894 feat_idx:592287 feat_idx:339114 feat_idx:1024304 feat_idx:0 feat_idx:0 feat_idx:1006115 feat_idx:0 feat_idx:122096 feat_idx:831861 feat_idx:0 feat_idx:0 feat_value:0.0152380952381 feat_value:0.00124962162078 feat_value:0.0 feat_value:0.00412796697626 feat_value:2.15894535692e-07 feat_value:9.27994580512e-06 feat_value:0.00158050824883 feat_value:0.00661485033901 feat_value:0.00303249595093 feat_value:0.0652173913043 feat_value:0.017316017316 feat_value:0.00299401197605 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:160536 feat_idx:572549 feat_idx:314332 feat_idx:0 feat_idx:984584 feat_idx:144963 feat_idx:148475 feat_idx:120200 feat_idx:190379 feat_idx:768743 feat_idx:628725 feat_idx:288355 feat_idx:967940 feat_idx:824472 feat_idx:854924 feat_idx:575938 feat_idx:568485 feat_idx:330429 feat_idx:469863 feat_idx:0 feat_idx:122096 feat_idx:26849 feat_idx:502861 feat_idx:9838 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.000274662394141 feat_value:0.00515995872033 feat_value:7.26701007139e-05 feat_value:0.000185598916102 feat_value:0.000674823746692 feat_value:0.000826856292376 feat_value:0.00327371721975 feat_value:0.0 feat_value:0.021645021645 feat_value:0.0 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:506931 feat_idx:439682 feat_idx:462322 feat_idx:892535 feat_idx:314332 feat_idx:615411 feat_idx:183327 feat_idx:66687 feat_idx:31348 feat_idx:754940 feat_idx:780959 feat_idx:1076845 feat_idx:127420 feat_idx:59528 feat_idx:1034303 feat_idx:3336 feat_idx:587215 feat_idx:786401 feat_idx:0 feat_idx:0 feat_idx:273839 feat_idx:0 feat_idx:476211 feat_idx:841950 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000116424374607 feat_value:0.0 feat_value:0.0 feat_value:0.00487394867997 feat_value:0.00488589146639 feat_value:0.0 feat_value:0.000330742516951 feat_value:0.00327371721975 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:268086 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:943087 feat_idx:615411 feat_idx:646596 feat_idx:144963 feat_idx:148475 feat_idx:320091 feat_idx:786096 feat_idx:824386 feat_idx:708545 feat_idx:863222 feat_idx:406685 feat_idx:499188 feat_idx:599055 feat_idx:251433 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:969590 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.000211317571535 feat_value:4.63997290256e-05 feat_value:1.77585196498e-05 feat_value:0.00115759880933 feat_value:0.000689203625211 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:585875 feat_idx:1083253 feat_idx:105841 feat_idx:314332 feat_idx:615411 feat_idx:183043 feat_idx:66687 feat_idx:148475 feat_idx:754940 feat_idx:785290 feat_idx:78319 feat_idx:769776 feat_idx:223357 feat_idx:715789 feat_idx:30992 feat_idx:854924 feat_idx:339749 feat_idx:0 feat_idx:0 feat_idx:87470 feat_idx:0 feat_idx:122096 feat_idx:141692 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000135828437042 feat_value:0.0 feat_value:0.00103199174407 feat_value:0.000404802254423 feat_value:0.0 feat_value:0.0 feat_value:0.00611873656359 feat_value:0.00062028326269 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:34199 feat_idx:460446 feat_idx:323226 feat_idx:360051 feat_idx:615411 feat_idx:617010 feat_idx:1041627 feat_idx:148475 feat_idx:754940 feat_idx:224964 feat_idx:824386 feat_idx:226878 feat_idx:288355 feat_idx:303932 feat_idx:499188 feat_idx:13161 feat_idx:628988 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:122096 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:3.49273123821e-05 feat_value:9.15541313802e-05 feat_value:0.015479876161 feat_value:0.000872775249989 feat_value:0.0011762331308 feat_value:0.000124309637549 feat_value:0.00694559285596 feat_value:0.0124056652538 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:664380 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:108674 feat_idx:248083 feat_idx:144963 feat_idx:148475 feat_idx:804470 feat_idx:868888 feat_idx:0 feat_idx:797434 feat_idx:59528 feat_idx:747120 feat_idx:0 feat_idx:13161 feat_idx:521259 feat_idx:495815 feat_idx:330429 feat_idx:0 feat_idx:11923 feat_idx:407810 feat_idx:566713 feat_idx:24736 feat_idx:915104 feat_value:0.00536796536797 feat_value:7.7616249738e-05 feat_value:3.05180437934e-05 feat_value:0.0113519091847 feat_value:1.25218830701e-05 feat_value:5.33596883794e-05 feat_value:0.000550514109144 feat_value:0.00380353894493 feat_value:0.00223991178194 feat_value:0.0434782608696 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00148789395374 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:439682 feat_idx:661250 feat_idx:819482 feat_idx:314332 feat_idx:404876 feat_idx:173004 feat_idx:795081 feat_idx:148475 feat_idx:133411 feat_idx:790823 feat_idx:853868 feat_idx:963286 feat_idx:223357 feat_idx:961787 feat_idx:355708 feat_idx:13161 feat_idx:618619 feat_idx:0 feat_idx:0 feat_idx:542491 feat_idx:0 feat_idx:377126 feat_idx:320543 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:0.00925573778126 feat_value:0.000198367284657 feat_value:0.00412796697626 feat_value:1.72715628554e-06 feat_value:9.27994580512e-06 feat_value:0.00122533785584 feat_value:0.000496113775426 feat_value:0.0209862503877 feat_value:0.0217391304348 feat_value:0.047619047619 feat_value:0.0 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:695357 feat_idx:881707 feat_idx:387392 feat_idx:38631 feat_idx:314332 feat_idx:0 feat_idx:608594 feat_idx:144963 feat_idx:148475 feat_idx:756085 feat_idx:879727 feat_idx:1083007 feat_idx:253536 feat_idx:223357 feat_idx:462961 feat_idx:367591 feat_idx:13161 feat_idx:144331 feat_idx:0 feat_idx:0 feat_idx:853418 feat_idx:0 feat_idx:122096 feat_idx:783958 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000748996809972 feat_value:0.0 feat_value:0.0 feat_value:7.01225451928e-05 feat_value:1.39199187077e-05 feat_value:0.000514997069844 feat_value:0.000992227550852 feat_value:0.00255005341328 feat_value:0.0 feat_value:0.038961038961 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:87449 feat_idx:536408 feat_idx:619856 feat_idx:729041 feat_idx:615411 feat_idx:689549 feat_idx:1041627 feat_idx:148475 feat_idx:754940 feat_idx:42362 feat_idx:181047 feat_idx:385295 feat_idx:223357 feat_idx:751650 feat_idx:367088 feat_idx:339114 feat_idx:644343 feat_idx:809973 feat_idx:330429 feat_idx:28648 feat_idx:0 feat_idx:217677 feat_idx:305383 feat_idx:343446 feat_idx:1083427 feat_value:0.0 feat_value:8.53778747118e-05 feat_value:0.000122072175174 feat_value:0.00928792569659 feat_value:6.50274341504e-05 feat_value:7.19195799897e-05 feat_value:5.32755589494e-05 feat_value:0.00115759880933 feat_value:0.00117164616286 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00121736778033 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:506931 feat_idx:439682 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:108674 feat_idx:713567 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:963705 feat_idx:0 feat_idx:599643 feat_idx:59528 feat_idx:967283 feat_idx:0 feat_idx:587215 feat_idx:434748 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:925828 feat_idx:476211 feat_idx:753350 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:0.000128066812068 feat_value:0.0 feat_value:0.0030959752322 feat_value:5.00875322806e-06 feat_value:7.19195799897e-05 feat_value:1.77585196498e-05 