Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
2e42f73d
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2e42f73d
编写于
5月 20, 2020
作者:
D
Dong Daxiang
提交者:
GitHub
5月 20, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7 from fuyinno4/master
remove nouse trainer
上级
ce0538fd
71b12a82
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
0 addition
and
597 deletion
+0
-597
core/trainers/ctr_coding_trainer.py
core/trainers/ctr_coding_trainer.py
+0
-137
core/trainers/ctr_modul_trainer.py
core/trainers/ctr_modul_trainer.py
+0
-460
未找到文件。
core/trainers/ctr_coding_trainer.py
已删除
100755 → 0
浏览文件 @
ce0538fd
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
fleet
from
paddle.fluid.incubate.fleet.base.role_maker
import
MPISymetricRoleMaker
from
paddlerec.core.utils
import
envs
from
paddlerec.core.trainer
import
Trainer
class
CtrTrainer
(
Trainer
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
Trainer
.
__init__
(
self
,
config
)
self
.
global_config
=
config
self
.
_metrics
=
{}
self
.
processor_register
()
def
processor_register
(
self
):
role
=
MPISymetricRoleMaker
()
fleet
.
init
(
role
)
if
fleet
.
is_server
():
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'server_pass'
,
self
.
server
)
else
:
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
_get_dataset
(
self
):
namespace
=
"train.reader"
inputs
=
self
.
model
.
get_inputs
()
threads
=
envs
.
get_global_env
(
"train.threads"
,
None
)
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
namespace
)
reader_class
=
envs
.
get_global_env
(
"class"
,
None
,
namespace
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
"TRAIN"
,
self
.
_config_yaml
)
train_data_path
=
envs
.
get_global_env
(
"train_data_path"
,
None
,
namespace
)
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_use_var
(
inputs
)
dataset
.
set_pipe_command
(
pipe_cmd
)
dataset
.
set_batch_size
(
batch_size
)
dataset
.
set_thread
(
threads
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
return
dataset
def
instance
(
self
,
context
):
models
=
envs
.
get_global_env
(
"train.model.models"
)
model_class
=
envs
.
lazy_instance_by_fliename
(
models
,
"Model"
)
self
.
model
=
model_class
(
None
)
context
[
'status'
]
=
'init_pass'
def
init
(
self
,
context
):
"""R
"""
self
.
model
.
train_net
()
optimizer
=
self
.
model
.
optimizer
()
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
{
"use_cvm"
:
False
})
optimizer
.
minimize
(
self
.
model
.
get_avg_cost
())
if
fleet
.
is_server
():
context
[
'status'
]
=
'server_pass'
else
:
self
.
fetch_vars
=
[]
self
.
fetch_alias
=
[]
self
.
fetch_period
=
self
.
model
.
get_fetch_period
()
metrics
=
self
.
model
.
get_metrics
()
if
metrics
:
self
.
fetch_vars
=
metrics
.
values
()
self
.
fetch_alias
=
metrics
.
keys
()
context
[
'status'
]
=
'train_pass'
def
server
(
self
,
context
):
fleet
.
run_server
()
fleet
.
stop_worker
()
context
[
'is_exit'
]
=
True
def
train
(
self
,
context
):
self
.
_exe
.
run
(
fluid
.
default_startup_program
())
fleet
.
init_worker
()
dataset
=
self
.
_get_dataset
()
shuf
=
np
.
array
([
fleet
.
worker_index
()])
gs
=
shuf
*
0
fleet
.
_role_maker
.
_node_type_comm
.
Allreduce
(
shuf
,
gs
)
print
(
"trainer id: {}, trainers: {}, gs: {}"
.
format
(
fleet
.
worker_index
(),
fleet
.
worker_num
(),
gs
))
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
for
i
in
range
(
epochs
):
self
.
_exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
self
.
fetch_vars
,
fetch_info
=
self
.
fetch_alias
,
print_period
=
self
.
fetch_period
)
context
[
'status'
]
=
'terminal_pass'
fleet
.
stop_worker
()
def
terminal
(
self
,
context
):
print
(
"terminal ended."
