未验证 提交 52649a21 编写于 作者: W wuzhihua 提交者: GitHub

Merge pull request #150 from MrChengmo/fix_distributed

Fix distributed
......@@ -59,6 +59,7 @@ function _gen_mpi_config() {
-e "s#<$ OUTPUT_PATH $>#$OUTPUT_PATH#g" \
-e "s#<$ THIRDPARTY_PATH $>#$THIRDPARTY_PATH#g" \
-e "s#<$ CPU_NUM $>#$max_thread_num#g" \
-e "s#<$ USE_PYTHON3 $>#$USE_PYTHON3#g" \
-e "s#<$ FLAGS_communicator_is_sgd_optimizer $>#$FLAGS_communicator_is_sgd_optimizer#g" \
-e "s#<$ FLAGS_communicator_send_queue_size $>#$FLAGS_communicator_send_queue_size#g" \
-e "s#<$ FLAGS_communicator_thread_pool_size $>#$FLAGS_communicator_thread_pool_size#g" \
......@@ -76,6 +77,7 @@ function _gen_k8s_config() {
-e "s#<$ AFS_REMOTE_MOUNT_POINT $>#$AFS_REMOTE_MOUNT_POINT#g" \
-e "s#<$ OUTPUT_PATH $>#$OUTPUT_PATH#g" \
-e "s#<$ CPU_NUM $>#$max_thread_num#g" \
-e "s#<$ USE_PYTHON3 $>#$USE_PYTHON3#g" \
-e "s#<$ FLAGS_communicator_is_sgd_optimizer $>#$FLAGS_communicator_is_sgd_optimizer#g" \
-e "s#<$ FLAGS_communicator_send_queue_size $>#$FLAGS_communicator_send_queue_size#g" \
-e "s#<$ FLAGS_communicator_thread_pool_size $>#$FLAGS_communicator_thread_pool_size#g" \
......
......@@ -19,6 +19,7 @@ afs_local_mount_point="/root/paddlejob/workspace/env_run/afs/"
# 新k8s afs挂载帮助文档: http://wiki.baidu.com/pages/viewpage.action?pageId=906443193
PADDLE_PADDLEREC_ROLE=WORKER
use_python3=<$ USE_PYTHON3 $>
CPU_NUM=<$ CPU_NUM $>
GLOG_v=0
......
......@@ -17,6 +17,7 @@ output_path=<$ OUTPUT_PATH $>
thirdparty_path=<$ THIRDPARTY_PATH $>
PADDLE_PADDLEREC_ROLE=WORKER
use_python3=<$ USE_PYTHON3 $>
CPU_NUM=<$ CPU_NUM $>
GLOG_v=0
......
......@@ -159,23 +159,30 @@ class ClusterEnvBase(object):
self.cluster_env["PADDLE_VERSION"] = self.backend_env.get(
"config.paddle_version", "1.7.2")
# python_version
self.cluster_env["USE_PYTHON3"] = self.backend_env.get(
"config.use_python3", "0")
# communicator
max_thread_num = int(envs.get_runtime_environ("max_thread_num"))
self.cluster_env[
"FLAGS_communicator_is_sgd_optimizer"] = self.backend_env.get(
"config.communicator.FLAGS_communicator_is_sgd_optimizer", 0)
self.cluster_env[
"FLAGS_communicator_send_queue_size"] = self.backend_env.get(
"config.communicator.FLAGS_communicator_send_queue_size", 5)
"config.communicator.FLAGS_communicator_send_queue_size",
max_thread_num)
self.cluster_env[
"FLAGS_communicator_thread_pool_size"] = self.backend_env.get(
"config.communicator.FLAGS_communicator_thread_pool_size", 32)
self.cluster_env[
"FLAGS_communicator_max_merge_var_num"] = self.backend_env.get(
"config.communicator.FLAGS_communicator_max_merge_var_num", 5)
"config.communicator.FLAGS_communicator_max_merge_var_num",
max_thread_num)
self.cluster_env[
"FLAGS_communicator_max_send_grad_num_before_recv"] = self.backend_env.get(
"config.communicator.FLAGS_communicator_max_send_grad_num_before_recv",
5)
max_thread_num)
self.cluster_env["FLAGS_communicator_fake_rpc"] = self.backend_env.get(
"config.communicator.FLAGS_communicator_fake_rpc", 0)
self.cluster_env["FLAGS_rpc_retry_times"] = self.backend_env.get(
......