feat_value:0.000496113775426 feat_value:0.000103380543782 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:432429 feat_idx:319665 feat_idx:183269 feat_idx:85674 feat_idx:463568 feat_idx:0 feat_idx:130525 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:392441 feat_idx:1050223 feat_idx:862081 feat_idx:288355 feat_idx:484086 feat_idx:1077738 feat_idx:339114 feat_idx:934587 feat_idx:734534 feat_idx:94311 feat_idx:548757 feat_idx:0 feat_idx:321110 feat_idx:686449 feat_idx:474802 feat_idx:789529 feat_value:0.0 feat_value:3.49273123821e-05 feat_value:3.05180437934e-05 feat_value:0.0030959752322 feat_value:0.000119994182938 feat_value:0.0 feat_value:0.0 feat_value:0.000496113775426 feat_value:0.000447982356387 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:702327 feat_idx:0 feat_idx:217102 feat_idx:314332 feat_idx:85900 feat_idx:331250 feat_idx:888742 feat_idx:148475 feat_idx:197667 feat_idx:872960 feat_idx:0 feat_idx:925332 feat_idx:223357 feat_idx:57227 feat_idx:0 feat_idx:339114 feat_idx:91753 feat_idx:305875 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:476211 feat_idx:117207 feat_idx:502861 feat_idx:866455 feat_value:0.0 feat_value:1.94040624345e-05 feat_value:0.000335698481727 feat_value:0.0030959752322 feat_value:0.000202379537758 feat_value:0.00056143672121 feat_value:0.000106551117899 feat_value:0.000992227550852 feat_value:0.00630621317068 feat_value:0.0 feat_value:0.004329004329 feat_value:0.000998003992016 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:849120 feat_idx:982375 feat_idx:949507 feat_idx:82312 feat_idx:314332 feat_idx:615411 feat_idx:641839 feat_idx:66687 feat_idx:148475 feat_idx:351286 feat_idx:1067936 feat_idx:1021395 feat_idx:423678 feat_idx:288355 feat_idx:491071 feat_idx:210032 feat_idx:13161 feat_idx:384630 feat_idx:661313 feat_idx:330429 feat_idx:466643 feat_idx:0 feat_idx:407810 feat_idx:818126 feat_idx:35064 feat_idx:312157 feat_value:0.0 feat_value:0.00022508712424 feat_value:0.000244144350347 feat_value:0.00722394220846 feat_value:7.32314265067e-05 feat_value:0.000167039024492 feat_value:3.55170392996e-05 feat_value:0.00115759880933 feat_value:0.00327371721975 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000946841606925 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:518052 feat_idx:702327 feat_idx:0 feat_idx:450730 feat_idx:314332 feat_idx:615411 feat_idx:491223 feat_idx:27549 feat_idx:148475 feat_idx:24666 feat_idx:283209 feat_idx:0 feat_idx:91978 feat_idx:59528 feat_idx:89255 feat_idx:282181 feat_idx:13161 feat_idx:91753 feat_idx:633602 feat_idx:94311 feat_idx:0 feat_idx:0 feat_idx:377126 feat_idx:26849 feat_idx:502861 feat_idx:989849 feat_value:0.00103896103896 feat_value:1.16424374607e-05 feat_value:0.000427252613107 feat_value:0.0 feat_value:1.33854612129e-06 feat_value:0.0 feat_value:0.000106551117899 feat_value:0.0 feat_value:0.0 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:181401 feat_idx:704711 feat_idx:1084300 feat_idx:958176 feat_idx:314332 feat_idx:615411 feat_idx:809683 feat_idx:536544 feat_idx:148475 feat_idx:197667 feat_idx:23597 feat_idx:771551 feat_idx:444756 feat_idx:59528 feat_idx:28300 feat_idx:351738 feat_idx:339114 feat_idx:750233 feat_idx:734534 feat_idx:330429 feat_idx:5418 feat_idx:0 feat_idx:476211 feat_idx:221229 feat_idx:1007264 feat_idx:24246 feat_value:0.0 feat_value:8.53778747118e-05 feat_value:0.00013733119707 feat_value:0.0030959752322 feat_value:0.000622380767493 feat_value:0.00313894166858 feat_value:5.32755589494e-05 feat_value:0.000165371258475 feat_value:0.0124745856163 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:746729 feat_idx:742925 feat_idx:205831 feat_idx:912022 feat_idx:0 feat_idx:653684 feat_idx:144963 feat_idx:148475 feat_idx:891197 feat_idx:122292 feat_idx:282954 feat_idx:561978 feat_idx:223357 feat_idx:222724 feat_idx:538143 feat_idx:599055 feat_idx:706003 feat_idx:729650 feat_idx:1047606 feat_idx:475068 feat_idx:0 feat_idx:122096 feat_idx:744639 feat_idx:530010 feat_idx:785927 feat_value:0.0 feat_value:8.14970622249e-05 feat_value:0.00018310826276 feat_value:0.00825593395253 feat_value:0.000387098902496 feat_value:0.000102079403856 feat_value:3.55170392996e-05 feat_value:0.0019844551017 feat_value:0.00196423033185 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00108210469363 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:201945 feat_idx:631742 feat_idx:306726 feat_idx:186386 feat_idx:314332 feat_idx:615411 feat_idx:337962 feat_idx:989504 feat_idx:31348 feat_idx:1068694 feat_idx:746192 feat_idx:359807 feat_idx:597620 feat_idx:59528 feat_idx:834098 feat_idx:463498 feat_idx:13161 feat_idx:144824 feat_idx:734534 feat_idx:1047606 feat_idx:447900 feat_idx:0 feat_idx:476211 feat_idx:421203 feat_idx:24736 feat_idx:272262 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:3.05180437934e-05 feat_value:0.0 feat_value:0.00767176914691 feat_value:0.0 feat_value:0.0 feat_value:0.000496113775426 feat_value:6.89203625211e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:894961 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:615411 feat_idx:927764 feat_idx:144963 feat_idx:148475 feat_idx:967242 feat_idx:1062285 feat_idx:0 feat_idx:736367 feat_idx:59528 feat_idx:562438 feat_idx:0 feat_idx:587215 feat_idx:896897 feat_idx:960559 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:377126 feat_idx:428982 feat_idx:525837 feat_idx:697480 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.000305180437934 feat_value:0.0 feat_value:0.000190505338295 feat_value:0.00198358841584 feat_value:0.0 feat_value:0.000661485033901 feat_value:0.017988214618 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:506931 feat_idx:889703 feat_idx:428972 feat_idx:323226 feat_idx:314332 feat_idx:108674 feat_idx:731191 feat_idx:66687 feat_idx:31348 feat_idx:754940 feat_idx:639052 feat_idx:789125 feat_idx:318898 feat_idx:223357 feat_idx:275810 feat_idx:791919 feat_idx:189960 feat_idx:990004 feat_idx:0 feat_idx:0 feat_idx:128761 feat_idx:0 feat_idx:441547 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000228967936727 feat_value:3.05180437934e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:3.44601812606e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:0 feat_idx:8 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:12 feat_idx:0 feat_idx:695357 feat_idx:702327 feat_idx:112382 feat_idx:364273 feat_idx:314332 feat_idx:615411 feat_idx:680585 feat_idx:144963 feat_idx:31348 feat_idx:776916 feat_idx:972993 feat_idx:307964 feat_idx:509894 feat_idx:59528 feat_idx:89255 feat_idx:498076 feat_idx:854924 feat_idx:91753 feat_idx:734534 feat_idx:94311 feat_idx:797195 feat_idx:0 feat_idx:377126 feat_idx:520021 feat_idx:522503 feat_idx:516793 feat_value:0.0 feat_value:0.000306584186465 feat_value:7.62951094835e-05 feat_value:0.0 feat_value:0.00199486550979 feat_value:0.0 feat_value:0.0 feat_value:0.00115759880933 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:711611 feat_idx:461913 feat_idx:1019942 feat_idx:360051 feat_idx:615411 feat_idx:1055981 feat_idx:948645 feat_idx:148475 feat_idx:754940 feat_idx:380775 feat_idx:858292 feat_idx:571110 feat_idx:288355 feat_idx:122497 feat_idx:986082 feat_idx:13161 feat_idx:87215 feat_idx:734534 feat_idx:94311 feat_idx:675199 feat_idx:0 