)
context
[
'is_exit'
]
=
True
core/trainers/ctr_modul_trainer.py
已删除
100755 → 0
浏览文件 @
ce0538fd
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
datetime
import
json
import
sys
import
time
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
fleet
from
paddle.fluid.incubate.fleet.base.role_maker
import
GeneralRoleMaker
from
paddlerec.core.utils
import
fs
as
fs
from
paddlerec.core.utils
import
util
as
util
from
paddlerec.core.metrics.auc_metrics
import
AUCMetric
from
paddlerec.core.modules.modul
import
build
as
model_basic
from
paddlerec.core.utils
import
dataset
from
paddlerec.core.trainer
import
Trainer
def
wroker_numric_opt
(
value
,
env
,
opt
):
"""
numric count opt for workers
Args:
value: value for count
env: mpi/gloo
opt: count operator, SUM/MAX/MIN/AVG
Return:
count result
"""
local_value
=
np
.
array
([
value
])
global_value
=
np
.
copy
(
local_value
)
*
0
fleet
.
_role_maker
.
all_reduce_worker
(
local_value
,
global_value
,
opt
)
return
global_value
[
0
]
def
worker_numric_sum
(
value
,
env
=
"mpi"
):
"""R
"""
return
wroker_numric_opt
(
value
,
env
,
"sum"
)
def
worker_numric_avg
(
value
,
env
=
"mpi"
):
"""R
"""
return
worker_numric_sum
(
value
,
env
)
/
fleet
.
worker_num
()
def
worker_numric_min
(
value
,
env
=
"mpi"
):
"""R
"""
return
wroker_numric_opt
(
value
,
env
,
"min"
)
def
worker_numric_max
(
value
,
env
=
"mpi"
):
"""R
"""
return
wroker_numric_opt
(
value
,
env
,
"max"
)
class
CtrTrainer
(
Trainer
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
Trainer
.
__init__
(
self
,
config
)
config
[
'output_path'
]
=
util
.
get_absolute_path
(
config
[
'output_path'
],
config
[
'io'
][
'afs'
])
self
.
global_config
=
config
self
.
_metrics
=
{}
self
.
_path_generator
=
util
.
PathGenerator
({
'templates'
:
[
{
'name'
:
'xbox_base_done'
,
'template'
:
config
[
'output_path'
]
+
'/xbox_base_done.txt'
},
{
'name'
:
'xbox_delta_done'
,
'template'
:
config
[
'output_path'
]
+
'/xbox_patch_done.txt'
},
{
'name'
:
'xbox_base'
,
'template'
:
config
[
'output_path'
]
+
'/xbox/{day}/base/'
},
{
'name'
:
'xbox_delta'
,
'template'
:
config
[
'output_path'
]
+
'/xbox/{day}/delta-{pass_id}/'
},
{
'name'
:
'batch_model'
,
'template'
:
config
[
'output_path'
]
+
'/batch_model/{day}/{pass_id}/'
}
]
})
if
'path_generator'
in
config
:
self
.
_path_generator
.
add_path_template
(
config
[
'path_generator'
])
self
.
regist_context_processor
(
'uninit'
,
self
.
init
)
self
.
regist_context_processor
(
'startup'
,
self
.
startup
)
self
.
regist_context_processor
(
'begin_day'
,
self
.
begin_day
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
train_pass
)
self
.
regist_context_processor
(
'end_day'
,
self
.
end_day
)
def
init
(
self
,
context
):
"""R
"""
role_maker
=
None
if
self
.
global_config
.
get
(
'process_mode'
,
'mpi'
)
==
'brilliant_cpu'
:
afs_config
=
self
.
global_config
[
'io'
][
'afs'
]
role_maker
=
GeneralRoleMaker
(
hdfs_name
=
afs_config
[
'fs_name'
],
hdfs_ugi
=
afs_config
[
'fs_ugi'
],
path
=
self
.
global_config
[
'output_path'
]
+
"/gloo"
,
init_timeout_seconds
=
1200
,
run_timeout_seconds
=
1200
)
fleet
.
init
(
role_maker
)
data_var_list
=
[]
data_var_name_dict
=
{}
runnnable_scope
=
[]
runnnable_cost_op
=
[]
context
[
'status'
]
=
'startup'
for
executor
in
self
.
global_config
[
'executor'
]:
scope
=
fluid
.