......@@ -69,6 +69,12 @@ dataset:
data_path: "{workspace}/data/sample_data/train"
sparse_slots: "click 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26"
dense_slots: "dense_var:13"
phase:
- name: phase1
model: "{workspace}/model.py"
dataset_name: dataloader_train
thread_num: 1
```
分布式的训练配置可以改为:
......@@ -101,6 +107,13 @@ dataset:
data_path: "{workspace}/train_data"
sparse_slots: "click 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26"
dense_slots: "dense_var:13"
phase:
- name: phase1
model: "{workspace}/model.py"
dataset_name: dataloader_train
# 分布式训练节点的CPU_NUM环境变量与thread_num相等,多个phase时,取最大的thread_num
thread_num: 1
```
除此之外,还需关注数据及模型加载的路径,一般而言:
......@@ -120,6 +133,8 @@ cluster_type: mpi # k8s 可选
config:
# 填写任务运行的paddle官方版本号 >= 1.7.2, 默认1.7.2
paddle_version: "1.7.2"
# 是否使用PaddleCloud运行环境下的Python3,默认使用python2
use_python3: 1
# hdfs/afs的配置信息填写
fs_name: "afs://xxx.com"
......@@ -140,11 +155,13 @@ config:
# paddle参数服务器分布式底层超参,无特殊需求不理不改
communicator:
# 使用SGD优化器时,建议设置为1
FLAGS_communicator_is_sgd_optimizer: 0
# 以下三个变量默认都等于训练时的线程数:CPU_NUM
FLAGS_communicator_send_queue_size: 5
FLAGS_communicator_thread_pool_size: 32
FLAGS_communicator_max_merge_var_num: 5
FLAGS_communicator_max_send_grad_num_before_recv: 5
FLAGS_communicator_thread_pool_size: 32
FLAGS_communicator_fake_rpc: 0
FLAGS_rpc_retry_times: 3
......@@ -175,12 +192,12 @@ submit:
# for k8s gpu
# k8s gpu 模式下,训练节点数,及每个节点上的GPU卡数
k8s_trainers: 2
k8s-cpu-cores: 4
k8s_cpu_cores: 4
k8s_gpu_card: 1
# for k8s ps-cpu
k8s_trainers: 2
k8s-cpu-cores: 4
k8s_cpu_cores: 4
k8s_ps_num: 2
k8s_ps_cores: 4
......@@ -232,7 +249,7 @@ phase:
再新增`backend.yaml`
```yaml
backend: "PaddleCloud"
cluster_type: mpi
cluster_type: mpi # k8s可选
config:
paddle_version: "1.7.2"
......@@ -317,7 +334,7 @@ phase:
```yaml
backend: "PaddleCloud"
cluster_type: k8s # k8s 可选
cluster_type: k8s # mpi 可选
config:
# 填写任务运行的paddle官方版本号 >= 1.7.2, 默认1.7.2
......@@ -357,7 +374,7 @@ submit:
# for k8s gpu
# k8s gpu 模式下,训练节点数,及每个节点上的GPU卡数
k8s_trainers: 2
k8s-cpu-cores: 4
k8s_cpu_cores: 4
k8s_gpu_card: 1
```
......@@ -399,7 +416,7 @@ phase:
再新增`backend.yaml`
```yaml
backend: "PaddleCloud"
cluster_type: k8s # k8s 可选
cluster_type: k8s # mpi 可选
config:
# 填写任务运行的paddle官方版本号 >= 1.7.2, 默认1.7.2
......@@ -439,7 +456,7 @@ submit:
# for k8s gpu
# k8s ps-cpu 模式下,训练节点数,参数服务器节点数,及每个节点上的cpu核心数及内存限制
k8s_trainers: 2
k8s-cpu-cores: 4
k8s_cpu_cores: 4
k8s_ps_num: 2
k8s_ps_cores: 4
```
......
