提交 2e093390 编写于 作者: F frankwhzhang

add ssr

上级 f4cb25b4
......@@ -12,43 +12,55 @@
# See the License for the specific language governing permissions and
# limitations under the License.
workspace: "paddlerec.models.recall.ssr"
evaluate:
reader:
batch_size: 1
class: "{workspace}/ssr_infer_reader.py"
test_data_path: "{workspace}/data/train"
is_return_numpy: True
train:
trainer:
# for cluster training
strategy: "async"
epochs: 3
workspace: "paddlerec.models.recall.ssr"
device: cpu
reader:
dataset:
- name: dataset_train
batch_size: 5
type: QueueDataset
data_path: "{workspace}/data/train"
data_converter: "{workspace}/ssr_reader.py"
- name: dataset_infer
batch_size: 5
class: "{workspace}/ssr_reader.py"
train_data_path: "{workspace}/data/train"
type: QueueDataset
data_path: "{workspace}/data/test"
data_converter: "{workspace}/ssr_infer_reader.py"
model:
models: "{workspace}/model.py"
hyper_parameters:
hyper_parameters:
vocab_size: 1000
emb_dim: 128
hidden_size: 100
optimizer:
class: adagrad
learning_rate: 0.01
optimizer: adagrad
strategy: async
#use infer_runner mode and modify 'phase' below if infer
mode: train_runner
#mode: infer_runner
runner:
- name: train_runner
class: single_train
device: cpu
epochs: 3
save_checkpoint_interval: 2
save_inference_interval: 4
save_checkpoint_path: "increment"
save_inference_path: "inference"
print_interval: 10
- name: infer_runner
class: single_infer
init_model_path: "increment/0"
device: cpu
epochs: 3
save:
increment:
dirname: "increment"
epoch_interval: 2
save_last: True
inference:
dirname: "inference"
epoch_interval: 4
save_last: True
phase:
- name: train
model: "{workspace}/model.py"
dataset_name: dataset_train
thread_num: 1
#- name: infer
# model: "{workspace}/model.py"
# dataset_name: dataset_infer
# thread_num: 1
......@@ -20,84 +20,44 @@ from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
class BowEncoder(object):
""" bow-encoder """
def __init__(self):
self.param_name = ""
def forward(self, emb):
return fluid.layers.sequence_pool(input=emb, pool_type='sum')
class GrnnEncoder(object):
""" grnn-encoder """
def __init__(self, param_name="grnn", hidden_size=128):
self.param_name = param_name
self.hidden_size = hidden_size
def forward(self, emb):
fc0 = fluid.layers.fc(input=emb,
size=self.hidden_size * 3,
param_attr=self.param_name + "_fc.w",
bias_attr=False)
gru_h = fluid.layers.dynamic_gru(
input=fc0,
size=self.hidden_size,
is_reverse=False,
param_attr=self.param_name + ".param",
bias_attr=self.param_name + ".bias")
return fluid.layers.sequence_pool(input=gru_h, pool_type='max')
class PairwiseHingeLoss(object):
def __init__(self, margin=0.8):
self.margin = margin
def forward(self, pos, neg):
loss_part1 = fluid.layers.elementwise_sub(
tensor.fill_constant_batch_size_like(
input=pos, shape=[-1, 1], value=self.margin, dtype='float32'),
pos)
loss_part2 = fluid.layers.elementwise_add(loss_part1, neg)
loss_part3 = fluid.layers.elementwise_max(
tensor.fill_constant_batch_size_like(
input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
loss_part2)
return loss_part3
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def get_correct(self, x, y):
less = tensor.cast(cf.less_than(x, y), dtype='float32')
correct = fluid.layers.reduce_sum(less)
return correct
def train(self):
vocab_size = envs.get_global_env("hyper_parameters.vocab_size", None,
self._namespace)
emb_dim = envs.get_global_env("hyper_parameters.emb_dim", None,
self._namespace)
hidden_size = envs.get_global_env("hyper_parameters.hidden_size", None,
self._namespace)
emb_shape = [vocab_size, emb_dim]
self.user_encoder = GrnnEncoder()
self.item_encoder = BowEncoder()
self.pairwise_hinge_loss = PairwiseHingeLoss()
def _init_hyper_parameters(self):
self.vocab_size = envs.get_global_env("hyper_parameters.vocab_size")
self.emb_dim = envs.get_global_env("hyper_parameters.emb_dim")
self.hidden_size = envs.get_global_env("hyper_parameters.hidden_size")
def input_data(self, is_infer=False, **kwargs):
if is_infer:
user_data = fluid.data(
name="user", shape=[None, 1], dtype="int64", lod_level=1)
all_item_data = fluid.data(
name="all_item", shape=[None, self.vocab_size], dtype="int64")
pos_label = fluid.data(
name="pos_label", shape=[None, 1], dtype="int64")
return [user_data, all_item_data, pos_label]
else:
user_data = fluid.data(
name="user", shape=[None, 1], dtype="int64", lod_level=1)
pos_item_data = fluid.data(
name="p_item", shape=[None, 1], dtype="int64", lod_level=1)
neg_item_data = fluid.data(
name="n_item", shape=[None, 1], dtype="int64", lod_level=1)
self._data_var.extend([user_data, pos_item_data, neg_item_data])
return [user_data, pos_item_data, neg_item_data]
def net(self, inputs, is_infer=False):
if is_infer:
self._infer_net(inputs)
return
user_data = inputs[0]
pos_item_data = inputs[1]
neg_item_data = inputs[2]