Scope
()
self
.
_exector_context
[
executor
[
'name'
]]
=
{}
self
.
_exector_context
[
executor
[
'name'
]][
'scope'
]
=
scope
self
.
_exector_context
[
executor
[
'name'
]][
'model'
]
=
model_basic
.
create
(
executor
)
model
=
self
.
_exector_context
[
executor
[
'name'
]][
'model'
]
self
.
_metrics
.
update
(
model
.
get_metrics
())
runnnable_scope
.
append
(
scope
)
runnnable_cost_op
.
append
(
model
.
get_avg_cost
())
for
var
in
model
.
_data_var
:
if
var
.
name
in
data_var_name_dict
:
continue
data_var_list
.
append
(
var
)
data_var_name_dict
[
var
.
name
]
=
var
optimizer
=
model_basic
.
YamlModel
.
build_optimizer
({
'metrics'
:
self
.
_metrics
,
'optimizer_conf'
:
self
.
global_config
[
'optimizer'
]
})
optimizer
.
minimize
(
runnnable_cost_op
,
runnnable_scope
)
for
executor
in
self
.
global_config
[
'executor'
]:
scope
=
self
.
_exector_context
[
executor
[
'name'
]][
'scope'
]
model
=
self
.
_exector_context
[
executor
[
'name'
]][
'model'
]
program
=
model
.
_build_param
[
'model'
][
'train_program'
]
if
not
executor
[
'is_update_sparse'
]:
program
.
_fleet_opt
[
"program_configs"
][
str
(
id
(
model
.
get_avg_cost
().
block
.
program
))][
"push_sparse"
]
=
[]
if
'train_thread_num'
not
in
executor
:
executor
[
'train_thread_num'
]
=
self
.
global_config
[
'train_thread_num'
]
with
fluid
.
scope_guard
(
scope
):
self
.
_exe
.
run
(
model
.
_build_param
[
'model'
][
'startup_program'
])
model
.
dump_model_program
(
'./'
)
# server init done
if
fleet
.
is_server
():
return
0
self
.
_dataset
=
{}
for
dataset_item
in
self
.
global_config
[
'dataset'
][
'data_list'
]:
dataset_item
[
'data_vars'
]
=
data_var_list
dataset_item
.
update
(
self
.
global_config
[
'io'
][
'afs'
])
dataset_item
[
"batch_size"
]
=
self
.
global_config
[
'batch_size'
]
self
.
_dataset
[
dataset_item
[
'name'
]]
=
dataset
.
FluidTimeSplitDataset
(
dataset_item
)
# if config.need_reqi_changeslot and config.reqi_dnn_plugin_day >= last_day and config.reqi_dnn_plugin_pass >= last_pass:
# util.reqi_changeslot(config.hdfs_dnn_plugin_path, join_save_params, common_save_params, update_save_params, scope2, scope3)
fleet
.
init_worker
()
pass
def
print_log
(
self
,
log_str
,
params
):
"""R
"""
params
[
'index'
]
=
fleet
.
worker_index
()
if
params
[
'master'
]:
if
fleet
.
worker_index
()
==
0
:
print
(
log_str
)
sys
.
stdout
.
flush
()
else
:
print
(
log_str
)
if
'stdout'
in
params
:
params
[
'stdout'
]
+=
str
(
datetime
.
datetime
.
now
())
+
log_str
def
print_global_metrics
(
self
,
scope
,
model
,
monitor_data
,
stdout_str
):
"""R
"""
metrics
=
model
.