feat_idx:122096 feat_idx:294199 feat_idx:522503 feat_idx:87571 feat_value:0.00675324675325 feat_value:4.26889373559e-05 feat_value:0.000640878919661 feat_value:0.0330237358101 feat_value:1.16583049274e-06 feat_value:7.65595528922e-05 feat_value:0.000692582266342 feat_value:0.00396891020341 feat_value:0.00110272580034 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00432841877452 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:72868 feat_idx:17848 feat_idx:314332 feat_idx:615411 feat_idx:363835 feat_idx:144963 feat_idx:31348 feat_idx:1069123 feat_idx:258719 feat_idx:753245 feat_idx:820316 feat_idx:39086 feat_idx:992008 feat_idx:325584 feat_idx:13161 feat_idx:750233 feat_idx:321110 feat_idx:94311 feat_idx:644181 feat_idx:0 feat_idx:476211 feat_idx:221229 feat_idx:502861 feat_idx:952230 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.000839246204318 feat_value:0.00515995872033 feat_value:0.000625101038643 feat_value:0.0 feat_value:0.0 feat_value:0.000826856292376 feat_value:3.44601812606e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:31161 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:85900 feat_idx:834217 feat_idx:760883 feat_idx:148475 feat_idx:697060 feat_idx:390104 feat_idx:0 feat_idx:916053 feat_idx:59528 feat_idx:608516 feat_idx:0 feat_idx:587215 feat_idx:473726 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:476211 feat_idx:0 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:1.55232499476e-05 feat_value:7.62951094835e-05 feat_value:0.00825593395253 feat_value:3.02252349969e-07 feat_value:1.85598916102e-05 feat_value:1.77585196498e-05 feat_value:0.0013229700678 feat_value:0.000275681450084 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00108210469363 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:746729 feat_idx:0 feat_idx:415419 feat_idx:314332 feat_idx:85900 feat_idx:341613 feat_idx:341430 feat_idx:148475 feat_idx:219803 feat_idx:273068 feat_idx:0 feat_idx:427647 feat_idx:59528 feat_idx:86971 feat_idx:85678 feat_idx:13161 feat_idx:706003 feat_idx:970598 feat_idx:94311 feat_idx:378304 feat_idx:0 feat_idx:476211 feat_idx:26849 feat_idx:502861 feat_idx:1082916 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.000106813153277 feat_value:0.0030959752322 feat_value:0.000435545636305 feat_value:0.000155439092236 feat_value:0.000106551117899 feat_value:0.000496113775426 feat_value:0.00196423033185 feat_value:0.0 feat_value:0.012987012987 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:0 feat_idx:695357 feat_idx:655161 feat_idx:410781 feat_idx:572549 feat_idx:314332 feat_idx:615411 feat_idx:438251 feat_idx:1017442 feat_idx:148475 feat_idx:754940 feat_idx:939988 feat_idx:175321 feat_idx:940584 feat_idx:223357 feat_idx:400890 feat_idx:229140 feat_idx:13161 feat_idx:512136 feat_idx:734534 feat_idx:94311 feat_idx:59009 feat_idx:0 feat_idx:122096 feat_idx:26849 feat_idx:502861 feat_idx:602609 feat_value:0.00121212121212 feat_value:1.55232499476e-05 feat_value:0.000610360875868 feat_value:0.0 feat_value:6.12276903223e-05 feat_value:5.33596883794e-05 feat_value:0.00261050238852 feat_value:0.0 feat_value:0.000241221268824 feat_value:0.0 feat_value:0.017316017316 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:181401 feat_idx:563443 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:85900 feat_idx:1086355 feat_idx:66687 feat_idx:148475 feat_idx:754940 feat_idx:294725 feat_idx:0 feat_idx:937034 feat_idx:59528 feat_idx:827972 feat_idx:0 feat_idx:197974 feat_idx:319863 feat_idx:734534 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:808702 feat_idx:502861 feat_idx:792764 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.000152590218967 feat_value:0.00206398348813 feat_value:0.000153069225806 feat_value:0.0 feat_value:0.0 feat_value:0.000330742516951 feat_value:0.000103380543782 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:962300 feat_idx:623087 feat_idx:0 feat_idx:53376 feat_idx:314332 feat_idx:615411 feat_idx:264532 feat_idx:144963 feat_idx:148475 feat_idx:14838 feat_idx:682657 feat_idx:0 feat_idx:502067 feat_idx:59528 feat_idx:519185 feat_idx:0 feat_idx:854924 feat_idx:372673 feat_idx:764350 feat_idx:330429 feat_idx:0 feat_idx:925828 feat_idx:377126 feat_idx:383664 feat_idx:522503 feat_idx:14052 feat_value:0.000865800865801 feat_value:0.000209563874293 feat_value:0.0 feat_value:0.00515995872033 feat_value:1.97327605623e-05 feat_value:1.15999322564e-05 feat_value:8.8792598249e-05 feat_value:0.00115759880933 feat_value:0.000379061993866 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.000249500998004 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:244091 feat_idx:428972 feat_idx:323226 feat_idx:314332 feat_idx:615411 feat_idx:253814 feat_idx:144963 feat_idx:148475 feat_idx:367991 feat_idx:359193 feat_idx:789125 feat_idx:173541 feat_idx:59528 feat_idx:433504 feat_idx:791919 feat_idx:587215 feat_idx:884062 feat_idx:0 feat_idx:0 feat_idx:128761 feat_idx:0 feat_idx:637620 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.00022888532845 feat_value:0.00206398348813 feat_value:0.000868414180368 feat_value:0.00070759586764 feat_value:1.77585196498e-05 feat_value:0.00711096411444 feat_value:0.00785692132741 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:518052 feat_idx:631742 feat_idx:209780 feat_idx:691946 feat_idx:463568 feat_idx:404876 feat_idx:781648 feat_idx:66687 feat_idx:148475 feat_idx:294231 feat_idx:673759 feat_idx:780141 feat_idx:636360 feat_idx:223357 feat_idx:656844 feat_idx:720701 feat_idx:13161 feat_idx:284891 feat_idx:734534 feat_idx:330429 feat_idx:564494 feat_idx:0 feat_idx:122096 feat_idx:529367 feat_idx:24736 feat_idx:225414 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:6.10360875868e-05 feat_value:0.0030959752322 feat_value:7.29291741568e-05 feat_value:0.000426877507035 feat_value:0.000213102235798 feat_value:0.00760707788986 feat_value:0.00182638960681 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:87449 feat_idx:0 feat_idx:0 feat_idx:943087 feat_idx:615411 feat_idx:14123 feat_idx:128514 feat_idx:148475 feat_idx:338941 feat_idx:655530 feat_idx:0 feat_idx:945302 feat_idx:288355 feat_idx:1078572 feat_idx:0 feat_idx:587215 feat_idx:644343 feat_idx:215210 feat_idx:330429 feat_idx:0 feat_idx:0 feat_idx:217677 feat_idx:830506 feat_idx:502861 feat_idx:560344 feat_value:0.000692640692641 feat_value:1.16424374607e-05 feat_value:0.00135805294881 feat_value:0.00412796697626 feat_value:2.09849488693e-05 feat_value:1.15999322564e-05 feat_value:7.10340785992e-05 feat_value:0.00115759880933 feat_value:0.000137840725042 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:76757 feat_idx:0 feat_idx:748549 feat_idx:729041 feat_idx:404876 feat_idx:897525 feat_idx:66687 feat_idx:148475 feat_idx:809357 feat_idx:739161 feat_idx:0 feat_idx:571774 feat_idx:223357 feat_idx:726585 feat_idx:450365 feat_idx:13161 feat_idx:1064696 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:925828 feat_idx:476211 feat_idx:381001 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.00016299412445 feat_value:3.05180437934e-05 feat_value:0.00103199174407 feat_value:0.000144347086564 feat_value:2.31998645128e-06 feat_value:0.000301894834047 feat_value:0.000330742516951 feat_value:3.44601812606e-05 