emb_shape = [self.vocab_size, self.emb_dim]
self.user_encoder = GrnnEncoder()
self.item_encoder = BowEncoder()
self.pairwise_hinge_loss = PairwiseHingeLoss()
user_emb = fluid.embedding(
input=user_data, size=emb_shape, param_attr="emb.item")
......@@ -109,79 +69,115 @@ class Model(ModelBase):
pos_item_enc = self.item_encoder.forward(pos_item_emb)
neg_item_enc = self.item_encoder.forward(neg_item_emb)
user_hid = fluid.layers.fc(input=user_enc,
size=hidden_size,
size=self.hidden_size,
param_attr='user.w',
bias_attr="user.b")
pos_item_hid = fluid.layers.fc(input=pos_item_enc,
size=hidden_size,
size=self.hidden_size,
param_attr='item.w',
bias_attr="item.b")
neg_item_hid = fluid.layers.fc(input=neg_item_enc,
size=hidden_size,
size=self.hidden_size,
param_attr='item.w',
bias_attr="item.b")
cos_pos = fluid.layers.cos_sim(user_hid, pos_item_hid)
cos_neg = fluid.layers.cos_sim(user_hid, neg_item_hid)
hinge_loss = self.pairwise_hinge_loss.forward(cos_pos, cos_neg)
avg_cost = fluid.layers.mean(hinge_loss)
correct = self.get_correct(cos_neg, cos_pos)
correct = self._get_correct(cos_neg, cos_pos)
self._cost = avg_cost
self._metrics["correct"] = correct
self._metrics["hinge_loss"] = hinge_loss
def train_net(self):
self.train()
def infer(self):
vocab_size = envs.get_global_env("hyper_parameters.vocab_size", None,
self._namespace)
emb_dim = envs.get_global_env("hyper_parameters.emb_dim", None,
self._namespace)
hidden_size = envs.get_global_env("hyper_parameters.hidden_size", None,
self._namespace)
user_data = fluid.data(
name="user", shape=[None, 1], dtype="int64", lod_level=1)
all_item_data = fluid.data(
name="all_item", shape=[None, vocab_size], dtype="int64")
pos_label = fluid.data(
name="pos_label", shape=[None, 1], dtype="int64")
self._infer_data_var = [user_data, all_item_data, pos_label]
self._infer_data_loader = fluid.io.DataLoader.from_generator(
feed_list=self._infer_data_var,
capacity=64,
use_double_buffer=False,
iterable=False)
def _infer_net(self, inputs):
user_data = inputs[0]
all_item_data = inputs[1]
pos_label = inputs[2]
user_emb = fluid.embedding(
input=user_data, size=[vocab_size, emb_dim], param_attr="emb.item")
input=user_data,
size=[self.vocab_size, self.emb_dim],
param_attr="emb.item")
all_item_emb = fluid.embedding(
input=all_item_data,
size=[vocab_size, emb_dim],
size=[self.vocab_size, self.emb_dim],
param_attr="emb.item")
all_item_emb_re = fluid.layers.reshape(
x=all_item_emb, shape=[-1, emb_dim])
x=all_item_emb, shape=[-1, self.emb_dim])
user_encoder = GrnnEncoder()
user_enc = user_encoder.forward(user_emb)
user_hid = fluid.layers.fc(input=user_enc,
size=hidden_size,
size=self.hidden_size,
param_attr='user.w',
bias_attr="user.b")
user_exp = fluid.layers.expand(
x=user_hid, expand_times=[1, vocab_size])
user_re = fluid.layers.reshape(x=user_exp, shape=[-1, hidden_size])
x=user_hid, expand_times=[1, self.vocab_size])
user_re = fluid.layers.reshape(
x=user_exp, shape=[-1, self.hidden_size])
all_item_hid = fluid.layers.fc(input=all_item_emb_re,
size=hidden_size,
size=self.hidden_size,
param_attr='item.w',
bias_attr="item.b")
cos_item = fluid.layers.cos_sim(X=all_item_hid, Y=user_re)
all_pre_ = fluid.layers.reshape(x=cos_item, shape=[-1, vocab_size])
all_pre_ = fluid.layers.reshape(
x=cos_item, shape=[-1, self.vocab_size])
acc = fluid.layers.accuracy(input=all_pre_, label=pos_label, k=20)
self._infer_results['recall20'] = acc
def infer_net(self):
self.infer()
def _get_correct(self, x, y):
less = tensor.cast(cf.less_than(x, y), dtype='float32')
correct = fluid.layers.reduce_sum(less)
return correct
class BowEncoder(object):
""" bow-encoder """
def __init__(self):
self.param_name = ""
def forward(self, emb):
return fluid.layers.sequence_pool(input=emb, pool_type='sum')
class GrnnEncoder(object):
""" grnn-encoder """
def __init__(self, param_name="grnn", hidden_size=128):
self.param_name = param_name
self.hidden_size = hidden_size
def forward(self, emb):
fc0 = fluid.layers.fc(input=emb,
size=self.hidden_size * 3,
param_attr=self.param_name + "_fc.w",
bias_attr=False)
gru_h = fluid.layers.dynamic_gru(
input=fc0,
size=self.hidden_size,
is_reverse=False,
param_attr=self.param_name + ".param",
bias_attr=self.param_name + ".bias")
return fluid.layers.sequence_pool(input=gru_h, pool_type='max')
class PairwiseHingeLoss(object):
def __init__(self, margin=0.8):
self.margin = margin
def forward(self, pos, neg):
loss_part1 = fluid.layers.elementwise_sub(
tensor.fill_constant_batch_size_like(
input=pos, shape=[-1, 1], value=self.margin, dtype='float32'),
pos)
loss_part2 = fluid.layers.elementwise_add(loss_part1, neg)
loss_part3 = fluid.layers.elementwise_max(
tensor.fill_constant_batch_size_like(
input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
loss_part2)
return loss_part3
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册