get_metrics
()
metric_calculator
=
AUCMetric
(
None
)
for
metric
in
metrics
:
metric_param
=
{
'label'
:
metric
,
'metric_dict'
:
metrics
[
metric
]}
metric_calculator
.
calculate
(
scope
,
metric_param
)
metric_result
=
metric_calculator
.
get_result_to_string
()
self
.
print_log
(
metric_result
,
{
'master'
:
True
,
'stdout'
:
stdout_str
})
monitor_data
+=
metric_result
metric_calculator
.
clear
(
scope
,
metric_param
)
def
save_model
(
self
,
day
,
pass_index
,
base_key
):
"""R
"""
cost_printer
=
util
.
CostPrinter
(
util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'save model cost %s sec'
})
model_path
=
self
.
_path_generator
.
generate_path
(
'batch_model'
,
{
'day'
:
day
,
'pass_id'
:
pass_index
})
save_mode
=
0
# just save all
if
pass_index
<
1
:
# batch_model
save_mode
=
3
# unseen_day++, save all
util
.
rank0_print
(
"going to save_model %s"
%
model_path
)
fleet
.
save_persistables
(
None
,
model_path
,
mode
=
save_mode
)
if
fleet
.
_role_maker
.
is_first_worker
():
self
.
_train_pass
.
save_train_progress
(
day
,
pass_index
,
base_key
,
model_path
,
is_checkpoint
=
True
)
cost_printer
.
done
()
return
model_path
def
save_xbox_model
(
self
,
day
,
pass_index
,
xbox_base_key
,
monitor_data
):
"""R
"""
stdout_str
=
""
xbox_patch_id
=
str
(
int
(
time
.
time
()))
util
.
rank0_print
(
"begin save delta model"
)
model_path
=
""
xbox_model_donefile
=
""
cost_printer
=
util
.
CostPrinter
(
util
.
print_cost
,
{
'master'
:
True
,
\
'log_format'
:
'save xbox model cost %s sec'
,
'stdout'
:
stdout_str
})
if
pass_index
<
1
:
save_mode
=
2
xbox_patch_id
=
xbox_base_key
model_path
=
self
.
_path_generator
.
generate_path
(
'xbox_base'
,
{
'day'
:
day
})
xbox_model_donefile
=
self
.
_path_generator
.
generate_path
(
'xbox_base_done'
,
{
'day'
:
day
})
else
:
save_mode
=
1
model_path
=
self
.
_path_generator
.
generate_path
(
'xbox_delta'
,
{
'day'
:
day
,
'pass_id'
:
pass_index
})
xbox_model_donefile
=
self
.
_path_generator
.
generate_path
(
'xbox_delta_done'
,
{
'day'
:
day
})
total_save_num
=
fleet
.
save_persistables
(
None
,
model_path
,
mode
=
save_mode
)
cost_printer
.
done
()
cost_printer
=
util
.
CostPrinter
(
util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'save cache model cost %s sec'
,
'stdout'
:
stdout_str
})
model_file_handler
=
fs
.
FileHandler
(
self
.
global_config
[
'io'
][
'afs'
])
if
self
.
global_config
[
'save_cache_model'
]:
cache_save_num
=
fleet
.
save_cache_model
(
None
,
model_path
,
mode
=
save_mode
)
model_file_handler
.
write
(
"file_prefix:part
\n
part_num:16
\n
key_num:%d
\n
"
%
cache_save_num
,
model_path
+
'/000_cache/sparse_cache.meta'
,
'w'
)
cost_printer
.
done
()
util
.
rank0_print
(
"save xbox cache model done, key_num=%s"
%
cache_save_num
)
save_env_param
=
{
'executor'
:
self
.
_exe
,
'save_combine'
:
True
}
cost_printer
=
util
.
CostPrinter
(
util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'save dense model cost %s sec'
,
'stdout'
:
stdout_str
})
if
fleet
.