# PaddleRec yaml配置说明
# PaddleRec config.yaml配置说明
## 全局变量
......@@ -13,7 +13,7 @@
## runner变量
| 名称 | 类型 | 取值 | 是否必须 | 作用描述 |
| :---------------------------: | :----------: | :-------------------------------------------: | :------: | :------------------------------------------------------------------: |
| :---------------------------: | :----------: | :-------------------------------------------------------: | :------: | :------------------------------------------------------------------: |
| name | string | 任意 | 是 | 指定runner名称 |
| class | string | train(默认) / infer / local_cluster_train / cluster_train | 是 | 指定运行runner的类别(单机/分布式, 训练/预测) |
| device | string | cpu(默认) / gpu | 否 | 程序执行设备 |
......@@ -70,3 +70,55 @@
| optimizer.learning_rate | float | > 0 | 否 | 指定学习率 |
| reg | float | > 0 | 否 | L2正则化参数,只在SGD下生效 |
| others | / | / | / | 由各个模型组网独立指定 |
# PaddleRec backend.yaml配置说明
## 全局变量
| 名称 | 类型 | 取值 | 是否必须 | 作用描述 |
| :----------: | :----: | :-------------: | :------: | :----------------------------------------------: |
| backend | string | paddlecloud/k8s | 是 | 使用PaddleCloud平台提交,还是在公有云K8S集群提交 |
| cluster_type | string | mpi/k8s | 是 | 指定运行的计算集群: mpi 还是 k8s |
## config
| 名称 | 类型 | 取值 | 是否必须 | 作用描述 |
| :--------------------: | :----: | :-------------------------------------: | :------: | :------------------------------------------------------------------------------------------: |
| paddle_version | string | paddle官方版本号,如1.7.2/1.8.0/1.8.3等 | 否 | 指定运行训练使用的Paddle版本,默认1.7.2 |
| use_python3 | int | 0(默认)/1 | 否 | 指定是否使用python3进行训练 |
| fs_name | string | "afs://xxx.com" | 是 | hdfs/afs集群名称所需配置 |
| fs_ugi | string | "usr,pwd" | 是 | hdfs/afs集群密钥所需配置 |
| output_path | string | "/user/your/path" | 否 | 任务输出的远程目录 |
| train_data_path | string | "/user/your/path" | 是 | mpi集群下指定训练数据路径,paddlecloud会自动将数据分片并下载到工作目录的`./train_data`文件夹 |
| test_data_path | string | "/user/your/path" | 否 | mpi集群下指定测试数据路径,会自动下载到工作目录的`./test_data`文件夹 |
| thirdparty_path | string | "/user/your/path" | 否 | mpi集群下指定thirdparty路径,会自动下载到工作目录的`./thirdparty`文件夹 |
| afs_remote_mount_point | string | "/user/your/path" | 是 | k8s集群下指定远程路径的地址,会挂载到工作目录的`./afs/下` |
### config.communicator
| 名称 | 类型 | 取值 | 是否必须 | 作用描述 |
| :----------------------------------------------: | :---: | :------------: | :------: | :----------------------------------------------------: |
| FLAGS_communicator_is_sgd_optimizer | int | 0(默认)/1 | 否 | 异步分布式训练时的多线程的梯度融合方式是否使用SGD模式 |
| FLAGS_communicator_send_queue_size | int | 线程数(默认) | 否 | 分布式训练时发送队列的大小 |
| FLAGS_communicator_max_merge_var_num | int | 线程数(默认) | 否 | 分布式训练多线程梯度融合时,线程数的配置 |
| FLAGS_communicator_max_send_grad_num_before_recv | int | 线程数(默认) | 否 | 分布式训练使用独立recv参数线程时,与send的步调配置超参 |
| FLAGS_communicator_thread_pool_size | int | 32(默认) | 否 | 分布式训练时,多线程发送参数的线程池大小 |
| FLAGS_communicator_fake_rpc | int | 0(默认)/1 | 否 | 分布式训练时,选择不进行通信 |
| FLAGS_rpc_retry_times | int | 3(默认) | 否 | 分布式训练时,GRPC的失败重试次数 |
## submit
| 名称 | 类型 | 取值 | 是否必须 | 作用描述 |
| :-----------: | :----: | :-------------------------: | :------: | :------------------------------------------------------: |
| ak | string | PaddleCloud平台提供的ak密钥 | 是 | paddlecloud用户配置 |
| sk | string | PaddleCloud平台提供的sk密钥 | 否 | paddlecloud用户配置 |
| priority | string | normal/high/very_high | 否 | 任务优先级 |
| job_name | string | 任意 | 是 | 任务名称 |
| group | string | 计算资源所在组名称 | 是 | 组名称 |
| start_cmd | string | 任意 | 是 | 启动命令,默认`python -m paddlerec.run -m ./config.yaml` |
| files | string | 任意 | 是 | 随任务提交上传的文件,给出相对或绝对路径 |
| nodes | int | >=1(默认1) | 否 | mpi集群下的节点数 |
| k8s_trainers | int | >=1(默认1) | 否 | k8s集群下worker的节点数 |
| k8s_cpu_cores | int | >=1(默认1) | 否 | k8s集群下worker的CPU核数 |
| k8s_gpu_card | int | >=1(默认1) | 否 | k8s集群下worker的GPU卡数 |
| k8s_ps_num | int | >=1(默认1) | 否 | k8s集群下server的节点数 |
| k8s_ps_cores | int | >=1(默认1) | 否 | k8s集群下server的CPU核数 |
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册