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:695357 feat_idx:702327 feat_idx:593344 feat_idx:1065368 feat_idx:463568 feat_idx:85900 feat_idx:669411 feat_idx:27549 feat_idx:148475 feat_idx:227359 feat_idx:1043530 feat_idx:320625 feat_idx:575561 feat_idx:223357 feat_idx:57227 feat_idx:1021160 feat_idx:854924 feat_idx:91753 feat_idx:943801 feat_idx:94311 feat_idx:758526 feat_idx:0 feat_idx:122096 feat_idx:154807 feat_idx:522503 feat_idx:406770 feat_value:0.0 feat_value:1.94040624345e-05 feat_value:1.52590218967e-05 feat_value:0.00206398348813 feat_value:0.000346985697764 feat_value:0.00038047777801 feat_value:0.000319653353696 feat_value:0.00214982636018 feat_value:0.0126468865226 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:518052 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:314332 feat_idx:108674 feat_idx:2775 feat_idx:144963 feat_idx:31348 feat_idx:892705 feat_idx:1040029 feat_idx:824386 feat_idx:524213 feat_idx:863222 feat_idx:406685 feat_idx:499188 feat_idx:599055 feat_idx:251433 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.00307174745383 feat_value:0.000329438076082 feat_value:0.0 feat_value:0.00115759880933 feat_value:0.00217099141941 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:328856 feat_idx:583609 feat_idx:356189 feat_idx:314332 feat_idx:0 feat_idx:407260 feat_idx:144963 feat_idx:148475 feat_idx:699806 feat_idx:967004 feat_idx:598842 feat_idx:676678 feat_idx:223357 feat_idx:310528 feat_idx:805012 feat_idx:599055 feat_idx:683739 feat_idx:734534 feat_idx:94311 feat_idx:135625 feat_idx:0 feat_idx:122096 feat_idx:737768 feat_idx:522503 feat_idx:618666 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.000167849240864 feat_value:0.0030959752322 feat_value:0.000698807433128 feat_value:0.00028999830641 feat_value:3.55170392996e-05 feat_value:0.000496113775426 feat_value:0.00354939866984 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:0 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:849120 feat_idx:439682 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:615411 feat_idx:443349 feat_idx:1007823 feat_idx:31348 feat_idx:754940 feat_idx:1072328 feat_idx:0 feat_idx:321212 feat_idx:59528 feat_idx:163883 feat_idx:0 feat_idx:189960 feat_idx:1040747 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:925828 feat_idx:122096 feat_idx:0 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000554956185627 feat_value:3.05180437934e-05 feat_value:0.00206398348813 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000330742516951 feat_value:6.89203625211e-05 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:738089 feat_idx:439682 feat_idx:374405 feat_idx:984218 feat_idx:943087 feat_idx:108674 feat_idx:884166 feat_idx:144963 feat_idx:148475 feat_idx:683571 feat_idx:374802 feat_idx:530646 feat_idx:826201 feat_idx:223357 feat_idx:43619 feat_idx:1001991 feat_idx:339114 feat_idx:603612 feat_idx:0 feat_idx:0 feat_idx:60686 feat_idx:0 feat_idx:122096 feat_idx:138318 feat_idx:0 feat_idx:0 feat_value:0.00034632034632 feat_value:1.16424374607e-05 feat_value:0.0 feat_value:0.00722394220846 feat_value:1.91282558623e-05 feat_value:8.58394986973e-05 feat_value:0.000124309637549 feat_value:0.00562262278816 feat_value:0.00971777111548 feat_value:0.0217391304348 feat_value:0.017316017316 feat_value:0.00174650698603 feat_value:0.000946841606925 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:1049859 feat_idx:420263 feat_idx:271401 feat_idx:360051 feat_idx:615411 feat_idx:714816 feat_idx:144963 feat_idx:148475 feat_idx:900313 feat_idx:855314 feat_idx:74337 feat_idx:603555 feat_idx:288355 feat_idx:650698 feat_idx:322858 feat_idx:339114 feat_idx:311468 feat_idx:489978 feat_idx:330429 feat_idx:101492 feat_idx:0 feat_idx:217677 feat_idx:221229 feat_idx:917031 feat_idx:24246 feat_value:0.00034632034632 feat_value:1.55232499476e-05 feat_value:0.000915541313802 feat_value:0.077399380805 feat_value:2.63391333544e-06 feat_value:0.000280718360605 feat_value:0.00092344302179 feat_value:0.00644947908054 feat_value:0.00854612495262 feat_value:0.0217391304348 feat_value:0.034632034632 feat_value:0.000249500998004 feat_value:0.0104152576762 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:541890 feat_idx:93486 feat_idx:892417 feat_idx:314332 feat_idx:0 feat_idx:870784 feat_idx:66687 feat_idx:148475 feat_idx:1064406 feat_idx:605532 feat_idx:908441 feat_idx:411003 feat_idx:223357 feat_idx:415710 feat_idx:177994 feat_idx:13161 feat_idx:721813 feat_idx:0 feat_idx:0 feat_idx:702388 feat_idx:0 feat_idx:122096 feat_idx:68781 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:0.000143590062015 feat_value:3.05180437934e-05 feat_value:0.0433436532508 feat_value:1.41626815414e-05 feat_value:0.000102079403856 feat_value:0.000266377794747 feat_value:0.00810319166529 feat_value:0.00199869051311 feat_value:0.0217391304348 feat_value:0.038961038961 feat_value:0.0 feat_value:0.00568104964155 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:268086 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:463568 feat_idx:404876 feat_idx:679269 feat_idx:1007823 feat_idx:148475 feat_idx:754940 feat_idx:392943 feat_idx:824386 feat_idx:502022 feat_idx:863222 feat_idx:406685 feat_idx:499188 feat_idx:763481 feat_idx:251433 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.0 feat_value:0.0 feat_value:0.000644186115598 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:52223 feat_idx:0 feat_idx:610088 feat_idx:360051 feat_idx:108674 feat_idx:207287 feat_idx:144963 feat_idx:148475 feat_idx:198726 feat_idx:1050332 feat_idx:0 feat_idx:575881 feat_idx:863222 feat_idx:428650 feat_idx:56538 feat_idx:587215 feat_idx:520546 feat_idx:0 feat_idx:0 feat_idx:3328 feat_idx:0 feat_idx:321110 feat_idx:604513 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.0 feat_value:0.00103199174407 feat_value:0.00087290478671 feat_value:0.000153119105784 feat_value:1.77585196498e-05 feat_value:0.000165371258475 feat_value:3.44601812606e-05 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:506931 feat_idx:664380 feat_idx:464058 feat_idx:794391 feat_idx:314332 feat_idx:615411 feat_idx:1008575 feat_idx:144963 feat_idx:148475 feat_idx:811905 feat_idx:262025 feat_idx:792836 feat_idx:853632 feat_idx:863222 feat_idx:190922 feat_idx:989611 feat_idx:13161 feat_idx:402822 feat_idx:622170 feat_idx:94311 feat_idx:626744 feat_idx:925828 feat_idx:122096 feat_idx:423382 feat_idx:24736 feat_idx:1081226 feat_value:0.00225108225108 feat_value:6.20929997904e-05 feat_value:0.00122072175174 feat_value:0.0330237358101 feat_value:1.63216268983e-05 feat_value:0.000266798441897 feat_value:0.000266377794747 feat_value:0.00611873656359 feat_value:0.00196423033185 feat_value:0.0217391304348 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00649262816177 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:268086 feat_idx:894961 feat_idx:594422 feat_idx:823711 feat_idx:360051 feat_idx:615411 feat_idx:919751 feat_idx:888742 feat_idx:148475 feat_idx:725649 feat_idx:522685 feat_idx:14144 feat_idx:242991 feat_idx:288355 feat_idx:645605 feat_idx:99736 feat_idx:379814 feat_idx:896897 feat_idx:734534 feat_idx:330429 feat_idx:710067 feat_idx:0 feat_idx:407810 feat_idx:474780 feat_idx:525837 feat_idx:815828 