_role_maker
.
is_first_worker
():
for
executor
in
self
.
global_config
[
'executor'
]:
if
'layer_for_inference'
not
in
executor
:
continue
executor_name
=
executor
[
'name'
]
model
=
self
.
_exector_context
[
executor_name
][
'model'
]
save_env_param
[
'inference_list'
]
=
executor
[
'layer_for_inference'
]
save_env_param
[
'scope'
]
=
self
.
_exector_context
[
executor_name
][
'scope'
]
model
.
dump_inference_param
(
save_env_param
)
for
dnn_layer
in
executor
[
'layer_for_inference'
]:
model_file_handler
.
cp
(
dnn_layer
[
'save_file_name'
],
model_path
+
'/dnn_plugin/'
+
dnn_layer
[
'save_file_name'
])
fleet
.
_role_maker
.
_barrier_worker
()
cost_printer
.
done
()
xbox_done_info
=
{
"id"
:
xbox_patch_id
,
"key"
:
xbox_base_key
,
"ins_path"
:
""
,
"ins_tag"
:
"feasign"
,
"partition_type"
:
"2"
,
"record_count"
:
"111111"
,
"monitor_data"
:
monitor_data
,
"mpi_size"
:
str
(
fleet
.
worker_num
()),
"input"
:
model_path
.
rstrip
(
"/"
)
+
"/000"
,
"job_id"
:
util
.
get_env_value
(
"JOB_ID"
),
"job_name"
:
util
.
get_env_value
(
"JOB_NAME"
)
}
if
fleet
.
_role_maker
.
is_first_worker
():
model_file_handler
.
write
(
json
.
dumps
(
xbox_done_info
)
+
"
\n
"
,
xbox_model_donefile
,
'a'
)
if
pass_index
>
0
:
self
.
_train_pass
.
save_train_progress
(
day
,
pass_index
,
xbox_base_key
,
model_path
,
is_checkpoint
=
False
)
fleet
.
_role_maker
.
_barrier_worker
()
return
stdout_str
def
run_executor
(
self
,
executor_config
,
dataset
,
stdout_str
):
"""R
"""
day
=
self
.
_train_pass
.
date
()
pass_id
=
self
.
_train_pass
.
_pass_id
xbox_base_key
=
self
.
_train_pass
.
_base_key
executor_name
=
executor_config
[
'name'
]
scope
=
self
.
_exector_context
[
executor_name
][
'scope'
]
model
=
self
.
_exector_context
[
executor_name
][
'model'
]
with
fluid
.
scope_guard
(
scope
):
util
.
rank0_print
(
"Begin "
+
executor_name
+
" pass"
)
begin
=
time
.
time
()
program
=
model
.
_build_param
[
'model'
][
'train_program'
]
self
.
_exe
.
train_from_dataset
(
program
,
dataset
,
scope
,
thread
=
executor_config
[
'train_thread_num'
],
debug
=
self
.
global_config
[
'debug'
])
end
=
time
.
time
()
local_cost
=
(
end
-
begin
)
/
60.0
avg_cost
=
worker_numric_avg
(
local_cost
)
min_cost
=
worker_numric_min
(
local_cost
)
max_cost
=
worker_numric_max
(
local_cost
)
util
.
rank0_print
(
"avg train time %s mins, min %s mins, max %s mins"
%
(
avg_cost
,
min_cost
,
max_cost
))
self
.
_exector_context
[
executor_name
][
'cost'
]
=
max_cost
monitor_data
=
""
self
.
print_global_metrics
(
scope
,
model
,
monitor_data
,
stdout_str
)
util
.
rank0_print
(
"End "
+
executor_name
+
" pass"
)
if
self
.
_train_pass
.
need_dump_inference
(
pass_id
)
and
executor_config
[
'dump_inference_model'
]:
stdout_str
+=
self
.
save_xbox_model
(
day
,
pass_id
,
xbox_base_key
,
monitor_data
)
fleet
.
_role_maker
.
_barrier_worker
()
def
startup
(
self
,
context
):
"""R
"""
if
fleet
.
is_server
():
fleet
.
run_server
()
context
[
'status'
]
=
'wait'
return
stdout_str
=
""
self
.
_train_pass
=
util
.
TimeTrainPass
(
self
.
global_config
)
if
not
self
.
global_config
[
'cold_start'
]:
cost_printer
=
util
.
CostPrinter
(
util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'load model cost %s sec'
,
'stdout'
:
stdout_str
})
self
.
print_log
(
"going to load model %s"
%
self
.
_train_pass
.
_checkpoint_model_path
,
{
'master'
:
True
})
# if config.need_reqi_changeslot and config.reqi_dnn_plugin_day >= self._train_pass.date()
# and config.reqi_dnn_plugin_pass >= self._pass_id:
# fleet.load_one_table(0, self._train_pass._checkpoint_model_path)
# else:
fleet
.
init_server
(
self
.
_train_pass
.
_checkpoint_model_path
,
mode
=
0
)
cost_printer
.
done
()
if
self
.
global_config
[
'save_first_base'
]:
self
.
print_log
(
"save_first_base=True"
,
{
'master'
:
True
})
self
.
print_log
(
"going to save xbox base model"
,
{
'master'
:
True
,
'stdout'
:
stdout_str
})
self
.
_train_pass
.
_base_key
=
int
(
time
.
time
())
stdout_str
+=
self
.
save_xbox_model
(
self
.
_train_pass
.
date
(),
0
,
self
.
_train_pass
.
_base_key
,
""
)
context
[
'status'
]
=
'begin_day'
def
begin_day
(
self
,
context
):
"""R
"""
stdout_str
=
""
if
not
self
.
_train_pass
.
next
():
context
[
'is_exit'
]
=
True
day
=
self
.
_train_pass
.
date
()
pass_id
=
self
.
_train_pass
.
_pass_id
self
.
print_log
(
"======== BEGIN DAY:%s ========"
%
day
,
{
'master'
:
True
,
'stdout'
:
stdout_str
})
if
pass_id
==
self
.
_train_pass
.
max_pass_num_day
():
context
[
'status'
]
=
'end_day'
else
:
context
[
'status'
]
=
'train_pass'
def
end_day
(
self
,
context
):
"""R
"""
day
=
self
.
_train_pass
.
date
()
pass_id
=
self
.
_train_pass
.
_pass_id
xbox_base_key
=
int
(
time
.
time
())
context
[
'status'
]
=
'begin_day'
util
.
rank0_print
(
"shrink table"
)
cost_printer
=
util
.
CostPrinter
(
util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'shrink table done, cost %s sec'
})
fleet
.
shrink_sparse_table
()
for
executor
in
self
.
_exector_context
:
self
.
_exector_context
[
executor
][
'model'
].
shrink
({
'scope'
:
self
.
_exector_context
[
executor
][
'scope'
],
'decay'
:
self
.
global_config
[
'optimizer'
][
'dense_decay_rate'
]
})
cost_printer
.
done
()
next_date
=
self
.
_train_pass
.
date
(
delta_day
=
1
)
util
.
rank0_print
(
"going to save xbox base model"
)
self
.
save_xbox_model
(
next_date
,
0
,
xbox_base_key
,
""
)
util
.
rank0_print
(
"going to save batch model"
)
self
.
save_model
(
next_date
,
0
,
xbox_base_key
)
self
.
_train_pass
.
_base_key
=
xbox_base_key
fleet
.
_role_maker
.
_barrier_worker
()
def
train_pass
(
self
,
context
):
"""R
"""
stdout_str
=
""
day
=
self
.
_train_pass
.
date
()
pass_id
=
self
.
_train_pass
.
_pass_id
base_key
=
self
.
_train_pass
.
_base_key
pass_time
=
self
.
_train_pass
.