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.0013885709926 feat_value:0.00412796697626 feat_value:1.26514197916e-05 feat_value:0.000510397019281 feat_value:0.000621548187743 feat_value:0.000661485033901 feat_value:0.0022743719632 feat_value:0.0 feat_value:0.021645021645 feat_value:0.000249500998004 feat_value:0.000541052346815 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:0 feat_idx:268086 feat_idx:704711 feat_idx:539260 feat_idx:133619 feat_idx:943087 feat_idx:108674 feat_idx:277955 feat_idx:795081 feat_idx:148475 feat_idx:46173 feat_idx:414978 feat_idx:796305 feat_idx:317564 feat_idx:59528 feat_idx:28300 feat_idx:252652 feat_idx:854924 feat_idx:750233 feat_idx:637425 feat_idx:330429 feat_idx:538163 feat_idx:0 feat_idx:122096 feat_idx:623412 feat_idx:917031 feat_idx:421993 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.000244133540961 feat_value:0.0 feat_value:0.0 feat_value:0.000661485033901 feat_value:0.000516902718908 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:631742 feat_idx:0 feat_idx:618078 feat_idx:314332 feat_idx:831162 feat_idx:302234 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:683585 feat_idx:0 feat_idx:460786 feat_idx:59528 feat_idx:834098 feat_idx:0 feat_idx:13161 feat_idx:144824 feat_idx:734534 feat_idx:1047606 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:225853 feat_idx:24736 feat_idx:83301 feat_value:0.0 feat_value:0.000217325499267 feat_value:0.0 feat_value:0.0103199174407 feat_value:0.000282821841757 feat_value:0.000227358672225 feat_value:0.000603789668093 feat_value:0.00181908384323 feat_value:0.0120266032599 feat_value:0.0 feat_value:0.038961038961 feat_value:0.0 feat_value:0.00135263086704 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:552317 feat_idx:56734 feat_idx:314332 feat_idx:615411 feat_idx:205494 feat_idx:66687 feat_idx:148475 feat_idx:721787 feat_idx:258719 feat_idx:1026950 feat_idx:820316 feat_idx:59528 feat_idx:28300 feat_idx:783420 feat_idx:13161 feat_idx:750233 feat_idx:505787 feat_idx:330429 feat_idx:515764 feat_idx:0 feat_idx:476211 feat_idx:221229 feat_idx:502861 feat_idx:24246 feat_value:0.00103896103896 feat_value:7.7616249738e-06 feat_value:0.000152590218967 feat_value:0.0061919504644 feat_value:0.0 feat_value:0.0 feat_value:0.000106551117899 feat_value:0.00148834132628 feat_value:0.000310141631345 feat_value:0.0217391304348 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:294042 feat_idx:507045 feat_idx:549419 feat_idx:314332 feat_idx:0 feat_idx:1012202 feat_idx:795081 feat_idx:148475 feat_idx:68578 feat_idx:717684 feat_idx:462100 feat_idx:729242 feat_idx:59528 feat_idx:182004 feat_idx:253871 feat_idx:763481 feat_idx:256400 feat_idx:0 feat_idx:0 feat_idx:915751 feat_idx:0 feat_idx:122096 feat_idx:1030847 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:1.52590218967e-05 feat_value:0.0030959752322 feat_value:0.000125262009609 feat_value:0.0 feat_value:0.0 feat_value:0.000496113775426 feat_value:0.000310141631345 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000405789260111 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:1 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:181401 feat_idx:439682 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:0 feat_idx:1027059 feat_idx:144963 feat_idx:148475 feat_idx:307216 feat_idx:1086145 feat_idx:0 feat_idx:784143 feat_idx:59528 feat_idx:127555 feat_idx:0 feat_idx:13161 feat_idx:757164 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:0 feat_idx:0 feat_idx:0 feat_value:0.00017316017316 feat_value:0.000100901124659 feat_value:1.52590218967e-05 feat_value:0.0144478844169 feat_value:2.41801879975e-06 feat_value:3.47997967692e-05 feat_value:0.000177585196498 feat_value:0.00578799404663 feat_value:0.00554808918295 feat_value:0.0217391304348 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.00202894630055 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:849120 feat_idx:704711 feat_idx:160536 feat_idx:572549 feat_idx:360051 feat_idx:0 feat_idx:731718 feat_idx:66687 feat_idx:148475 feat_idx:31385 feat_idx:1047396 feat_idx:768743 feat_idx:258527 feat_idx:863222 feat_idx:866128 feat_idx:824472 feat_idx:599055 feat_idx:575938 feat_idx:568485 feat_idx:94311 feat_idx:469863 feat_idx:0 feat_idx:122096 feat_idx:26849 feat_idx:502861 feat_idx:9838 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.00114442664225 feat_value:0.0227038183695 feat_value:0.000255273699002 feat_value:0.000419917547682 feat_value:3.55170392996e-05 feat_value:0.00363816768646 feat_value:0.00234329232572 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00297578790748 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:695357 feat_idx:447935 feat_idx:937213 feat_idx:905937 feat_idx:314332 feat_idx:404876 feat_idx:142618 feat_idx:144963 feat_idx:148475 feat_idx:750865 feat_idx:596218 feat_idx:919681 feat_idx:840670 feat_idx:59528 feat_idx:380839 feat_idx:380828 feat_idx:13161 feat_idx:197572 feat_idx:1030936 feat_idx:94311 feat_idx:827510 feat_idx:0 feat_idx:377126 feat_idx:288434 feat_idx:24736 feat_idx:933741 feat_value:0.0 feat_value:0.000504505623297 feat_value:3.05180437934e-05 feat_value:0.0237358101135 feat_value:0.000683824352351 feat_value:5.33596883794e-05 feat_value:7.10340785992e-05 feat_value:0.00396891020341 feat_value:0.000792584168993 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.00311105099418 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:1 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:695357 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:314332 feat_idx:404876 feat_idx:195437 feat_idx:144963 feat_idx:148475 feat_idx:303093 feat_idx:895160 feat_idx:824386 feat_idx:332768 feat_idx:288355 feat_idx:452911 feat_idx:499188 feat_idx:339114 feat_idx:1026477 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:0 feat_idx:407810 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.00100192336124 feat_value:0.0 feat_value:0.0 feat_value:0.00529188027121 feat_value:0.0013094868879 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:0 feat_idx:5 feat_idx:0 feat_idx:0 feat_idx:8 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:0 feat_idx:268086 feat_idx:569676 feat_idx:460446 feat_idx:323226 feat_idx:943087 feat_idx:615411 feat_idx:831536 feat_idx:144963 feat_idx:31348 feat_idx:1084149 feat_idx:472585 feat_idx:824386 feat_idx:1085274 feat_idx:863222 feat_idx:406685 feat_idx:499188 feat_idx:13161 feat_idx:251433 feat_idx:0 feat_idx:0 feat_idx:335421 feat_idx:969590 feat_idx:476211 feat_idx:686449 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:7.7616249738e-06 feat_value:0.0 feat_value:0.0 feat_value:0.0294215028194 feat_value:0.0 feat_value:0.0 feat_value:0.00181908384323 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:29151 feat_idx:0 feat_idx:0 feat_idx:314332 feat_idx:615411 feat_idx:351823 feat_idx:144963 feat_idx:148475 feat_idx:633435 feat_idx:734591 feat_idx:0 feat_idx:346678 feat_idx:59528 feat_idx:246568 feat_idx:0 feat_idx:13161 feat_idx:669279 feat_idx:734534 feat_idx:94311 feat_idx:0 feat_idx:0 feat_idx:122096 feat_idx:311968 feat_idx:1007264 feat_idx:210855 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:0.000976577401389 feat_value:0.0113519091847 feat_value:6.45092872648e-05 feat_value:0.00019951883481 feat_value:0.000266377794747 feat_value:0.00214982636018 feat_value:0.00796030187119 feat_value:0.0 feat_value:0.017316017316 feat_value:0.0 feat_value:0.00148789395374 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:0 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:0 feat_idx:268086 feat_idx:655161 feat_idx:160536 feat_idx:572549 feat_idx:943087 feat_idx:108674 feat_idx:179440 feat_idx:144963 feat_idx:148475 feat_idx:754940 feat_idx:216593 feat_idx:768743 feat_idx:272886 feat_idx:288355 feat_idx:1059113 feat_idx:824472 feat_idx:599055 feat_idx:512136 feat_idx:734534 feat_idx:94311 feat_idx:469863 feat_idx:0 feat_idx:476211 feat_idx:26849 feat_idx:502861 feat_idx:507836 feat_value:0.0 feat_value:1.55232499476e-05 feat_value:1.52590218967e-05 feat_value:0.0 feat_value:0.000125348367423 feat_value:4.63997290256e-06 feat_value:5.32755589494e-05 feat_value:0.0 feat_value:6.89203625211e-05 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:0 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:439682 feat_idx:434330 feat_idx:626900 feat_idx:360051 feat_idx:615411 feat_idx:448250 feat_idx:66687 feat_idx:31348 feat_idx:621494 feat_idx:345898 feat_idx:171523 feat_idx:728643 feat_idx:288355 feat_idx:993766 feat_idx:479691 feat_idx:599055 feat_idx:786401 feat_idx:0 feat_idx:0 feat_idx:914361 feat_idx:0 feat_idx:407810 feat_idx:253237 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.000419127748585 feat_value:1.52590218967e-05 feat_value:0.00103199174407 feat_value:0.00740600297347 feat_value:0.0 feat_value:0.0 feat_value:0.000165371258475 feat_value:0.000447982356387 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:599320 feat_idx:36543 feat_idx:348417 feat_idx:314332 feat_idx:615411 feat_idx:507688 feat_idx:795081 feat_idx:148475 feat_idx:1085001 feat_idx:538920 feat_idx:698736 feat_idx:914324 feat_idx:223357 feat_idx:726559 feat_idx:327135 feat_idx:13161 feat_idx:214732 feat_idx:324501 feat_idx:1047606 feat_idx:434899 feat_idx:0 feat_idx:377126 feat_idx:221229 feat_idx:522503 feat_idx:24246 feat_value:0.0 feat_value:0.000147470874502 feat_value:0.0013733119707 feat_value:0.00206398348813 feat_value:0.00178026634132 feat_value:0.00081663523085 feat_value:0.0 feat_value:0.000826856292376 feat_value:0.00151624797546 feat_value:0.0 feat_value:0.0 feat_value:0.0 feat_value:0.000676315433518 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:0 feat_idx:417270 feat_idx:314332 feat_idx:404876 feat_idx:180197 feat_idx:144963 feat_idx:148475 feat_idx:891898 feat_idx:832883 feat_idx:0 feat_idx:406751 feat_idx:59528 feat_idx:28300 feat_idx:80459 feat_idx:587215 feat_idx:750233 feat_idx:52536 feat_idx:1047606 feat_idx:584293 feat_idx:0 feat_idx:476211 feat_idx:26849 feat_idx:502861 feat_idx:983005 feat_value:0.0 feat_value:1.16424374607e-05 feat_value:0.00119020370794 feat_value:0.00103199174407 feat_value:0.000683737994537 feat_value:0.000510397019281 feat_value:1.77585196498e-05 feat_value:0.000165371258475 feat_value:3.44601812606e-05 feat_value:0.0 feat_value:0.004329004329 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 +feat_idx:0 feat_idx:2 feat_idx:0 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:0 feat_idx:11 feat_idx:12 feat_idx:13 feat_idx:506931 feat_idx:123566 feat_idx:961529 feat_idx:810019 feat_idx:314332 feat_idx:615411 feat_idx:475867 feat_idx:795081 feat_idx:148475 feat_idx:697060 feat_idx:1069621 feat_idx:370551 feat_idx:696973 feat_idx:69630 feat_idx:396064 feat_idx:95177 feat_idx:854924 feat_idx:488825 feat_idx:0 feat_idx:0 feat_idx:581782 feat_idx:0 feat_idx:476211 feat_idx:289148 feat_idx:0 feat_idx:0 feat_value:0.0 feat_value:0.0066672358525 feat_value:0.0 feat_value:0.00103199174407 feat_value:0.000325784854359 feat_value:4.40797425743e-05 feat_value:0.000266377794747 feat_value:0.000165371258475 feat_value:0.00299803576967 feat_value:0.0 feat_value:0.030303030303 feat_value:0.0 feat_value:0.000135263086704 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:0.0 label:0 +feat_idx:1 feat_idx:2 feat_idx:3 feat_idx:4 feat_idx:5 feat_idx:6 feat_idx:7 feat_idx:8 feat_idx:9 feat_idx:10 feat_idx:11 feat_idx:0 feat_idx:13 feat_idx:268086 feat_idx:704711 feat_idx:995515 feat_idx:139394 feat_idx:943087 feat_idx:0 feat_idx:546815 feat_idx:144963 feat_idx:148475 feat_idx:364765 feat_idx:552750 feat_idx:920037 feat_idx:816538 feat_idx:223357 feat_idx:790588 feat_idx:560935 feat_idx:13161 feat_idx:750233 feat_idx:734534 feat_idx:1047606 feat_idx:361734 feat_idx:0 feat_idx:122096 feat_idx:434883 feat_idx:502861 feat_idx:203213 feat_value:0.0 feat_value:0.000197921436832 feat_value:4.57770656901e-05 feat_value:0.00206398348813 feat_value:0.000625316933178 feat_value:0.000874634892132 feat_value:0.000142068157198 feat_value:0.000330742516951 feat_value:0.00975223129674 feat_value:0.0 feat_value:0.00865800865801 feat_value:0.0 feat_value:0.000270526173407 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:0.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 feat_value:1.0 label:0 diff --git a/models/rank/xdeepfm/model.py b/models/rank/xdeepfm/model.py index d1045897d9cb4ca5b7018a1dcb9da726829c4744..23443c7d79e78690e6669716901238710599e3b7 100755 --- a/models/rank/xdeepfm/model.py +++ b/models/rank/xdeepfm/model.py @@ -154,7 +154,7 @@ class Model(ModelBase): self.predict = fluid.layers.sigmoid(y_linear + y_cin + y_dnn) def train_net(self): - self.model._init_slots() + self._init_slots() self.xdeepfm_net() cost = fluid.layers.log_loss( @@ -179,6 +179,5 @@ class Model(ModelBase): optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True) return optimizer - def infer_net(self, parameter_list): - self.model._init_slots() - self.xdeepfm_net() + def infer_net(self): + self.train_net() diff --git a/models/rerank/__init__.py b/models/rerank/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..abf198b97e6e818e1fbe59006f98492640bcee54 --- /dev/null +++ b/models/rerank/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. diff --git a/models/rerank/listwise/__init__.py b/models/rerank/listwise/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..abf198b97e6e818e1fbe59006f98492640bcee54 --- /dev/null +++ b/models/rerank/listwise/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. diff --git a/models/rerank/listwise/config.yaml b/models/rerank/listwise/config.yaml new file mode 100644 index 0000000000000000000000000000000000000000..18b018026634e461257d167fa543f2d81a25436c --- /dev/null +++ b/models/rerank/listwise/config.yaml @@ -0,0 +1,55 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +evaluate: + reader: + batch_size: 1 + class: "{workspace}/random_infer_reader.py" + test_data_path: "{workspace}/data/train" + +train: + trainer: + # for cluster training + strategy: "async" + + epochs: 3 + workspace: "paddlerec.models.rerank.listwise" + device: cpu + + reader: + batch_size: 2 + class: "{workspace}/random_reader.py" + train_data_path: "{workspace}/data/train" + dataset_class: "DataLoader" + + model: + models: "{workspace}/model.py" + hyper_parameters: + hidden_size: 128 + user_vocab: 200 + item_vocab: 1000 + item_len: 5 + embed_size: 16 + learning_rate: 0.01 + optimizer: sgd + + save: + increment: + dirname: "increment" + epoch_interval: 2 + save_last: True + inference: + dirname: "inference" + epoch_interval: 4 + save_last: True diff --git a/models/rerank/listwise/data/test/small_data.txt b/models/rerank/listwise/data/test/small_data.txt new file mode 100644 index 0000000000000000000000000000000000000000..c3c4cf5f84f66594e76603cce1f18d211ebd05a7 --- /dev/null +++ b/models/rerank/listwise/data/test/small_data.txt @@ -0,0 +1,100 @@ +4764,174,1 +4764,2958,0 +4764,452,0 +4764,1946,0 +4764,3208,0 +2044,2237,1 +2044,1998,0 +2044,328,0 +2044,1542,0 +2044,1932,0 +4276,65,1 +4276,3247,0 +4276,942,0 +4276,3666,0 +4276,2222,0 +3933,682,1 +3933,2451,0 +3933,3695,0 +3933,1643,0 +3933,3568,0 +1151,1265,1 +1151,118,0 +1151,2532,0 +1151,2083,0 +1151,2350,0 +1757,876,1 +1757,201,0 +1757,3633,0 +1757,1068,0 +1757,2549,0 +3370,276,1 +3370,2435,0 +3370,606,0 +3370,910,0 +3370,2146,0 +5137,1018,1 +5137,2163,0 +5137,3167,0 +5137,2315,0 +5137,3595,0 +3933,2831,1 +3933,2881,0 +3933,2949,0 +3933,3660,0 +3933,417,0 +3102,999,1 +3102,1902,0 +3102,2161,0 +3102,3042,0 +3102,1113,0 +2022,336,1 +2022,1672,0 +2022,2656,0 +2022,3649,0 +2022,883,0 +2664,655,1 +2664,3660,0 +2664,1711,0 +2664,3386,0 +2664,1668,0 +25,701,1 +25,32,0 +25,2482,0 +25,3177,0 +25,2767,0 +1738,1643,1 +1738,2187,0 +1738,228,0 +1738,650,0 +1738,3101,0 +5411,1241,1 +5411,2546,0 +5411,3019,0 +5411,3618,0 +5411,1674,0 +638,579,1 +638,3512,0 +638,783,0 +638,2111,0 +638,1880,0 +3554,200,1 +3554,2893,0 +3554,2428,0 +3554,969,0 +3554,2741,0 +4283,1074,1 +4283,3056,0 +4283,2032,0 +4283,405,0 +4283,1505,0 +5111,200,1 +5111,3488,0 +5111,477,0 +5111,2790,0 +5111,40,0 +3964,515,1 +3964,1528,0 +3964,2173,0 +3964,1701,0 +3964,2832,0 diff --git a/models/rerank/listwise/data/train/small_data.txt b/models/rerank/listwise/data/train/small_data.txt new file mode 100644 index 0000000000000000000000000000000000000000..c3c4cf5f84f66594e76603cce1f18d211ebd05a7 --- /dev/null +++ b/models/rerank/listwise/data/train/small_data.txt @@ -0,0 +1,100 @@ +4764,174,1 +4764,2958,0 +4764,452,0 +4764,1946,0 +4764,3208,0 +2044,2237,1 +2044,1998,0 +2044,328,0 +2044,1542,0 +2044,1932,0 +4276,65,1 +4276,3247,0 +4276,942,0 +4276,3666,0 +4276,2222,0 +3933,682,1 +3933,2451,0 +3933,3695,0 +3933,1643,0 +3933,3568,0 +1151,1265,1 +1151,118,0 +1151,2532,0 +1151,2083,0 +1151,2350,0 +1757,876,1 +1757,201,0 +1757,3633,0 +1757,1068,0 +1757,2549,0 +3370,276,1 +3370,2435,0 +3370,606,0 +3370,910,0 +3370,2146,0 +5137,1018,1 +5137,2163,0 +5137,3167,0 +5137,2315,0 +5137,3595,0 +3933,2831,1 +3933,2881,0 +3933,2949,0 +3933,3660,0 +3933,417,0 +3102,999,1 +3102,1902,0 +3102,2161,0 +3102,3042,0 +3102,1113,0 +2022,336,1 +2022,1672,0 +2022,2656,0 +2022,3649,0 +2022,883,0 +2664,655,1 +2664,3660,0 +2664,1711,0 +2664,3386,0 +2664,1668,0 +25,701,1 +25,32,0 +25,2482,0 +25,3177,0 +25,2767,0 +1738,1643,1 +1738,2187,0 +1738,228,0 +1738,650,0 +1738,3101,0 +5411,1241,1 +5411,2546,0 +5411,3019,0 +5411,3618,0 +5411,1674,0 +638,579,1 +638,3512,0 +638,783,0 +638,2111,0 +638,1880,0 +3554,200,1 +3554,2893,0 +3554,2428,0 +3554,969,0 +3554,2741,0 +4283,1074,1 +4283,3056,0 +4283,2032,0 +4283,405,0 +4283,1505,0 +5111,200,1 +5111,3488,0 +5111,477,0 +5111,2790,0 +5111,40,0 +3964,515,1 +3964,1528,0 +3964,2173,0 +3964,1701,0 +3964,2832,0 diff --git a/models/rerank/listwise/model.py b/models/rerank/listwise/model.py new file mode 100644 index 0000000000000000000000000000000000000000..d4cf9d8ed1a669d6d1ff3339008605f1aa26f4cd --- /dev/null +++ b/models/rerank/listwise/model.py @@ -0,0 +1,223 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import numpy as np +import paddle.fluid as fluid + +from paddlerec.core.utils import envs +from paddlerec.core.model import Model as ModelBase + + +class Model(ModelBase): + def __init__(self, config): + ModelBase.__init__(self, config) + + def _init_hyper_parameters(self): + self.item_len = envs.get_global_env("hyper_parameters.self.item_len", + None, self._namespace) + self.hidden_size = envs.get_global_env("hyper_parameters.hidden_size", + None, self._namespace) + self.user_vocab = envs.get_global_env("hyper_parameters.user_vocab", + None, self._namespace) + self.item_vocab = envs.get_global_env("hyper_parameters.item_vocab", + None, self._namespace) + self.embed_size = envs.get_global_env("hyper_parameters.embed_size", + None, self._namespace) + + def input_data(self, is_infer=False): + user_slot_names = fluid.data( + name='user_slot_names', + shape=[None, 1], + dtype='int64', + lod_level=1) + item_slot_names = fluid.data( + name='item_slot_names', + shape=[None, self.item_len], + dtype='int64', + lod_level=1) + lens = fluid.data(name='lens', shape=[None], dtype='int64') + labels = fluid.data( + name='labels', + shape=[None, self.item_len], + dtype='int64', + lod_level=1) + + inputs = [user_slot_names] + [item_slot_names] + [lens] + [labels] + + # demo: hot to use is_infer: + if is_infer: + return inputs + else: + return inputs + + def net(self, inputs, is_infer=False): + # user encode + user_embedding = fluid.embedding( + input=inputs[0], + size=[self.user_vocab, self.embed_size], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Xavier(), + regularizer=fluid.regularizer.L2Decay(1e-5)), + is_sparse=True) + + user_feature = fluid.layers.fc( + input=user_embedding, + size=self.hidden_size, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.TruncatedNormal( + loc=0.0, scale=np.sqrt(1.0 / self.hidden_size))), + bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( + value=0.0)), + act='relu', + name='user_feature_fc') + # item encode + item_embedding = fluid.embedding( + input=inputs[1], + size=[self.item_vocab, self.embed_size], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Xavier(), + regularizer=fluid.regularizer.L2Decay(1e-5)), + is_sparse=True) + + item_embedding = fluid.layers.sequence_unpad( + x=item_embedding, length=inputs[2]) + + item_fc = fluid.layers.fc( + input=item_embedding, + size=self.hidden_size, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.TruncatedNormal( + loc=0.0, scale=np.sqrt(1.0 / self.hidden_size))), + bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( + value=0.0)), + act='relu', + name='item_fc') + + pos = self._fluid_sequence_get_pos(item_fc) + pos_embed = fluid.embedding( + input=pos, + size=[self.user_vocab, self.embed_size], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Xavier(), + regularizer=fluid.regularizer.L2Decay(1e-5)), + is_sparse=True) + + pos_embed = fluid.layers.squeeze(pos_embed, [1]) + + # item gru + gru_input = fluid.layers.fc( + input=fluid.layers.concat([item_fc, pos_embed], 1), + size=self.hidden_size * 3, + name='item_gru_fc') + + # forward gru + item_gru_forward = fluid.layers.dynamic_gru( + input=gru_input, + size=self.hidden_size, + is_reverse=False, + h_0=user_feature) + # backward gru + item_gru_backward = fluid.layers.dynamic_gru( + input=gru_input, + size=self.hidden_size, + is_reverse=True, + h_0=user_feature) + + item_gru = fluid.layers.concat( + [item_gru_forward, item_gru_backward], axis=1) + + out_click_fc1 = fluid.layers.fc( + input=item_gru, + size=self.hidden_size, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.TruncatedNormal( + loc=0.0, scale=np.sqrt(1.0 / self.hidden_size))), + bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( + value=0.0)), + act='relu', + name='out_click_fc1') + + click_prob = fluid.layers.fc(input=out_click_fc1, + size=2, + act='softmax', + name='out_click_fc2') + + labels = fluid.layers.sequence_unpad(x=inputs[3], length=inputs[2]) + + auc_val, batch_auc, auc_states = fluid.layers.auc(input=click_prob, + label=labels) + + if is_infer: + self._infer_results["AUC"] = auc_val + return + + loss = fluid.layers.reduce_mean( + fluid.layers.cross_entropy( + input=click_prob, label=labels)) + self._cost = loss + self._metrics['auc'] = auc_val + + def _fluid_sequence_pad(self, input, pad_value, maxlen=None): + """ + args: + input: (batch*seq_len, dim) + returns: + (batch, max_seq_len, dim) + """ + pad_value = fluid.layers.cast( + fluid.layers.assign(input=np.array([pad_value], 'float32')), + input.dtype) + input_padded, _ = fluid.layers.sequence_pad( + input, pad_value, + maxlen=maxlen) # (batch, max_seq_len, 1), (batch, 1) + # TODO, maxlen=300, used to solve issues: https://github.com/PaddlePaddle/Paddle/issues/14164 + return input_padded + + def _fluid_sequence_get_pos(self, lodtensor): + """ + args: + lodtensor: lod = [[0,4,7]] + return: + pos: lod = [[0,4,7]] + data = [0,1,2,3,0,1,3] + shape = [-1, 1] + """ + lodtensor = fluid.layers.reduce_sum(lodtensor, dim=1, keep_dim=True) + assert lodtensor.shape == (-1, 1), (lodtensor.shape()) + ones = fluid.layers.cast(lodtensor * 0 + 1, + 'float32') # (batch*seq_len, 1) + ones_padded = self._fluid_sequence_pad(ones, + 0) # (batch, max_seq_len, 1) + ones_padded = fluid.layers.squeeze(ones_padded, + [2]) # (batch, max_seq_len) + seq_len = fluid.layers.cast( + fluid.layers.reduce_sum( + ones_padded, 1, keep_dim=True), 'int64') # (batch, 1) + seq_len = fluid.layers.squeeze(seq_len, [1]) + + pos = fluid.layers.cast( + fluid.layers.cumsum( + ones_padded, 1, exclusive=True), 'int64') + pos = fluid.layers.sequence_unpad(pos, seq_len) # (batch*seq_len, 1) + pos.stop_gradient = True + return pos + + #def train_net(self): + # input_data = self.input_data() + # self.net(input_data) + + #def infer_net(self): + # input_data = self.input_data(is_infer=True) + # self.net(input_data, is_infer=True) diff --git a/models/rerank/listwise/random_infer_reader.py b/models/rerank/listwise/random_infer_reader.py new file mode 100644 index 0000000000000000000000000000000000000000..4f93688e59dd2dc142a0ab79201278b25e18b468 --- /dev/null +++ b/models/rerank/listwise/random_infer_reader.py @@ -0,0 +1,68 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import print_function + +import numpy as np +import paddle.fluid as fluid + +from paddlerec.core.reader import Reader +from paddlerec.core.utils import envs +from collections import defaultdict + + +class EvaluateReader(Reader): + def init(self): + self.user_vocab = envs.get_global_env("hyper_parameters.user_vocab", + None, "train.model") + self.item_vocab = envs.get_global_env("hyper_parameters.item_vocab", + None, "train.model") + self.item_len = envs.get_global_env("hyper_parameters.item_len", None, + "train.model") + self.batch_size = envs.get_global_env("batch_size", None, + "train.reader") + + def reader_creator(self): + def reader(): + user_slot_name = [] + for j in range(self.batch_size): + user_slot_name.append( + [int(np.random.randint(self.user_vocab))]) + item_slot_name = np.random.randint( + self.item_vocab, size=(self.batch_size, + self.item_len)).tolist() + length = [self.item_len] * self.batch_size + label = np.random.randint( + 2, size=(self.batch_size, self.item_len)).tolist() + output = [user_slot_name, item_slot_name, length, label] + + yield output + + return reader + + def generate_batch_from_trainfiles(self, files): + return fluid.io.batch( + self.reader_creator(), batch_size=self.batch_size) + + def generate_sample(self, line): + """ + the file is not used + """ + + def reader(): + """ + This function needs to be implemented by the user, based on data format + """ + pass + + return reader diff --git a/models/rerank/listwise/random_reader.py b/models/rerank/listwise/random_reader.py new file mode 100644 index 0000000000000000000000000000000000000000..41cf14b79285efe8f2d80e01bba74da3501cc504 --- /dev/null +++ b/models/rerank/listwise/random_reader.py @@ -0,0 +1,68 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import print_function + +import numpy as np +import paddle.fluid as fluid + +from paddlerec.core.reader import Reader +from paddlerec.core.utils import envs +from collections import defaultdict + + +class TrainReader(Reader): + def init(self): + self.user_vocab = envs.get_global_env("hyper_parameters.user_vocab", + None, "train.model") + self.item_vocab = envs.get_global_env("hyper_parameters.item_vocab", + None, "train.model") + self.item_len = envs.get_global_env("hyper_parameters.item_len", None, + "train.model") + self.batch_size = envs.get_global_env("batch_size", None, + "train.reader") + + def reader_creator(self): + def reader(): + user_slot_name = [] + for j in range(self.batch_size): + user_slot_name.append( + [int(np.random.randint(self.user_vocab))]) + item_slot_name = np.random.randint( + self.item_vocab, size=(self.batch_size, + self.item_len)).tolist() + length = [self.item_len] * self.batch_size + label = np.random.randint( + 2, size=(self.batch_size, self.item_len)).tolist() + output = [user_slot_name, item_slot_name, length, label] + + yield output + + return reader + + def generate_batch_from_trainfiles(self, files): + return fluid.io.batch( + self.reader_creator(), batch_size=self.batch_size) + + def generate_sample(self, line): + """ + the file is not used + """ + + def reader(): + """ + This function needs to be implemented by the user, based on data format + """ + pass + + return reader diff --git a/models/rerank/readme.md b/models/rerank/readme.md new file mode 100755 index 0000000000000000000000000000000000000000..e7552c377dd03ab93af5c233ef8be31edc529de4 --- /dev/null +++ b/models/rerank/readme.md @@ -0,0 +1,43 @@ +# 重排序模型库 + +## 简介 +我们提供了常见的重排序使用的模型算法的PaddleRec实现, 单机训练&预测效果指标以及分布式训练&预测性能指标等。目前实现的模型是 [Listwise](listwise)。 + +模型算法库在持续添加中,欢迎关注。 + +## 目录 +* [整体介绍](#整体介绍) + * [重排序模型列表](#重排序模型列表) +* [使用教程](#使用教程) + * [训练 预测](#训练 预测) +* [效果对比](#效果对比) + * [模型效果列表](#模型效果列表) + +## 整体介绍 +### 融合模型列表 + +| 模型 | 简介 | 论文 | +| :------------------: | :--------------------: | :---------: | +| Listwise | Listwise | [Sequential Evaluation and Generation Framework for Combinatorial Recommender System](https://arxiv.org/pdf/1902.00245.pdf)(2019) | + +下面是每个模型的简介(注:图片引用自链接中的论文) + + +[Listwise](https://arxiv.org/pdf/1902.00245.pdf): +
+ +
+ + +## 使用教程 +### 训练 预测 +```shell +python -m paddlerec.run -m paddlerec.models.rerank.listwise # listwise +``` + +## 效果对比 +### 模型效果列表 + +| 数据集 | 模型 | loss | auc | +| :------------------: | :--------------------: | :---------: |:---------: | +| -- | Listwise | -- | -- | diff --git a/setup.py b/setup.py index 31bb34f03187dc9ab29c4cc5c75c559540ca8269..f64ae5cf358e04feec2226b3bd9ae23c89234b53 100644 --- a/setup.py +++ b/setup.py @@ -62,8 +62,9 @@ def build(dirname): models_copy = [ 'data/*.txt', 'data/*/*.txt', '*.yaml', '*.sh', 'tree/*.npy', - 'tree/*.txt' + 'tree/*.txt', 'data/sample_data/*', 'data/sample_data/train/*' ] + engine_copy = ['*/*.sh'] for package in packages: if package.startswith("paddlerec.models."):