_current_train_time
.
strftime
(
"%Y%m%d%H%M"
)
self
.
print_log
(
" ==== begin delta:%s ========"
%
pass_id
,
{
'master'
:
True
,
'stdout'
:
stdout_str
})
train_begin_time
=
time
.
time
()
cost_printer
=
util
.
CostPrinter
(
util
.
print_cost
,
\
{
'master'
:
True
,
'log_format'
:
'load into memory done, cost %s sec'
,
'stdout'
:
stdout_str
})
current_dataset
=
{}
for
name
in
self
.
_dataset
:
current_dataset
[
name
]
=
self
.
_dataset
[
name
].
load_dataset
({
'node_num'
:
fleet
.
worker_num
(),
'node_idx'
:
fleet
.
worker_index
(),
'begin_time'
:
pass_time
,
'time_window_min'
:
self
.
_train_pass
.
_interval_per_pass
})
fleet
.
_role_maker
.
_barrier_worker
()
cost_printer
.
done
()
util
.
rank0_print
(
"going to global shuffle"
)
cost_printer
=
util
.
CostPrinter
(
util
.
print_cost
,
{
'master'
:
True
,
'stdout'
:
stdout_str
,
'log_format'
:
'global shuffle done, cost %s sec'
})
for
name
in
current_dataset
:
current_dataset
[
name
].
global_shuffle
(
fleet
,
self
.
global_config
[
'dataset'
][
'shuffle_thread'
])
cost_printer
.
done
()
# str(dataset.get_shuffle_data_size(fleet))
fleet
.
_role_maker
.
_barrier_worker
()
if
self
.
global_config
[
'prefetch_data'
]:
next_pass_time
=
(
self
.
_train_pass
.
_current_train_time
+
datetime
.
timedelta
(
minutes
=
self
.
_train_pass
.
_interval_per_pass
)).
strftime
(
"%Y%m%d%H%M"
)
for
name
in
self
.
_dataset
:
self
.
_dataset
[
name
].
preload_dataset
({
'node_num'
:
fleet
.
worker_num
(),
'node_idx'
:
fleet
.
worker_index
(),
'begin_time'
:
next_pass_time
,
'time_window_min'
:
self
.
_train_pass
.
_interval_per_pass
})
fleet
.
_role_maker
.
_barrier_worker
()
pure_train_begin
=
time
.
time
()
for
executor
in
self
.
global_config
[
'executor'
]:
self
.
run_executor
(
executor
,
current_dataset
[
executor
[
'dataset_name'
]],
stdout_str
)
cost_printer
=
util
.
CostPrinter
(
util
.
print_cost
,
\
{
'master'
:
True
,
'log_format'
:
'release_memory cost %s sec'
})
for
name
in
current_dataset
:
current_dataset
[
name
].
release_memory
()
pure_train_cost
=
time
.
time
()
-
pure_train_begin
if
self
.
_train_pass
.
is_checkpoint_pass
(
pass_id
):
self
.
save_model
(
day
,
pass_id
,
base_key
)
train_end_time
=
time
.
time
()
train_cost
=
train_end_time
-
train_begin_time
other_cost
=
train_cost
-
pure_train_cost
log_str
=
"finished train day %s pass %s time cost:%s sec job time cost:"
%
(
day
,
pass_id
,
train_cost
)
for
executor
in
self
.
_exector_context
:
log_str
+=
'['
+
executor
+
':'
+
str
(
self
.
_exector_context
[
executor
][
'cost'
])
+
']'
log_str
+=
'[other_cost:'
+
str
(
other_cost
)
+
']'
util
.
rank0_print
(
log_str
)
stdout_str
+=
util
.
now_time_str
()
+
log_str
sys
.
stdout
.
write
(
stdout_str
)
fleet
.
_role_maker
.
_barrier_worker
()
stdout_str
=
""
if
pass_id
==
self
.
_train_pass
.
max_pass_num_day
():
context
[
'status'
]
=
'end_day'
return
elif
not
self
.
_train_pass
.
next
():
context
[
'is_exit'
]
=
True
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录